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Abstract. Generalising the uniform companion for large fields with a sin-

gle derivation, we construct a theory UCD of fields of characteristic 0 with
free operators—operators determined by a homomorphism from the field to

its tensor product with D, a finite-dimensional Q-algebra—which is the model

companion of any theory of a field with free operators whose associated differ-
ence field is difference large and model complete. Under the assumption that

D is a local ring, we show that simplicity is transferred from the theory of the

underlying field to the theory of the field with operators, and we use this to
study the model theory of bounded, PAC fields with free operators.

1. Introduction

In [31], Tressl showed that there is an inductive theory UC in the language
of differential rings with a single derivation, Lring(δ), such that whenever T is a
model complete Lring-theory of large fields of characteristic 0, T ∪UC is the model
companion of the Lring(δ)-theory of differential fields whose underlying field is a
model of T . He called UC the uniform companion. This brought the theories
DCF0 and CODF into a common framework, and also showed that the theory of p-
adically closed fields of fixed p-rank with a derivation and the theory of pseudofinite
fields with a derivation both admit a model companion.

The results of this paper generalise the above result of Tressl from the case of a
single derivation to that of so-called free operators. Fields with free operators, or
D-fields as we will now refer to them, were introduced by Moosa and Scanlon in
[25]. In [27] they showed that D-fields are an appropriate framework for unifying
the model theory of various classes of algebraically closed fields with operators:
derivations, endomorphisms, and others. We give a brief outline of the set-up; see
Section 2 for details. Fix a field k of characteristic 0 and a finite-dimensional k-
algebra D with a k-algebra homomorphism π : D → k. Then a D-field is a field F
which is also a k-algebra equipped with a k-algebra homomorphism F → F ⊗k D
which is a section to idF ⊗ π. Note that δ : F → F is a k-linear derivation if and
only if x 7→ x+ δ(x)ε is a k-algebra homomorphism F → F [ε]/(ε2), and σ : F → F
is a k-linear field endomorphism if and only if (somewhat trivially) x 7→ (x, σ(x))
is a k-algebra homomorphism F → F × F . In the case k = Q we recover the usual
notions of derivations and endomorphisms. The authors of [27] then show that
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the theory of algebraically closed fields of characteristic 0 with a D-field structure
admits a model companion, called D-CF0.

Under the mild assumption that D satisfies Assumption 2.4, D-fields have a se-
quence of t ≥ 0 nontrivial, definable associated endomorphisms. In [18], Kikyo
and Shelah proved that if T is a model complete theory with the strict order prop-
erty, Tσ has no model companion. An immediate consequence is that, if t > 0,
RCF∪ “D-fields” and Th(Qp)∪ “D-fields” both have no model companion; we can
only hope to find the model companion of a given D-field if its associated difference
field has a model companion.

Our aim, therefore, is to find a theory UCD in the language of D-fields such that
whenever T is a model complete theory of difference large fields, T ∪ UCD is the
model companion of T ∪ “D-fields”. It will then follow that D-CF0 = ACFA0,t ∪
UCD. Here a difference field is difference large if it satisfies a natural modification of
the geometric axiom of ACFA0,t; see Definition 2.9 and Definition 3.2.2 of Cousins’s
thesis [10] for where this notion first appears. In the case t = 0 this specialises to
the field-theoretic notion of largeness.

Thus, this paper aims to generalise previous results in two senses. In the first
sense, we generalise Tressl’s uniform companion from the differential case (in a
single derivation) to the case of free operators. In the second, the result of Moosa–
Scanlon that ACFA0,t ∪ “D-fields” admits a model companion from the case of
ACFA0,t to that of an arbitrary model complete theory of difference large fields of
characteristic 0. To this end, we prove the following in Section 3.

Theorem 1. Let T be a model complete theory of difference large fields, and suppose
it is the model companion of some T0. Then

(i) T ∪UCD is the model companion of T0 ∪ “D-fields”;
(ii) if T is the model completion of T0, then T ∪ UCD is the model completion

of T0 ∪ “D-fields”;
(iii) if T has quantifier elimination, T ∪UCD has quantifier elimination.

When D is local, there are no associated endomorphisms, and we recover the
D-field analogue of Tressl’s uniform companion for large differential fields. This
yields the uniform companion in the following cases:

• several (not necessarily commuting) derivations;
• truncated, non-iterative higher derivations;
• operators combining these two.

The existence of the uniform companion will follow from two facts:

(1) Let M,N |= UCD, and A a common D-subring of them. If M and N
have the same existential theory over A as difference fields, then they do
as D-fields.

(2) Every D-field whose associated difference field is difference large can be ex-
tended to a model of UCD, and this extension is elementary as an extension
of difference fields.

In [31], Tressl establishes his results for differential fields via these two facts. Our
proof of these will be more geometric and takes ideas from [27]. Indeed, the axiom
scheme UCD is very similar to the geometric axiomatisation of D-CF0 in [27].

Remark. In [31], Tressl constructs his uniform companion in the setting of several
commuting derivations δ1, . . . , δm. As pointed out above, here we obtain, as an
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instance of the general result of this paper, the uniform companion in the case of
several not necessarily commuting derivations. Thus, in the context of derivations,
the results of this paper and those of Tressl differ, agreeing only in the case of a
single derivation. However, the case of not necessarily commuting derivations does
appear in a recent paper of Fornasiero and Terzo [11] where they consider generic
derivations on algebraically bounded structures—a wider context than the large
and model complete fields considered here; see Remark 5.12 for more details.

In Section 4 we prove alternative characterisations of UCD in the case that
D is local. One is still geometric in flavour, and one is similar to the notion of
differential largeness from [21]. From these alternative characterisations, we will
show that algebraic extensions of large fields which are models of UCD are again
models of UCD with the unique induced D-structure on the algebraic extension.
Hence the algebraic closure of a large field which is a model of UCD is a model of
D-CF0 from [27]. This gives a class of D-fields with minimal D-closures—though
it is as yet unknown if D-closures exist in general. Here by a D-closure we mean a
prime model extension in the theory D-CF0.

The fact that NIP transfers from T to T ∪UCD is an immediate consequence of
the transfer of quantifier elimination. In Section 5 we show the following.

Theorem 2. Suppose D is local and T is a model complete theory of large fields.
If T is simple, then T ∪UCD is simple.

This is less immediate and requires the notion of slimness from [17] to get a
handle on what nonforking independence looks like in the underlying theory of
fields. The authors of [17] show that model complete, large fields are very slim,
and hence that, in such a field, algebraic independence is an independence relation.
From the proof of the Kim–Pillay theorem, we then get that if two D-fields are
independent in the sense of nonforking, they are algebraically independent as fields.
This fact will allow us to amalgamate independent (in the sense of nonforking) D-
fields, and thus prove that if the independence theorem holds in T , it must also
hold in T ∪UCD.

In Section 6 we study the PAC substructures in D-CF0 using the definition from
[13] of being existentially closed in every Lring(∂)-regular extension (that is, an
extension of D-fields A ≤ B where acl(A) ∩ dcl(B) = dcl(A)), and we show that
they are characterised as those D-fields which are models of UCD and PAC as fields.
We use this in conjunction with Section 5 to prove simplicity and elimination of
imaginaries for the theory of a bounded D-field which is a PAC substructure in
D-CF0, extending the corresponding differential results from Section 6 of [14] to
the case of D-fields.

In Section 7 we examine what happens without Assumption 2.4. In this case,
D-fields do not necessarily have associated endomorphisms, and it does not make
sense to ask whether T ∪ “D-fields” has a model companion when T is a theory
of difference fields. So instead we ask whether it has a model companion when T
is a theory of fields. We (partially) answer by showing that, when the base field
k is finitely generated over Q and D is not local, there is some prime p such that
Th(Qp) ∪ “D-fields” has no model companion. Thus, when k is finitely generated
over Q, the uniform companion for model complete, large fields exists if and only if
D is local.
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Assumptions. All rings are commutative and unital. Ring homomorphisms
preserve the unit. All fields are of characteristic 0.

2. Preliminaries

In this section we review the basic definitions of D-fields and large fields and the
model-theoretic set-up we will be working in. See [27] and [4] for more details.

2.1. D-fields. Fix a base field k of characteristic 0. Let D be a finite-dimensional
k-algebra, and let ε0, . . . , εl be a k-basis of D. Let π : D → k be a k-algebra
homomorphism that sends ε0 7→ 1 and εi 7→ 0 for i = 1, . . . , l. If R is a k-algebra,
1⊗ ε0, . . . , 1⊗ εl is an R-basis of R⊗k D. Write πR : R⊗k D → R for the k-algebra
homomorphism idR ⊗ π.

Definition 2.1. Let R be a k-algebra and ∂i : R → R a sequence of unary functions
on R for i = 1, . . . , l. We say that (R, ∂1, . . . , ∂l) is a D-ring if the map ∂ : R →
R⊗k D given by

r 7→ r ⊗ ε0 + ∂1(r)⊗ ε1 + . . .+ ∂l(r)⊗ εl

is a k-algebra homomorphism. Equivalently, we will say that (R, ∂) is a D-ring if
∂ : R → R⊗k D is a k-algebra homomorphism such that πR ◦ ∂ = idR.

If R is a k-algebra and S is an R-algebra given by a : R → S, we say that
∂ : R → S ⊗k D is a D-operator along a : R → S if it is a k-algebra homomorphism
and πS ◦ ∂ = a. Then (R, ∂) is a D-ring if and only if ∂ is a D-operator along idR.

The ring structure of D determines the additive and multiplicative rules of the

functions ∂i. Indeed, let aijk, bi ∈ k be the elements defined by εiεj =
∑l

k=0 aijkεk
and 1D =

∑l
i=0 biεi. Then k-linearity of ∂ corresponds to k-linearity of each ∂i.

Multiplicativity of ∂ corresponds to the following “product rule” being satisfied for

each k: ∂k(rs) =
∑l

i,j=0 aijk∂i(r)∂j(s). That ∂ preserves the unit corresponds to

the equation ∂i(1R) = bi.
Note that being a D-ring imposes no additional relations between the functions

∂i. For example, commutativity of the operators is not imposed by being a D-ring
(though a particular D-ring may indeed have ∂i∂j = ∂j∂i).

We can axiomatise the theory of D-rings in the language

Lring(∂) = {+,−, ·, 0, 1, (ca)a∈k, ∂1, . . . , ∂l},

where ca is a constant symbol for the element a ∈ k.

Example 2.2. (1) Take D to be the algebra of dual numbers, k[ε]/(ε2), with
the standard k-algebra structure and basis 1, ε. Then (R, ∂1) is a D-ring
precisely when R is a k-algebra and ∂1 is a k-linear derivation of R.

(2) LetD = k[ε1, . . . , εl]/(ε1, . . . , εl)
2 with basis 1, ε1, . . . , εl. Then (R, ∂1, . . . , ∂l)

is a D-ring if R is a k-algebra and each ∂i is a k-linear derivation of R. As
explained before, these derivations will in general be noncommuting.

(3) Take D = kl+1 with the product k-algebra structure and the standard basis.
Then (R, ∂1, . . . , ∂l) is a D-ring if and only if R is a k-algebra and each ∂i
is a k-linear endomorphism of R. These endomorphisms will in general be
noncommuting.
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(4) We can combine the above examples. Let D = k[ε]/(ε2) × k with basis
(1, 0), (ε, 0), (0, 1). Then a D-ring (R, ∂1, ∂2) is a k-algebra with a derivation
∂1 and an endomorphism ∂2.

(5) Let D = k[ε]/(εl+1) with basis 1, ε, . . . , εl. Then D-rings are k-algebras
with non-iterative, truncated higher derivations (∂1, . . . , ∂l). That is, they
satisfy the following: ∂i(xy) =

∑
r+s=i ∂r(x)∂s(y).

We refer the reader to [27] for more examples.

Since D is a finite-dimensional k-algebra, it can be written as a finite product of
local, finite-dimensional k-algebras D =

∏t
i=0 Bi. Let mi be the unique maximal

ideal of Bi. Then the residue field is a finite field extension of k: Bi/mi = k[x]/(Pi)
for some k-irreducible polynomial Pi. We define the k-algebra homomorphisms
πi : D → k[x]/(Pi) by the compositions D → Bi → k[x]/(Pi), and we let πR

i =
idR⊗πi be the k-algebra homomorphism R⊗kD → R[x]/(Pi) for any k-algebra R.
Note that the k-algebra homomorphism π : D → k gives a maximal ideal of D with
residue field k. So π must correspond to one of the πi, say π0, and B0 has residue
field k.

Definition 2.3. Suppose ∂ : R → S ⊗k D is a D-operator along a : R → S. Com-
posing ∂ and the map πS

i gives the following k-algebra homomorphism:

R S ⊗k D S[x]/(Pi).
∂ πS

i

This is called the ith associated homomorphism, σi, of ∂.
Now, σ0 = πS

0 ◦∂ = πS ◦∂ = a and the associated homomorphism corresponding
to B0 is always a.

Suppose now that (R, ∂) is a D-ring. If α ∈ R is a root of Pi, we have a map
R[x]/(Pi) → R. The composition of σi with this map gives an endomorphism of R,
σi,α : R → R. This endomorphism is α-definable in Lring(∂).

As explained in the introduction, the presence of associated homomorphisms
which induce nontrivial endomorphisms (in the sense of the paragraph above) means
that theories such as RCF ∪ “D-fields and Th(Qp) ∪ “D-fields have no model com-
panions. If there are associated homomorphisms which do not induce nontrivial
endomorphisms, then we do not know whether these theories have model compan-
ions; we defer a more in-depth discussion of this to Section 7.

In [27] the authors make the following assumption throughout.

Assumption 2.4. The residue field of each Bi is k.

For Section 3, we will do the same. As a result of this assumption, all the
associated homomorphisms of a D-ring are in fact endomorphisms, and much is
simplified. All of the main motivating examples fit into this situation. Under this
assumption, a D-field (F, ∂) has t associated endomorphisms σ1, . . . , σt. Since the
associated endomorphisms are k-linear combinations of the operators ∂1, . . . , ∂l, we
think of the structure (F, σ1, . . . , σt)—the associated difference field—as a reduct
to the language Lring(σ1, . . . , σt) ⊆ Lring(∂).

In Sections 4–6, we will make the stronger assumption that D is local (Assump-
tion 4.1), and in Section 7 we will discuss what happens in the absence of both
assumptions.
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2.2. The prolongation of an affine variety. For the geometric axioms of the
uniform companion, we need the notion of a prolongation of a variety. We will give
a similar presentation to [27]; see [25] for a more in-depth description of this object
as a Weil restriction of a base change, and Remark 2.9 of [26] for a construction of
the prolongation as an adjunction.

Let (K, ∂) be a D-field and X a variety over K. The prolongation of X, τX,
is a variety over K with the defining property that for any field extension L ≥ K,
there is an identification τX(L) ↔ X(L⊗k D), where X is viewed as a variety over
K ⊗k D via the base change coming from the map ∂ : K → K ⊗k D. If (L, δ) is a
D-field extension of (K, ∂), then the above identification induces a map at the level
of L-points ∇ : X(L) → τX(L).

If X = SpecK[x]/I is affine, where x is a tuple of variables, then τX =
SpecK[x0, . . . , xl]/I ′ where I ′ is constructed as follows (recall that dimk D = l+1).
For each f ∈ I, let f∂ ∈ (K ⊗k D)[x] be the polynomial obtained by applying ∂ to
the coefficients of f . Now compute

f∂

 l∑
j=0

xjεj

 =

l∑
j=0

f (j)(x0, . . . , xl)εj .

Then I ′ is the ideal generated by all the f (j). With respect to these coordinates,
the map ∇ : X(L) → τX(L) is given by ∇(a) = (a, δ1(a), . . . , δl(a)).

If Assumption 2.4 holds, the k-algebra homomorphisms πi : D → k induce mor-
phisms π̂i : τX → Xσi , where Xσi is just X base changed via the associated endo-
morphism σi : K → K. See Section 4.1 of [25] for a discussion of these morphisms.

If Assumption 2.4 does not hold, but α ∈ K is a root of Pi, then the endomor-
phism σi,α induces a morphism π̂i,α : τX → Xσi,α . This morphism does not follow
from Section 4.1 of [25]—see the discussion after Lemma 7.5 of [27]. We will not
need these morphisms in this paper, but they do appear in the axiomatisation of
D-CF0 when Assumption 2.4 does not hold; see Theorem 7.6 of [27].

Example 2.5. (1) If D = k[ε]/(ε2), then the prolongation of X is the twisted
tangent bundle from [28]. The morphism π̂0 is the usual coordinate projec-
tion.

(2) If D = k×k, so that D-rings are precisely rings with a single endomorphism
σ, then the prolongation of X is X ×Xσ which appears in the geometric
axioms for ACFA in [7]. The morphism π̂0 is the projection to X, and π̂1

is the projection to Xσ.

Remark 2.6. The prolongation of X does not always exist. From Section 3, we
will work under the assumption that the residue field of each Bi is k. Hence
SpecBi → Spec k is a universal homeomorphism for each i = 0, . . . , t, and the
prolongation exists for every variety. See the corrigendum to [25]. In any case,
we will only be interested in affine varieties, for which the coordinate construction
above suffices.

2.3. Large fields and difference large fields.

Definition 2.7. A field K is large if every K-irreducible variety with a smooth
K-rational point has a Zariski dense set of K-rational points. Equivalently, K is
large if it is existentially closed in K((t)).
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Large fields were first introduced by Pop [30]. Most fields considered model-
theoretically “tame” are large. For example, algebraically closed fields, real closed
fields, and fields with a nontrivial henselian valuation are large. On the other hand,
number fields and function fields are not large.

Large fields play an important role in Tressl’s uniform companion for differential
fields in [31]. We will now strengthen this notion to that of difference largeness;
these difference fields will play an analogous role here.

Recall that D has a decomposition as
∏t

i=0 Bi where each Bi is a local, finite-
dimensional k-algebra. We impose Assumption 2.4: the residue field of each Bi,
which is necessarily a finite field extension of k, is k itself. Since our uniform
companion will be given “relative” to the associated difference field, to simplify
notation we will also work with E-operators where

E = kt+1

so that E-fields are precisely fields with t noncommuting endomorphisms.
Recall also that we have k-algebra homomorphisms πi : D → k given by the

composition of the projection to Bi and then the residue map to k. Since kt+1

is the product, this induces a k-algebra homomorphism α : D → E which is the
product of the maps πi. Note also that if (K, ∂) is a D-ring and (K,σ) is its
associated difference ring thought of as an E-ring (so that σ : K → Kt+1 is given
by r 7→ (r, σ1(r), . . . , σt(r))), then α ◦ ∂ = σ. By Section 4.1 of [25], α induces
a morphism of varieties α̂ : τDX → τEX = X × Xσ1 × . . . × Xσt such that the
following diagram commutes:

τDX(K) τEX(K)

X(K)

α̂

∇D ∇E

Note also that α̂ is the product of the morphisms π̂i.

Lemma 2.8. Let (K, ∂) be a D-field, and (K,σ) its associated difference field
thought of as an E-field. Suppose X and Y ⊆ τDX are irreducible varieties over
K. Let b be a K-generic point of Y . Then the following are equivalent:

(1) Y has a Zariski-dense set of K-rational points whose projections to τEX
are in the image of ∇E ;

(2) there is some difference field containing the function field K(b) in which
α̂(b) is in the image of ∇E and which is a difference field elementary ex-
tension of (K,σ).

Proof. (1) =⇒ (2). Working with respect to the coordinates in Section 2.2, saying
that α̂(b) is in the image of ∇E is equivalent to saying that σi(π̂0(b)) = π̂i(b) for
each i = 1, . . . , t.

Consider the following set of formulas with parameters in K in the language of
difference rings:

p(x) = qftp(b/K) ∪ {σi(π̂0(x)) = π̂i(x) : i = 1, . . . , t}.
Since b is K-generic in Y and Y has a Zariski-dense set of K-rational points c with
σi(π̂0(c)) = π̂i(c), p(x) is finitely satisiable in (K,σ), and hence is a partial type.
So there is some difference field (L, σ) ⪰ (K,σ) with a realisation of p(x). This is
precisely (2).
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(2) =⇒ (1). Clear. ■

Recall from the introduction that we cannot hope to uniformly find the model
companion for D-fields whose underlying field is large; we need to take into account
the associated difference field. The following definition facilitates this.

Definition 2.9. A difference field (K,σ1, . . . , σt) is difference large if it is large and
for all irreducible, affine K-varieties X and Y such that Y ⊆ X ×Xσ1 × . . .×Xσt ,
each projection π̂i : Y → Xσi for i = 0, . . . , t is dominant, and Y has a smooth
K-rational point, we have that Y has a Zariski-dense set of K-rational points of
the form (a, σ1(a), . . . , σt(a)) for a ∈ X(K).

Remark 2.10. (1) If t = 0, that is, D is local, then difference largeness is just
largeness. If t > 0, then the only known examples of difference large fields
are models of ACFA0,t; hence we will focus on the local case for conse-
quences and examples in Sections 4–6.

(2) This notion first appeared (for t = 1) in Cousins’s thesis [10].

3. The uniform companion

Before we discuss the axioms for the uniform companion, we need some results
about extending D-ring structures. We carry over the notation from the previous
section. In particular, k is a field of characteristic 0, and D is a finite-dimensional
k-algebra. We write the local decomposition of D as

∏t
i=0 Bi and the residue field

of Bi as k[x]/(Pi).

Lemma 3.1. Suppose R is a k-algebra, S is an R-algebra given by a : R → S, and
∂ : R → S⊗kD is a D-operator along a (that is, πS ◦∂ = a). Let σi : R → S[x]/(Pi)
be the associated homomorphisms of ∂, πS

i ◦ ∂. Let τi : S → S[x]/(Pi) be k-algebra
homomorphisms extending σi. If S is 0-smooth over R, there is an extension of ∂
to a D-ring structure on S with associated homomorphisms τi. If S is 0-étale over
R, there is a unique such extension.

Proof. Let (S[x]/(Pi))
σi be the R-algebra which as a ring is just S[x]/(Pi) but

whose R-algebra structure is given by σi : R → S[x]/(Pi).
Let (S ⊗k Bi)

∂ be the R-algebra which as a ring is just S ⊗k Bi but whose
R-algebra structure is given by

R S ⊗k D S ⊗k Bi.
∂

Similarly, (S ⊗k D)∂ has R-algebra structure ∂ : R → S ⊗k D.
Then τi is an R-algebra homomorphism S → (S[x]/(Pi))

σi . The quotient map
(S ⊗k Bi)

∂ → (S[x]/Pi)
σi is a surjective R-algebra homomorphism with nilpotent

kernel S⊗kmi. Since R → S is 0-smooth (0-étale), there is a (unique) R-algebra ho-
momorphism S → (S⊗kBi)

∂ whose composition with the quotient map is τi. Com-
bining these for each i gives a (unique) R-algebra homomorphism S → (S ⊗k D)∂ ,
that is, a (unique) D-ring structure on S extending ∂ with associated homomor-
phisms τi. ■

Remark 3.2. (1) Separable extensions are 0-smooth. Separable algebraic ex-
tensions are 0-étale. Localisations are 0-étale. See 25.3 and 26.9 of [22] for
details.

(2) When D is local, this lemma appears as Lemma 2.7 in [4].
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As a consequence of Lemma 3.1, the problem of extending D-field structures to
field extensions reduces to that of extending the associated homomorphisms. In
general, extending endomorphisms in a given class of fields is not always possible;
for instance, in the class of real fields. Thus constructing the model companion of
a D-field must be done relative to the associated difference field.

For the rest of this section, we impose Assumption 2.4.

Definition 3.3. Let (K, ∂) be a D-field. We say that (K, ∂) is a model of UCD if
the following holds:

if X is a K-irreducible affine variety and Y ⊆ τDX is a K-irreducible affine
variety such that π̂i(Y ) is Zariski dense in Xσi for each i = 0, . . . , t, and Y has a
smooth K-rational point, then for every nonempty Zariski open set U ⊆ Y over K
there exists some a ∈ X(K) such that ∇(a) ∈ U(K).

Remark 3.4. If (K, ∂) |= UCD, then the associated difference field (K,σ) is differ-
ence large. The proof is similar to that of Proposition 4.12 of [27].

This axiom scheme can be expressed in a first-order fashion in the language
Lring(∂). This is nowadays a standard argument, but we provide some details; we
follow the argument used in [31]. We will make use of Theorem 4.2 from there,
which collects results about ideals of polynomials from [32].

Theorem (Theorem 4.2 of [31]). Let n, d ∈ N, x = (x1, . . . , xn). Then there
are bounds B = B(n, d), C = C(n, d), and E = E(n, d) in N such that for each
field K, each ideal I of K[x] generated by polynomials of degree at most d, and all
f1, . . . , fp ∈ K[x] of degree at most d, the following are true.

(i) If I is generated by f1, . . . , fp, then for every g ∈ I of degree at most d, there
are c1, . . . , cp ∈ K[x] of degree at most E such that g = c1f1 + . . .+ cpfp.

(ii) I is prime if and only if 1 ̸∈ I and for all f, g ∈ K[x] of degree at most B,
if fg ∈ I, then f ∈ I or g ∈ I.

(iii) For all m ∈ {1, . . . , n}, the ideal I ∩K[x1, . . . , xm] is generated by at most
C polynomials of degree at most C.

Let n, d,m ∈ N, x = (x1, . . . , xn), f1, . . . , fm ∈ K[x], g1, . . . , gm, h ∈ K[x0, . . . , xl],
all of degree at most d. The polynomials fj generate the ideal that defines X, IX ,
the polynomials gj generate the ideal that defines Y , IY , and the nonvanishing
of the polynomial h will define the open subset U . Then also the polynomials
fσi
1 , . . . , fσi

m generate the ideal that defines Xσi . The fact that K-irreducibility
of X and Y can be expressed as first-order Lring-axioms comes from (i) and (ii).
That Y ⊆ τX can be checked by verifying that the polynomials that define τX
are elements of IY ; that this is a first-order condition follows from (i). Indeed the
polynomials that define τX can be computed in terms of the coefficients of the fi
(see the discussion at the end of Section 3 of [27]). That π̂0 : Y → X is dominant
says that IY ∩ K[x] = IX . By (iii) there is a bound, depending on n and d, on
the number and degree of the polynomials needed to generate IY ∩K[x]. That this
equality is first-order comes from (i). A similar argument shows that dominance of
π̂i : Y → Xσi is a first-order condition. The existence of a smooth K-point for Y
can be verified by the Jacobian condition on the gi. Note also that the dimension
of Y is the Krull dimension of IY , which is definable in terms of the coefficients of
the gi. Finally, that there is a point ∇(a) in the nonempty Zariski open set U is
equivalent to the fact that that the polynomial h either is an element of IY , which
is first-order by (i), or does not vanish at some ∇(a).
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The fact that the theory UCD is the desired uniform companion will follow from
the next two theorems (Theorem 3.5 and Theorem 3.6). These form the D-field
analogue of Theorem 6.2 from [31], where the differential counterpart is stated.

Theorem 3.5. Let M,N |= UCD be D-fields, and A a common D-subring. If M
and N have the same existential theory over A as difference fields, then they do as
D-fields.

Proof. Let F1 and F2 be the quotient fields of A inside M and N , respectively.
Since the associated endomorphisms of A are injective, they extend uniquely to
F1 and F2. By Lemma 3.1, the D-structure on A extends uniquely to F1 and
F2, and so they are isomorphic as D-fields. Then we may assume F = F1 = F2 is
contained in both M and N . Let L1 be the relative algebraic closure of F in M and
similarly for L2 in N . Then the associated endomorphisms of M and N restrict to
endomorphisms of L1 and L2 respectively, and hence their D-field structures must
also. By Remark 3.2, L1 and L2 are isomorphic as D-fields; we may then assume
L = L1 = L2 is contained in both M and N .

Suppose that M ⊨ ∃x̄ϕ(x̄) where ϕ(x̄) is a quantifier-free Lring(∂)-formula with
parameters in A and x̄ = (x1, . . . , xm). As usual, we can assume that ϕ is of the
form

∧n
i=1 fi(x̄) = 0, where the fi are Lring(∂)-terms with coefficients in F . Let

c0 be such that M |= ϕ(c0). Let Ξ be the set of all finite words on {∂1, . . . , ∂l}.
For each r let Ξr be an enumeration of the words of length at most r such that Ξr

is an initial segment of Ξr+1, and let nr = |Ξr|. Let ∇r : M → Mnr be given by
b 7→ (ξ(b) : ξ ∈ Ξr). Let r be minimal such that ϕ(M) = {b ∈ Mm : ∇r(b) ∈ Z}
where Z ⊆ Mmnr is a Zariski closed set over F . If r = 0, then ϕ is in fact an
Lring-formula and since M and N have the same existential theory over A as fields,
we have a solution in N . So assume r > 0 and let c = ∇r−1(c0).

Let X = loc(c/L), Y = loc(∇c/L). Note that Y ⊆ τX and that π̂i(Y ) is
Zariski dense in Xσi . Let g1, . . . , gs be polynomials that generate the vanishing
ideal of Y over L. By the primitive element theorem, let α ∈ L be such that F (α)
is a field of definition for X and Y . After clearing denominators, we can rewrite
the polynomials gi(ū) instead as Gi(v, ū) ∈ F [v, ū], where Gi(α, ū) = gi(ū). Let
µ(v) ∈ F [v] be the minimal polynomial of α.

We claim that (α,∇c) ∈ M is a smooth solution to the system

(†) µ(v) = 0, G1(v, ū) = 0, . . . , Gs(v, ū) = 0.

As ∇c is L-generic in Y , it must be a smooth solution to the system g1(ū) =
0, . . . , gs(ū) = 0. Let J(∇c) be the Jacobian for g1, . . . , gs at ∇c, and let d be its
rank. Since µ(v) contains none of the ū variables, the Jacobian of the system (†)
at (α,∇c) is of the form (

dµ
dv (α) 0
∗ J(∇c)

)
.

Since µ is the minimal polynomial of α, dµ
dv (α) ̸= 0, and hence this matrix has

rank d+ 1. Note also that the variety defined by (†) is a finite union of conjugates
of Y , and hence has the same dimension. So (α,∇c) is a smooth point of (†).

Consider the quantifier-free Lring(σ1, . . . , σt)-type of (α,∇c) ∈ M over F . Since
M and N have the same existential theory over F as difference fields, this partial
type is finitely satisfiable in N . We may also assume that N is sufficiently saturated.
Then there is a realisation (β, b) ∈ N of this partial type. This induces a difference
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field F -isomorphism θ : F ⟨α ⟨σ → F ⟨β ⟨σ where F ⟨α ⟨σ means the difference field
generated by F and α and likewise for β. We also have that b is a smooth point of
Y θ.

Both F ⟨α ⟨σ and F ⟨β ⟨σ are algebraic extensions of F , and hence by Remark 3.2,
the D-field structure on F extends uniquely to D-field structures on F ⟨α ⟨σ and
F ⟨β ⟨σ. So θ is a D-field isomorphism between sub-D-fields of M and N .

Since Y is L-irreducible, Y θ is L-irreducible, and since L is relatively algebraically
closed in N , Y θ is N -irreducible. Likewise, Xθ is N -irreducible. Proposition 4.8
of [25] tells us that τXθ ≃ τX, and that this isomorphism respects points of the
form ∇z. We also have that Y θ ⊆ τXθ and that π̂i(Y

θ) is Zariski dense in (Xθ)σi .
Since θ fixes F it also fixes Z.

Since N ⊨ UCD, there is a point a ∈ Xθ(N) with ∇a ∈ Y θ(N). Let a0 be
the first m coordinates of a. We claim that a0 is a realisation of ϕ, which will
conclude the proof. As in the proof of Theorem 4.5 of [27], we prove first that
∇r−1(a0) = a. Write a = (aξ : ξ ∈ Ξr−1). We prove by induction on the length
of ξ that ξ(a0) = aξ. For ξ = id this is clear. Suppose now that ξ = ∂iξ

′. Since
∇r−1(c0) = c, we have that ∂icξ′ = cξ. This is an algebraic fact about ∇c over F .
Since ∇a satisfies all the algebraic relations ∇c does over F (since θ fixes F ), we
also have ∂iaξ′ = aξ. By the inductive hypothesis, ∂iaξ′ = ∂iξ

′(a0) = ξ(a0).
Since c0 realises ϕ, ∇r(c0) ∈ Z. This is an algebraic fact about ∇c = ∇∇r−1(c0)

over F . Since ∇a satisfies all the algebraic relations ∇c does over F , we have
∇r(a0) ∈ Z. So N |= ϕ(a0). ■

Theorem 3.6. Every D-field that is difference large as a difference field has a D-
field extension which is a model of UCD and an elementary extension at the level
of difference fields.

Proof. Let (F, ∂) be a D-field that is difference large as a difference field, and let
X and Y be F -irreducible varieties where Y ⊆ τX, π̂i(Y ) is Zariski dense in Xσi ,
and Y has a smooth F -rational point. Let U be a nonempty Zariski-open subset
of Y defined over F .

Let b ∈ Y (L) be an F -generic point in some field extension L of F . Since π̂i(Y )
is Zariski dense in Xσi , we get that π̂i(b) is F -generic in Xσi . Let α̂ : τX →
X ×Xσ1 × . . . ×Xσt be the product of the morphisms π̂i. Let Z be the Zariski-
closure of α̂(Y ) in X × Xσ1 × . . . × Xσt . Then α̂ : Y → Z is dominant. Let V
be the F -open subset of smooth points of Z. By dominance, V has a point in the
image of α̂. Then α̂−1(V ) is a nonempty F -open set. Since F is large and Y has a
smooth F -rational point, α̂−1(V ) has an F -rational point. So V has an F -rational
point—that is, Z has an F -rational smooth point.

Let W ⊆ Y be some open subset of Y . Since Y is irreducible, W is dense in Y .
Then α̂(W ) is dense in Z. As Z has a smooth F -rational point and F is difference
large, Z has a Zariski dense set of F -rational points of the form (a, σi(a), . . . , σt(a)).
So Y has a Zariski-dense set of F -rational points whose projections have the form
(a, σi(a), . . . , σt(a)).

So by Lemma 2.8 there is some difference field (K,σ) containing F (b) which is
an elementary extension of (F, σ) and in which σi(π̂0(b)) = π̂i(b). We will define a
D-field structure on K whose associated difference field is (K,σ).

As mentioned in Section 2.2, there is an identification τX(K) ↔ X(K⊗kD). Let
b′ be the tuple fromK⊗kD that corresponds to b ∈ τX(K) under this identification.
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Note that πi(b
′) = σi(π0(b

′)) in K because π̂i(b) = σi(π̂0(b)). Write a = π̂0(b) for
the F -generic point of X.

As in the proof of Theorem 4.5 of [27], we can extend ∂ : F → F ⊗k D ⊆ K⊗k D
to a k-algebra homomorphism ∂ : F [a] → K ⊗k D with ∂(a) = b′.

Indeed, since b ∈ τX(K), we have p∂(b′) = 0 for all p ∈ I(X/F ). Since a is
F -generic in X, I(X/F ) = I(a/F ). As p∂(b′) = 0 for all p ∈ I(a/F ), ∂ extends to
F [a] = F [x]/I(a/F ) by setting ∂(a) = b′. Since π̂0(b) = a, we have that πK

0 (b′) = a
so πK

0 ◦∂ : F [a] → K is inclusion. We also have that πi◦∂(a) = πi(b
′) = σi(π0(b

′)) =
σi(a). So πi ◦∂ = σi. Now we can use Lemma 3.1 to extend ∂ to a D-field structure
on K extending the one on F whose associated endomorphisms are precisely the
σi. In (K, ∂) we will also have ∇(a) = b. Since b is F -generic in Y , we must have
that b = ∇a ∈ U(K).

Then we can iterate this construction transfinitely to get an extension of F that
is elementary as an extension of difference fields, which is also a model of UCD. ■

Proposition 3.7. The Lring(∂)-theory UCD is inductive. If U is an Lring(∂)-theory
of difference large D-fields satisfying the properties in the previous two theorems
(Theorems 3.5 and 3.6), then U contains UCD. If U is in addition inductive,
U = UCD ∪ “difference large fields”, where containment and equality here are as
deductively closed sets of sentences.

Proof. It is clear that the union of an increasing chain of models of UCD is also a
model of UCD, and likewise for difference large fields. Hence the theories UCD and
“difference large fields” are inductive. Using Theorems 3.5 and 3.6, the rest of the
argument is the same as in Proposition 6.3 of [31]. ■

Having now established Theorems 3.5 and 3.6, the following theorem is proved
in precisely the same way as its differential counterpart: Theorem 7.1 of [31].

Theorem 3.8. Let C be a set of new constant symbols and T a model complete
theory of difference large fields in the language Lring(σ)(C). Let T ∗ be a theory in a
language L∗ ⊇ Lring(σ)(C) such that T ∗ ⊇ T and is an extension by definitions of
T , that is, the only sentences added to T ∗ are those defining the new symbols in L∗

as Lring(σ)(C)-formulas. In addition, let A be an L∗(∂)-structure such that when
A is viewed as an Lring(∂)-structure it is a D-field.

If T ∗ ∪ diag(A ↾ L∗) is complete, then T ∗ ∪UCD ∪ diag(A) is complete.

In the next theorem we argue why Theorem 3.8 justifies calling UCD the uniform
companion for theories of difference large D-fields. This is the precise formulation
of Theorem 1 from the introduction.

Theorem 3.9. Let C be a set of new constant symbols and T a model complete
theory of difference large fields in the language Lring(σ)(C). Let T ∗ be an L∗-theory
which is an extension by definitions of T .

Assume T ∗ is a model companion of an L∗-theory T ∗
0 which extends the theory

of difference fields. Then:

(i) T ∗ ∪UCD is a model companion of the L∗(∂)-theory T ∗
0 ∪ “D-fields”;

(ii) if T ∗ is a model completion of T ∗
0 , then T ∗ ∪ UCD is a model completion

of T ∗
0 ∪ “D-fields”;

(iii) if T ∗ has quantifier elimination, then T ∗∪UCD has quantifier elimination;



THE UNIFORM COMPANION FOR LARGE FIELDS WITH FREE OPERATORS 13

(iv) if T is complete and M is a D-field which is a model of T , then T ∗∪UCD∪
diag(C) is complete, where C is the Lring(C)(∂)-substructure generated by ∅
in M , that is, the D-subring of M generated by the elements (cM )c∈C .

Proof. First note that T ∗∪UCD and T ∗
0 ∪“D-fields” have the same universal theory

(equivalently, that a model of one can be embedded in a model of the other). Let
M |= T ∗ ∪ UCD. Since T ∗ and T ∗

0 have the same universal theory, there is an L∗-
structure N such that M ↾L∗≤ N . By Lemma 3.1, we can extend the D-structure
on M to one on N , so that M ≤ N as L∗(∂)-structures. For the other direction,
let M |= T ∗

0 ∪ “D-fields”. Then there is some L∗-structure N |= T ∗ such that
M ↾L∗≤ N . Use Lemma 3.1 to extend the D-structure on M to one on N , so
that N |= T ∗ ∪ “D-fields” and then use Theorem 3.6 to embed this in a model of
T ∗ ∪UCD.

To show (i), it is enough to show that T ∗ ∪ UCD is model complete, or equiv-
alently, that if M |= T ∗ ∪ UCD, then T ∗ ∪ UCD ∪ diag(M) is complete. Since T ∗

is model complete, T ∗ ∪ diag(M ↾ L∗) is complete. Then T ∗ ∪ UCD ∪ diag(M) is
complete by Theorem 3.8.

For (ii), let M be a model of T ∗
0 ∪ “D-fields”. We need to show that T ∗ ∪UCD ∪

diag(M) is complete. But M ⊨ T ∗
0 , and so T ∗ ∪ diag(M ↾ L∗) is complete since T ∗

is a model completion of T ∗
0 . Then apply Theorem 3.8.

For (iii), let M |= T ∗∪UCD, and let A ≤ M be an L∗(∂)-substructure. We need
to show that T ∗ ∪UCD ∪diag(A) is complete. By quantifier elimination for T ∗, we
have that T ∗ ∪ diag(A ↾ L∗) is complete; the result follows by Theorem 3.8.

For (iv), since T is complete, T ∗ ∪ diag(C ↾ L∗) ⊆ T ∗ is complete. By Theo-
rem 3.8, T ∗ ∪UCD ∪ diag(C) is complete. ■

We can now collect the consequences of these theorems, similarly to the differ-
ential set-up in Section 8 of [31].

Corollary 3.10. (1) ACFA0,t ∪UCD is D-CF0 from [27].
(2) If D is local, then RCF∪UCD is complete and the model companion of the

theory of real closed D-fields. It admits quantifier elimination in Lring(≤
)(∂).

(3) If D is local, then pCFd ∪ UCD is complete and the model companion of
p-adically closed D-fields of fixed rank d. It has quantifier elimination in
Lring(Pn : n ∈ N)(∂) where Pn is a predicate for the nth powers.

(4) Suppose D is local. Let Psf0(C) be the Lring(C)-theory of pseudofinite
fields of characteristic 0 with sentences saying that the polynomial xn +
cn,1x

n−1 + . . . + cn,n is irreducible for each n > 1. Recall that Psf0(C) is
model complete. We then get that Psf0(C) ∪ UCD is the model completion
of Psf0(C) ∪ “D-fields”.

4. Alternative characterisations of the uniform companion

In this section we will describe some additional characterisations of UCD in the
case D is local. One in particular will use the notion of a D-variety, and will allow
us to show that an algebraic extension of a large field which is a model of UCD is
also a model of UCD. In particular, the algebraic closure of such a D-field will be
a model of D-CF0 from [27].

Assumption 4.1. From here until the end of Section 6, we assume D is local.
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Example 4.2. The algebras in (1), (2), and (5) from Example 2.2 are local. We
can combine these algebras using fibred products and tensor products to form more
local examples. See Examples 3.4 and 3.5 of [27].

Since D is local, any D-ring R has only one associated homomorphism: the
identity idR; the associated difference ring is then just the underlying ring. Hence
for any affine K-variety X, there is only one induced morphism τX → X, which
we call π̂. With respect to the coordinates described in Section 2.2, this is just the
morphism induced by the inclusion K[x]/I → K[x0, . . . , xl]/I ′ where x 7→ x0.

Definition 4.3. Let (K, ∂) be a D-ring. A D-variety over (K, ∂) is a pair (V, s)
where V is a variety over K and s : V → τV is an algebraic morphism over K
which is a section to the canonical projection π̂ : τV → V . We say that (V, s) is
K-irreducible if V is K-irreducible, affine if V is affine, etc.

Given a D-field extension (L, δ) of (K, ∂), the (L, δ)-rational sharp points of
(V, s) are defined as (V, s)♯(L, δ) = {a ∈ V (L) : ∇a = s(a)}.

As before, we will mainly be interested in affine D-varieties. If V is an affine
variety, a D-variety structure on V is equivalent to a D-ring structure on its coordi-
nate ring, K[V ]. A K-rational sharp point is equivalent to a D-ring homomorphism
K[V ] → K. This is the natural D-field analogue of D-varieties as defined for dif-
ferential rings; see for example [20].

We now establish some basic results about D-varieties. For the following, if
(R, ∂) is a D-ring and a is an ideal of R, a is called a D-ideal if ∂(a) ⊆ a⊗k D, or
equivalently, if ∂i(a) ⊆ a for each i = 1, . . . , l.

Lemma 4.4. Let (R, ∂) be a D-ring, and a ⊆ R a radical D-ideal. Then the
minimal prime ideals above a are D-ideals.

Proof. Let p be a minimal prime ideal above a, and consider the localisation Rp.
Since a is radical, so is aRp (see Proposition 3.11 of [3]). Suppose q ⊆ pRp is a prime
ideal of Rp that also lies above aRp. Then by part iv) of the same proposition, we
must have q = pRp, and hence pRp is a minimal prime above aRp. It is also the
unique maximal ideal of Rp, and hence is the only prime ideal lying above aRp.

Then aRp =
√

aRp = pRp (the radical of an ideal is the intersection of the prime
ideals lying above it).

By Remark 3.2 we know that ∂ extends uniquely to a D-structure on Rp with
∂(ab ) = ∂(a)∂(b)−1. Since a is a D-ideal it is clear that aRp is also a D-ideal.

Then pRp is a D-ideal, and hence its contraction to R, p, is also a D-ideal. ■

Lemma 4.5. Let (V, s) be an affine D-variety over (K, ∂). Then

a) any nonempty Zariski-open U ⊆ V defined over K is a D-subvariety of
(V, s);

b) any K-irreducible component of V is a D-subvariety of (V, s).

Proof. a) Let K[V ] be the coordinate ring of V . Then s corresponds to ∂s : K[V ] →
K[V ]⊗k D. Let U be a basic open subset of V given by the nonvanishing of some
f . By Remark 3.2 we then get that ∂s extends uniquely to K[V ]f → K[V ]f ⊗k D.
That is, s restricts to U → τU . Now if U =

⋃
i∈I Ui is a union of basic open subsets,

s restricts to Ui → τUi ⊆ τU , and these restrictions agree on Ui ∩ Uj since this is
also a basic open. Glueing the morphisms Ui → τU gives a morphism U → τU
which is a restriction of s.

b) by Lemma 4.4. ■
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Theorem 4.6. Suppose (K, ∂) is a D-field and K is large. Then the following are
equivalent:

(1) K ⊨ UCD;
(2) whenever (V, s) is an affine, K-irreducible D-variety, if V has a smooth

K-rational point, then the set of K-rational sharp points of (V, s) is Zariski
dense in V ;

(3) whenever (V, s) is an affine, K-irreducible D-variety, if V has a smooth
K-rational point, then (V, s) has a K-rational sharp point;

(4) whenever (V, s) is a smooth, affine, K-irreducible D-variety, if V has a
K-rational point, then (V, s) has a K-rational sharp point;

(5) whenever (L, δ) is a D-field extension of (K, ∂) such that K is existentially
closed in L as a field, then (K, ∂) is existentially closed in (L, δ) as a D-
field.

Proof. (1) =⇒ (2): Suppose (K, ∂) ⊨ UCD and let (V, s) be a K-irreducible D-
variety with a smooth K-rational point. Let X = V and Y = s(V ). Note that
X and Y are isomorphic. Then Y has a smooth K-rational point, Y ⊆ τX, and
π̂ : Y → X is an isomorphism. So, since K |= UCD, Y has a Zariski dense set of K-
rational points of the form ∇(a) for a ∈ X(K), and hence for each such a ∈ X(K),
∇(a) = s(a).

(2) =⇒ (3) is clear.
(3) =⇒ (1): Let X, Y , U be as in the statement of UCD. Let b ∈ L ≥ K

be a K-generic point of Y , so that a = π̂(b) ∈ L is K-generic in X by dominance.
Since b ∈ τX(K(b)), let b′ ∈ K(b)⊗k D be the point corresponding to b under the
correspondence τX(K(b)) ↔ X(K(b)⊗k D). Then P ∂(b′) = 0 for all P ∈ I(X/K),
and so ∂ extends to a homomorphism ∂ : K[a] → K(b) ⊗k D with ∂(a) = b′.
Extend this to a D-ring structure ∂ : K(b) → K(b)⊗k D using Lemma 3.1. In this

D-ring structure, ∇(a) = b. Now each ∂i(bj) ∈ K(b) so ∂i(bj) =
Pij(b)
Qij(b)

for some

polynomials Pij , Qij ∈ K[x]. Let Q ∈ K[x] be the product of all Qij . Note that
∂ restricts to K[b] → K[b]Q(b) ⊗k D. Again by Lemma 3.1, we must have that ∂
extends to K[b]Q(b) → K[b]Q(b)⊗kD. Let U ′ be the open subset of Y corresponding
to Q(x). This extension of ∂ gives a D-variety structure s : U ′ → τU ′.

Since K is large and V has a smooth K-point, U ∩ U ′ has a smooth K-point.
By Lemma 4.5, (U ∩ U ′, s|U∩U ′) is a K-irreducible D-variety with a smooth K-
rational point. By (3) there is (c, d1, . . . , dl) ∈ (U ∩ U ′)(K) with ∇(c, d1, . . . , dl) =
s(c, d1, . . . , dl). Then c ∈ X(K) with ∇(c) = (c, d1, . . . , dl) ∈ U(K).

(3) =⇒ (4) is clear.
(4) =⇒ (3): Let (V, s) be a D-variety over K with V K-irreducible and a ∈

V (K) a smooth K-rational point. Let W ⊆ V be the smooth locus of V . Then W
is a smooth, K-irreducible D-subvariety of V . The point a is a K-rational point of
W and so by (4), W has a K-rational sharp point. Then V has a K-rational sharp
point.

(1) =⇒ (5): Let (L, δ) be a D-field extension of (K, ∂) |= UCD such that K
is existentially closed in L as a field. Then there is a field extension L ≤ M such
that M is an elementary extension of K as a field; note that M is then also a large
field. Extend the D-field structure on L to one on M , and use Theorem 3.6 to find
a D-field extension (N, d) |= UCD such that K ≺ M ≺ N as fields. This last fact
implies that K and N have the same existential theory as fields over K. So by
Theorem 3.5, they have the same existential theory as D-fields over (K, ∂)—recall
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that since D is local, the associated difference field is just the underlying field. Then
(K, ∂) is existentially closed in (N, d), and hence in (L, δ).

(5) =⇒ (1): Assume (K, ∂) has property (5). By Theorem 3.6, there is (L, δ) |=
UCD extending it such that K ≺ L as fields. Then K is existentially closed in L as
fields, and so (K, ∂) is existentially closed in (L, δ) as D-fields by (5). Since UCD
is inductive, we must also have (K, ∂) |= UCD. ■

We will now show that algebraic extensions of large models of UCD are again
large and models of UCD. Similar to the differential case (Theorem 5.11 of [21]),
this will rely on the D-Weil descent, established in [24].

We recall some of the properties of the D-Weil descent. Let (L, δ)/(K, ∂) be an
extension of D-fields where L/K is a finite field extension. Let (V, s) be an affine
D-variety over (L, δ); as mentioned above, this is equivalent to a D-ring structure,
δs, on the coordinate ring, L[V ], extending δ on L. The classical Weil descent of
V , V W , is a K-variety such that there is a natural bijection

V (L) ↔ V W (K).

Stated algebraically, this is equivalent to the natural bijection

HomL(L[V ], L) ↔ HomK(K[V W ],K).

In [24] it is shown that there is a unique D-ring structure, ∂s, on K[V W ] extend-
ing ∂ on K such that the above natural bijection restricts to a natural bijection

Hom(L,δ)((L[V ], δs), (L, δ)) ↔ Hom(K,∂)((K[V W ], ∂s), (K, ∂)).

The D-ring structure ∂s corresponds to sW : V W → τ(V W ) and makes (V W , sW )
into a D-variety over (K, ∂). As mentioned above, a D-ring homomorphism L[V ] →
L corresponds to an L-rational sharp point of (V, s). Geometrically then, we have
that the first natural bijection restricts to the natural bijection

(V, s)♯(L, δ) ↔ (V W , sW )♯(K, ∂).

Theorem 4.7. Let (L, δ)/(K, ∂) be an algebraic extension of D-fields where (K, ∂) |=
UCD and K is a large field. Then (L, δ) |= UCD and L is large.

Proof. Consider first the case when L/K is a finite extension. We verify condition
(4) of Theorem 4.6. Let (V, s) be a smooth, L-irreducible D-variety defined over
(L, δ) with an L-rational point. Now apply the D-Weil descent to get a D-variety
(V W , sW ) over (K, ∂). Since V is affine and smooth, V W is affine and smooth (see
Proposition 5 of Section 7.6 of [5]). By the bijection V (L) ↔ V W (K), V W has a
K-rational point. Let (U, t) be the irreducible component of (V W , sW ) containing
the K-rational point. Since (K, ∂) satisfies condition (4), (U, t) has a K-rational
sharp point, and hence (V W , sW ) has a K-rational sharp point. By the bijection
(V, s)♯(L, δ) ↔ (V W , sW )♯(K, ∂), (V, s) has an L-rational sharp point.

If L/K is algebraic, let F be an intermediate extension such that V , s, and
the L-rational point are all defined over F and F/K is finite. Then by the above,
(V, s)♯(F, δ) ̸= ∅, and hence (V, s)♯(L, δ) ̸= ∅. ■

5. Transfer of neo-stability properties

We continue to work under Assumption 4.1. In Section 3 we saw that if T is a
model complete Lring(C)-theory of large fields and T ∗ is an expansion by definitions
of T with quantifier elimination in a language L∗, then the model companion of
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T ∗ ∪ “D-fields”, namely T ∗ ∪UCD, also has quantifier elimination in the language
L∗(∂). An immediate consequence of this fact is the following.

Corollary 5.1. Suppose T is the complete, model complete Lring(C)-theory of a
large field. If T is NIP, so is (any completion of ) T ∪UCD.

Proof. Let T ∗ be an expansion by definitions of T with quantifier elimination where
the L∗-terms are the same as the Lring(C)-terms (for instance, if T ∗ is the Morley-
isation of T ). Let C be a monster model of T ∗ ∪UCD.

Suppose ϕ(x, y) is an L∗(∂)-formula with IP: so there are (ai)i∈ω, (bI)I⊆ω in
C with C |= ϕ(ai, bI) ⇐⇒ i ∈ I. By Theorem 3.9, T ∗ ∪ UCD has quantifier
elimination, and we may assume ϕ(x, y) is quantifier-free. Now, since the L∗-terms
are the same as the Lring(C)-terms, the L∗(∂)-terms in the variables x, y are then
just polynomials in the variables {∇r(x),∇r(y),∇r(c) : r ∈ N, c ∈ C}. So there
are r ∈ N and a quantifier-free L∗-formula ϕ∗ such that C |= ϕ(x, y) if and only if
C |= ϕ∗(∇r(x),∇r(y)). Then

C |= ϕ∗(∇r(ai),∇r(bI)) ⇐⇒ C |= ϕ(ai, bI) ⇐⇒ i ∈ I.

Therefore the tuples (∇r(ai))i∈ω and (∇r(bI))I⊆ω witness that ϕ∗ has IP. ■

Remark 5.2. (1) This result generalises the fact of Michaux and Rivière that
CODF is NIP from Theorem 2.2 of [23].

(2) In Corollary 4.3 of [12], Guzy and Point show that NIP is transferred from
a topological field (possibly with extra structure) to the model companion
of the field with a derivation. The imposition of a topological structure
allows them to consider fields with genuine extra structure, as opposed to
the definitional expansions considered here.

A similar argument to Corollary 5.1 shows that stability transfers via its char-
acterisation of no formula having the order property. But in fact stability yields
something stronger.

Lemma 5.3. Suppose T is the complete, model complete Lring(C)-theory of a large
field. If T is stable, then T ∪UCD = D-CF0.

Proof. A stable, large field of characteristic 0 is algebraically closed by Theorem D
of [15]. The result then follows as ACF0 ∪UCD = D-CF0. ■

We will now prove a similar result to Corollary 5.1 for the transfer of simplicity.
The proof will be via the Kim–Pillay theorem [19] and hence we need to understand
nonforking independence in T . We introduce the notion of very L-slim which is a
slight modification of the definition of very slim of Junker–Koenigsmann from [17].
First, a restriction on the language we work with and some notation we will need.

Assumption 5.4. Let C be a set of constant symbols. For the remainder of this
section, we suppose that L = Lring(C).

Let K be a D-field in the language L(∂). For A ⊆ K, the field generated by A
and C inside K is denoted by ⟨A ⟨L (that is, the quotient field of the L-structure
generated by A). Similarly, the D-field generated by A and C inside K is denoted
by ⟨A ⟨L(∂). Note then that ⟨XY ⟨L = ⟨X ⟨L · ⟨Y ⟨L, where · denotes the compositum

in the sense of fields. By the multiplicative rules for D-fields this implies that
⟨XY ⟨L(∂) = ⟨X ⟨L(∂) · ⟨Y ⟨L(∂).
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Definition 5.5. Let K be a field in the language L. We say that K is L-slim if for
every L-substructure F , we have aclKL (F ) = F alg. Equivalently, if for every subset

A, we have aclKL (A) = ⟨A ⟨algL . By F alg we always mean the relative, field-theoretic
algebraic closure of F in K.

We say that K is very L-slim if every L-structure elementarily equivalent to K
is L-slim.

Remark 5.6. (1) We recover the definition of (very) slim from [17] by setting
C to be empty, and only considering fields in the language of rings. In
other words, a field with no extra structure is (very) slim exactly when it
is (very) Lring-slim.

(2) Let C be the field generated by the constants C insideK. Then by Lemma 2.12
of [16], K is very L-slim if and only if it is algebraically bounded over C.

As mentioned in [17] for slim fields, to check whether K is very L-slim it is
enough to check whether a sufficiently saturated model of its theory is L-slim.

We take the following definition from Kim–Pillay [19], though phrased in the
terminology of Adler [2].

Definition 5.7. Let C be a saturated and strongly homogeneous structure. A
relation |∗⌣ on triples of small subsets of C is called an independence relation if it
is invariant under automorphisms and satisfies:

(1) normality: X |∗⌣A B =⇒ X |∗⌣A AB;
(2) monotonicity: X |∗⌣A B =⇒ X |∗⌣A B′ for B′ ⊆ B;
(3) base monotonicity: X |∗⌣A D =⇒ X |∗⌣B D for A ⊆ B ⊆ D;
(4) transitivity: X |∗⌣A B and X |∗⌣B D =⇒ X |∗⌣A D for A ⊆ B ⊆ D;
(5) symmetry: X |∗⌣A B ⇐⇒ B |∗⌣A X;
(6) full existence: for any X,A,B there is X ′ ≡A X such that X ′ |∗⌣A B (here

and throughout X ′ ≡A X means that X ′ and X have the same type over
A);

(7) finite character: if X0 |∗⌣A B for all finite X0 ⊆ X, then X |∗⌣A B;
(8) local character: there is a cardinal κ such that for all X and A, there is

A0 ⊆ A with |A0| < κ such that X |∗⌣A0
A.

An independence relation |∗⌣ satisfies the independence theorem over M if the
following holds:

(9) independence theorem over M : if A1 |∗⌣M A2, a1 |∗⌣M A1, a2 |∗⌣M A2, and
a1 ≡M a2, then there is a |= tp(a1/MA1)∪ tp(a2/MA2) with a |∗⌣M A1A2.

In simple theories, nonforking independence is an independence relation that
satisfies the independence theorem over models. As shown in [17], algebraic in-
dependence in very slim fields is an independence relation—in general, algebraic
independence does not satisfy full existence (called existence in [17]).

We recall the definition of algebraic independence in fields. If U is a big field and
A, B, D are subfields with D ≤ A,B, we say A and B are algebraically independent
over D if every finite tuple from A which is algebraically independent over D is also
algebraically independent over B. We write A |alg⌣D B if this holds.

If A and B are linearly disjoint over D, then they are algebraically independent.
The converse holds if at least one of the extensions A/D or B/D is regular, or
equivalently, since we are in characteristic 0, relatively algebraically closed.
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Definition 5.8. For an L-structure K, define the following relation on triples of
subsets of K:

A |L⌣
D

B ⇐⇒ ⟨A ⟨L |alg⌣
⟨D ⟨L

⟨B ⟨L.

We say that A and B are L-algebraically independent over D.

Theorem 2.1 of [17] says that a field is very slim if and only if algebraic in-
dependence is an independence relation. The following result is the very L-slim
analogue.

Lemma 5.9. K is very L-slim if and only if |L⌣ is an independence relation.

Proof. Invariance, monotonicity, base monotonicity, symmetry, and transitivity are
clear. The fact that ⟨XY ⟨L = ⟨X ⟨L ·⟨Y ⟨L implies normality. Indeed, A |L⌣D B =⇒
⟨A ⟨L |alg⌣⟨D ⟨L

⟨B ⟨L. Then by normality for |alg⌣ we have ⟨A ⟨L |alg⌣⟨D ⟨L
⟨B ⟨L⟨D ⟨L, so

⟨A ⟨L |alg⌣⟨D ⟨L
⟨BD ⟨L and A |L⌣D BD. Finite and local character also follow from

the corresponding property for algebraic independence.
Now the same proof as in Theorem 2.1 of [17] shows that K is very L-slim

if and only if algebraic independence satisfies full existence when the base is an
L-structure. ■

Remark 5.10. Remark 1.20 of [1] says that nondividing independence (which is not
in general an independence relation) implies any independence relation. Indeed this
fact is implicit in the proof of the Kim–Pillay theorem, see Theorem 4.2 Claim I of
[19]. Hence if T is the theory of a simple, very L-slim field, nonforking independence
implies L-algebraic independence.

The following result will allow us to use the notion of very L-slimness in the
context of Section 3.

Lemma 5.11. Let K be an L-structure which is a field of characteristic 0. Suppose
K is large and model complete (that is, its L-theory is model complete). Then K
is very L-slim.

Proof. The same proof as in Theorem 5.4 of [17] works here. In part 2 of that
proof, when they take a subfield k, we instead take an L-substructure k, that is,
a subfield containing the constants C. Model completeness then implies that ϕ is
an existential Lring(C)-formula with parameters from k. But this is the same as an
existential Lring-formula with parameters from k since k contains C. In part 5 of
the proof, we do not need perfectness since we are in characteristic 0. The rest of
the proof is the same. ■

Remark 5.12. As noted in Remark 5.6(2), K is very L-slim if and only if it is
algebraically bounded over the field generated by the constants C. Thus the results
of this paper, specialised to the case of noncommuting derivations, appear as an
instance of the work of Fornasiero–Terzo [11]; there arbitrary expansions of fields
are considered, here only expansions by constants.

We now fix some notation that will be in place for the rest of this section. Let
T be the model complete L-theory of a large field of characteristic 0, TD the L(∂)-
theory T ∪ “D-fields”, and T+ = T ∪ UCD the model companion of TD, which we
know exists by Section 3. By acl we mean the model theoretic algebraic closure in
the sense of T+, and by aclT we mean in the sense of T .

We will use the following result about amalgamating D-field structures.
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Fact 5.13. Suppose (K, ∂) and (L, γ) are two D-fields containing a common D-
subfield (F, ∂) with K and L linearly disjoint over F inside some common field
extension (which is not necessarily a D-field). Then there is a unique D-structure
on the compositum KL extending ∂ and γ.

Proof. This is just Lemma 5.1 of [27]. We drop the inversiveness condition since D
is local so there are no (nontrivial) associated endomorphisms. ■

Lemma 5.14. Let (K, ∂) |= T+. For A ⊆ K, acl(A) = aclT

(
⟨A ⟨L(∂)

)
.

Proof. Let F = aclT

(
⟨A ⟨L(∂)

)
. Clearly F ⊆ acl(A). For the other containment,

suppose d ̸∈ F . We will show that tp(d/F ) is not algebraic by finding infinitely
many realisations.

The L-structure K is very L-slim so L-algebraic independence in K is an in-
dependence relation. By full existence there is an L-structure K ′ which is an
L-elementary extension of K containing L such that L ≡L

F K (recall that this
means that L and K have the same L-type over F ) with L and K L-algebraically
independent over F inside K ′. Now F is relatively algebraically closed in K, so L
and K are linearly disjoint over F inside K ′. Note also that F is a L(∂)-structure
and L has a D-field structure coming from the partial L-elementary map K → L.
By Fact 5.13 we can amalgamate their D-field structures to the compositum LK
and finally we extend this D-field structure to K ′ using Remark 3.2. So K ′ |= TD.
Since T+ is the model companion of TD, embed K ′ inside some K ′′ |= T+. Let
α : K → L be the L(∂)-isomorphism fixing F . By model completeness of T+, this
is an L(∂)-elementary map. Then α(d) |= tp(d/F ) and α(d) ̸= d as otherwise,
d |alg⌣F d which would imply d ∈ F alg = F .

Now we can iterate to find the infinitely many realisations of tp(d/F ). ■

We are now in a position to prove the transfer of simplicity. The proof idea is
standard.

Theorem 5.15. If T is simple, then (any completion of) T+ is simple.

Proof. Let |⌣ be nonforking independence for T . For a monster model C of T+ and
small subsets A,B,D of C, we define |+⌣ as follows:

A |+⌣
D

B ⇐⇒ acl(A) |⌣
acl(D)

acl(B).

We will show that |+⌣ satisfies the conditions of the Kim-Pillay theorem, and
hence that T ∗ is simple.

Invariance, monotonicity, transitivity, symmetry, finite character, local charac-
ter. These follow from the corresponding property of |⌣. For normality, the com-
ment after Assumption 5.4 gives ⟨BD ⟨L(∂) = ⟨B ⟨L(∂) · ⟨D ⟨L(∂). Then Lemma 5.14

gives acl(BD) ⊆ aclT (acl(B), acl(D)).
Full existence. Let a,A,B be given inside some M |= T+. We will find a′

in some elementary extension of M with a′ ≡A a and a′ |+⌣A M , which implies
a′ |+⌣A B by monotonicity. We may also assume that A = acl(A), and hence
that A is a D-field and is algebraically closed in the sense of T . Note that A is
field-theoretically, relatively algebraically closed in M . Since T is simple, use full
existence for |⌣ to find a saturated and homogeneous L-elementary extension N of
M such that M ′ |⌣A M with M ′ ⊆ N and M ′ ≡L

A M . Use the L-isomorphism over
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A to put a D-field structure on M ′. Now M and M ′ are algebraically independent
over A, and hence linearly disjoint over A since A ⊆ M is a regular extension.
They then amalgamate to a D-field structure on the compositum MM ′, which we
may then extend to a D-field on N . So N |= TD and extends to N ′ |= T+. Let
a′ ∈ M ′ correspond to a ∈ M . By model completeness of T+, the L(∂)-isomorphism
M → M ′ is an L(∂)-elementary map. Then a′ ≡A a in the sense of L(∂). Since
M ′ |= T+ and T+ is model complete, it is acl-closed, and so acl(a′A) ⊆ M ′. By
monotonicity, acl(a′A) |⌣acl(A) acl(M) and so a′ |+⌣A M .

Independence theorem. Let M ≺ N |= T+, A1 |+⌣M A2, a1 |+⌣M A1, a2 |+⌣M A2,
and tp(a1/M) = tp(a2/M). We will show that in some elementary extension of
N , there is a |+⌣M A1A2 realising tp(a1/A1) ∪ tp(a2/A2). By Löwenheim–Skolem
and full existence for |+⌣, we may assume that A1, A2, a1, a2 are all models of T+

containing M and contained inside N .
By the independence theorem for T , there are an L-elementary, saturated, ho-

mogeneous extension N ′ of N and an element a ∈ N ′ with a |⌣M A1A2 and
a |= tpL(a1/A1) ∪ tpL(a2/A2). In fact, by full existence for T , we can ensure that
a |⌣M N .

Now for i = 1, 2, let N ′
i be the copy of N coming from the L-elementary map

Aiai 7→ Aia. By full existence for T , let Ni ≡L
Aia

N ′
i with N1 |⌣A1a

N and
N2 |⌣A2a

NN1. From a |⌣M N we get a |⌣A1
N and a |⌣A2

N . Then N |⌣A1

N1 and N |⌣A2
N2 by transitivity. From a |⌣M N we get a |⌣A1

A2, and so
A1a |⌣A1

A2. Along with A1 |⌣M A2, transitivity gives A1a |⌣M A2, so that
A1a |⌣a A2 by base monotonicity. This implies A1 |⌣a A2 and N1 |⌣a A2. This
last part implies N1 |⌣a A2a and along with N2 |⌣A2a

NN1 implies N1 |⌣a N2.
Also, N |⌣A1A2

N1 by base monotonicity since A1A2 ⊆ N . From NN1 |⌣A2a
N2,

we get N |⌣A2aN1
N2, and hence N |⌣A2N1

N2 since a ∈ N1. Combining this with
N |⌣A1A2

N1 gives N |⌣A1A2
N1N2.

Now define D-field structures ∂1 on N1 and ∂2 on N2 such that (Ni, Ai, a, ∂i)
is L(∂)-isomorphic to (N,Ai, ai, ∂). So Ni |= T+. Now since N1 |⌣a N2, N1

and N2 are algebraically independent over a, and hence linearly disjoint over a
(since both are regular extensions of a) and so their D-field structures can be
amalgamated to the compositum N1N2. Extend the D-field structure on N1N2 to
aclT (N1N2) = (N1N2)

alg. FromN |⌣A1A2
N1N2 we getN |⌣aclT (A1A2)

aclT (N1N2)

and hence we may amalgamate the D-field structures on aclT (N1N2) and N to the
compositum aclT (N1N2)N and extend this to N ′. So N ′ |= TD.

Extend N ′ to N ′′ |= T+. By model completeness of T+, the L(∂)-isomorphisms
(Ni, Ai, a, ∂i) ≃ (N,Ai, ai, ∂) are L(∂)-elementary maps, and hence a |= tp(a1/A1)∪
tp(a2/A2). From a |⌣M N and monotonicity, we get a |⌣M acl(A1A2), and so
a |+⌣M A1A2. ■

Remark 5.16. In [9], Chatzidakis proves that for any field F ∗, if F ≺ F ∗, A and B
are acl-closed, and A |⌣F B, then A and B are linearly disjoint over F . This fact
allows us to amalgamate D-fields which are independent over models. However, in
the above proofs (and in Theorem 6.5 below), we must amalgamate D-fields which
are independent over arbitrary acl-closed sets. Hence the notion of L-slimness to
facilitate this.
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6. Pseudo D-closed fields

We now apply some of the results obtained in Sections 4 and 5 to the study of
PAC substructures in the theory D-CF0. We continue to assume that D is local
(Assumption 4.1) and that we are working in a language L of the form Lring(C)
(Assumption 5.4). Recall that a field K is called pseudo algebraically closed (PAC)
if every absolutely irreducible variety over K has a K-rational point. PAC fields
are large—a K-irreducible variety with a smooth K-rational point is absolutely
irreducible—and a field is PAC if and only if it is existentially closed in every
regular extension.

In [8], Chatzidakis and Pillay show that the L-theory of a bounded, PAC field
is simple, and that if it, in addition, has finite degree of imperfection, then it
eliminates imaginaries (after naming constants). Recall that a field is bounded if
it has only finitely many separable algebraic extensions of each degree. Hoffman
and León Sánchez in [14] then prove the analogous results for bounded, pseudo
differentially closed fields of characteristic 0. Their result gives an example of a
differential field whose theory is simple and unstable. In this section we will prove
analogous results in the case of D-fields.

PAC substructures of a given theory have been defined as generalisations of PAC
fields in various ways. We use the definition presented in [13].

Definition 6.1. Let T be an arbitrary complete L-theory, and C a monster model.
An extension of L-substructures A ≤ B of C is called L-regular if dcleq(B) ∩
acleq(A) = dcleq(A). An L-substructure A of C is called a PAC substructure if
A is existentially closed in every L-regular extension.

Consider now the Lring(∂)-theory D-CF0. This theory eliminates imaginaries
(see Theorem 5.12 of [27]), dcl(A) is the D-field generated by A, and acl(A) is the
(full) field-theoretic algebraic closure of the D-field generated by A (Proposition 5.5
of [27]). Then an extension of D-fields is Lring(∂)-regular exactly when the field
extension is field-theoretically, relatively algebraically closed (and so regular in the
field sense since we are in characteristic 0).

We now prove three conditions equivalent to being a PAC substructure in D-CF0.

Theorem 6.2. Let (K, ∂) be a D-field. The following are equivalent:

(1) (K, ∂) is a PAC substructure in the theory D-CF0;
(2) K is a PAC field and (K, ∂) |= UCD;
(3) if (V, s) is a D-variety over K and V is absolutely irreducible, then (V, s)

has a K-rational sharp point;
(4) (K, ∂) is existentially closed in every D-field extension (L, δ) which is R-

regular, that is, where tpD-CF0(a/K) is stationary for every finite tuple
a ∈ L.

Proof. (1) =⇒ (2). Let L be any regular field extension of K, and let δ be any D-
structure on L extending ∂. Then (K, ∂) is existentially closed in (L, δ) as D-fields,
and hence K is existentially closed in L as fields. So K is PAC. Now since K is
large, there is a D-field extension (F, γ) |= UCD of (K, ∂) such that K is elementary
in F as fields. In particular, K ⊆ F is regular. By (1), (K, ∂) is existentially closed
in (F, γ). Since UCD is inductive, (K, ∂) |= UCD.

(2) =⇒ (1). Let (L, δ) be an Lring(∂)-regular D-field extension of (K, ∂), so that
L/K is a regular field extension. Since K is PAC, K is existentially closed in L
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as fields. By characterisation (5) of Theorem 4.6, (K, ∂) is existentially closed in
(L, δ) as D-fields.

(2) =⇒ (3). If V is absolutely irreducible, then K is regular in its function field
K(V ). V has a smooth K(V )-rational point, and since K is existentially closed
in K(V ), V has a smooth K-rational point. By characterisation (3) of UCD in
Theorem 4.6, (V, s) has a K-rational sharp point.

(3) =⇒ (2). Let V be an absolutely irreducible variety defined over K. Extend
the D-field structure on K to one on K(V ). As in the proof of Theorem 4.6 (3)
=⇒ (1), there is an affine, open subset U ⊆ V defined over K such that this
D-ring structure restricts to one on K[U ]. This gives a D-variety structure s on
U , making (U, s) an absolutely irreducible D-variety defined over (K, ∂). By (3),
(U, s) has a K-rational sharp point, and hence V has a K-rational point. So K is
a PAC field. We again use characterisation (3) of Theorem 4.6 and the fact that
a K-irreducible variety with a smooth K-rational point is absolutely irreducible to
get that (K, ∂) |= UCD.

(1) ⇐⇒ (4) is the content of Lemma 3.36 in [13]; R-regular extensions are the
same as Lring(∂)-regular extensions since D-CF0 is stable and eliminates imaginar-
ies. ■

We say that a D-field is pseudo D-closed if any of the equivalent conditions of
Theorem 6.2 hold.

Remark 6.3. Apart from condition (3), this is just the D-field analogue of Theo-
rem 5.16 from [21]. There the authors need to consider differential varieties as they
work with several commuting derivations. In a single derivation, it is enough to
consider D-varieties; see Proposition 5.6 of [29] for instance.

Theorem 5.2 of [14] states that the theory of a bounded, pseudo differentially
closed field (that is, a PAC substructure of DCF0,m) is simple and eliminates
imaginaries. We will now prove the D-field analogue. Let (K, ∂) be a bounded,
pseudo D-closed field. For each n > 1, let N(n) be the degree over K of the
Galois extension composite of all Galois extensions of K of degree n. Let C =
(cn,i)n>1,0≤i<N(n) be the set of constant symbols in our language L = Lring(C),
and consider the set of L-sentences ΣC = {σn : n > 1} where σn says that the
polynomial xN(n) + cn,N(n)−1x

N(n)−1 + . . . + cn,0 is irreducible and the extension
this polynomial defines is Galois and contains all Galois extensions of K of degree
n. This is the same set-up used by Chatzidakis and Pillay in Section 4 of [8] in
their treatment of bounded, PAC fields. Let T+ = Th(K, ∂) ∪ΣC . Note then that
T+ ⊇ ThLring

(K) ∪ ΣC ∪UCD.
For the next two proofs, we will at times need to refer to notions in both the

sense of T+ and the sense of D-CF0. In the second case, we will always include this
as a superscript; if no superscript is given, the notion should be understood in the
sense of whatever model of T+ we are working in. The full, field-theoretic algebraic
closure of A is denoted by Ã, and Aalg denotes the relative, field-theoretic algebraic
closure of A. If A ⊇ C, then Aalg is equal to aclL(A) since models of T+ are very
L-slim.

Lemma 6.4. Let (F, ∂, C) |= T+, and A ≤ B ≤ F with A acl-closed in the sense
of T+. Then

aclD-CF0(B) = acl(B) · aclD-CF0(A).
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Proof. Since B is a D-field containing C and F is very L-slim, acl(B) = Balg, and

aclD-CF0(B) = B̃. So we need to show B̃ = Balg ·Ã. The proof of Proposition 4.6(2)
of [8] shows that the restriction maps Gal(F ) → Gal(A) and Gal(F ) → Gal(acl(B))
are isomorphisms, and hence the restriction map Gal(acl(B)) → Gal(A) is an iso-

morphism. Therefore, any automorphism of B̃ that fixes Balg · Ã must also fix
B̃. Since we are in characteristic 0, B̃/Balg · Ã is a Galois extension, and so

B̃ = Balg · Ã. ■

Theorem 6.5. Let (F, ∂, C) |= T+ and (E, ∂,C) ⊆ (F, ∂, C). Then

(1) acl(E) = Ealg;
(2) if E = acl(E), then T+ ∪ diag(E) is complete;
(3) T+ is model complete;
(4) the independence theorem holds for T+ over algebraically closed sets;
(5) T+ is simple and forking is given by forking independence in D-CF0;
(6) T+ has elimination of imaginaries.

Proof. (1). By Lemma 5.14 since F is very L-slim (it is model complete, large, and
characteristic 0).

(2). By Proposition 4.6(2) of [8], ThLring(K)∪ΣC ∪diagL(E) is complete. Then
Theorem 3.8 tells us that ThLring(K) ∪ΣC ∪UCD ∪ diag(E) is complete. So T+ ∪
diag(E) is complete.

(3). By Theorem 3.9(i) since ThLring
(K) ∪ ΣC is model complete (Proposi-

tion 4.6(1) of [8]).
(4). This follows from the proof of Theorem 5.15 and the fact that the in-

dependence theorem over algebraically closed sets holds for bounded PAC fields
(Theorem 4.7 of [8]). Note that the proof of Theorem 5.15 only uses the fact that
M is a model if the independence theorem for T holds only for models.

(5). By Theorem 5.15 and the corresponding result for bounded PAC fields
(Corollary 4.8 of [8]) we know that T+ is simple and forking independence is given
by linear disjointness after closing under acl—the relative algebraic closure of the
D-field it generates. We can then use general properties of linear disjointness of
regular extensions, along with Lemma 6.4, to show that, if A, B, and D are all acl-
closed, then A and B are linearly disjoint over D if and only if Ã is linearly disjoint
from B̃ over D̃. This is precisely forking independence in D-CF0 (see Theorem 5.9
of [27]).

(6). This proof is essentially a combination of Theorem 5.12 of [27] and Theo-
rem 5.6 of [14]. Nonetheless, some details will be provided. We will assume that
(F, ∂, C) is a monster model of (some completion of) T+, and that (D, ∂) is a
monster model of D-CF0 extending it. We write |⌣ for nonforking independence
in (F, ∂, C). If we omit a superscript from an operator, we mean in the sense of
(F, ∂, C).

We need the notion of dimension from Definition 5.10 of [27]. If K is a D-field,
then dimD(a/K) = (trdeg(∇r(a)/K) : r < ω) ∈ ωω, where ∇r(a) is the tuple ap-
plying words of length at most r on {∂1, . . . , ∂l} to a. Note that dimD(a/K) =

dimD(a/K̃). Using Lemma 5.11 of [27], we then get that if L/k is a regular exten-

sion, dimD(a/k) = dimD(a/L) if and only if aclD-CF0(ka) is linearly disjoint from

L̃ over k̃ if and only if a |⌣k L.
Let e ∈ (F, ∂, C)eq given by a 0-definable function f and a finite real tuple

a ∈ F , that is, f(a) = e. Let E = acleq(e)∩F and let Q be the set of realisations of



THE UNIFORM COMPANION FOR LARGE FIELDS WITH FREE OPERATORS 25

tp(a/E). Having established that dimD measures nonforking independence in T+,
the same proof as in Theorem 5.12 of [27] allows us to find some u ∈ Q such that
f(u) = e and u |⌣E a.

We now follow the rest of the argument in Theorem 5.6 of [14]. Let D = {d ∈
Q : f(d) = e}. If D = Q, then e ∈ dcleq(E) and we get weak elimination of
imaginaries.

If D ⊊ Q, let d0 ∈ Q \D and d ≡E d0 with d |⌣E D. If f(d) = e, then d ∈ D
and hence d ∈ acl(E) = E. So d ∈ acleq(e). Since f(d) = e, e ∈ dcleq(d), and we
get weak elimination of imaginaries.

So assume f(d) ̸= e. Now u ≡E d, u |⌣E a, and u |⌣E d. By the independence
theorem over algebraically closed sets, we getm |= tp(u/Ea)∪tp(d/Eu) withm |⌣E

au. But this contradicts f(d) ̸= e. Finally, since we are in a theory of fields and we
have weak elimination of imaginaries, we have elimination of imaginaries. ■

7. The non-local case

Recall that, throughout Sections 3–6, we assumed that either the k-algebra D
was a local ring or each component in its local decomposition had residue field k. In
this section we make some observations about the existence of model companions
of D-fields in the case when neither assumption holds. Without Assumption 2.4
the associated homomorphisms of a D-field are not necessarily endomorphisms, and
hence it does not make sense to ask whether T ∪“D-fields” has a model companion
when T is a theory of difference fields. However, it does make sense to ask the
question as T varies over theories of fields. The main result of this section says that
when the base field k is finitely generated over Q, we get a full characterisation of
when the uniform companion for large D-fields exists: it exists if and only if D is
local.

We start with the general case: k is a field of characteristic 0, D is a finite-
dimensional k-algebra, and D =

∏t
i=0 Bi where each Bi is a local, finite-dimensional

k-algebra. We no longer impose Assumption 4.1 (that D is local) or even Assump-
tion 2.4 (that the residue field of each Bi is k). For i > 0, the residue field of
Bi is k[x]/(Pi) for some k-irreducible polynomial Pi, and that of B0 is k. For an
L-theory T , the L(∂)-theory T ∪ “D-fields” is denoted by TD, and the L(σ)-theory
T ∪ “σ is an endomorphism” is denoted by Tσ.

A result of Kikyo and Shelah [18] states that if a model complete theory has
the strict order property, then the theory obtained by adding an automorphism
has no model companion. In particular, if D = k × k, D-fields correspond to fields
with an endomorphism, and so RCFD = RCFσ and Th(Qp)D = Th(Qp)σ have
no model companion. In fact, the Kikyo–Shelah theorem implies that TD has no
model companion when D is not local and T has a model in which one of the
polynomials Pi has a root. We first prove this for the case when D has at least one
local component with residue field k, and then reduce the more general statement
to this case.

Proposition 7.1. Assume D is such that one of the local components Bi has residue
field k for i > 0. If TD has a model companion, then Tσ has a model companion.

Proof. Note that by a particular choice of the basis ε0, . . . , εl, we may assume
that the associated endomorphism σi corresponding to Bi appears as one of the
operators ∂j . So L(σ) ⊆ L(∂).
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Write T+ for the model companion of TD and T− for its reduct to L(σ). We will
show that T− is the model companion of Tσ; clearly their universal parts coincide,
so it suffices to prove T− is model complete.

Let (K,σ) |= T−. We will show that T− ∪ diagL(σ)(K) is complete. Use
Lemma 3.1 to equip K with a D-ring structure whose ith associated homomor-
phism is σ and whose jth associated homomorphism is inclusionK → K[x]/(Pj) for
j ̸= i. Then K |= TD, and it embeds in some L |= T+. Since T+ is model complete,
T+ ∪ diagL(∂)(L) is complete, and hence its reduct to L(σ)(K), T− ∪ diagL(σ)(K),
is complete. ■

We now weaken the assumption that the residue field of some Bi is k to the
assumption that T has a model K in which one of the polynomials Pi has a root.
If TD has a model companion, then TD ∪ diag(K) has a model companion. Let
E be the K-algebra D ⊗k K. As mentioned in the proof of Theorem 3.2 of [4], if
L is an E-field, then E-field extensions of L coincide with D-field extensions of L.
Hence if TD ∪diag(K) has a model companion, so does TE . But E now satisfies the
assumption in Proposition 7.1. So we have proved the following.

Corollary 7.2. If T is model complete and has a model with the strict order prop-
erty in which one of the Pi has a root, then TD has no model companion.

Real closed fields and Qp have the strict order property, and so this result means
if any Pi has a root in some real closed field or some p-adically closed field, there is
no uniform companion. In particular, if the base field k is a finitely generated field
extension of Q, we get a full converse to the main theorem.

Corollary 7.3. Suppose k is a finitely generated field extension of Q. Then there
is a uniform companion for theories of large D-fields if and only if D is a local ring.

Proof. If D is local, D-fields whose associated difference field is difference large
correspond precisely to D-fields whose underlying field is large. The uniform com-
panion then exists by Section 3.

Suppose D is not local. Then the splitting field of the polynomial P1 ∈ k[x] is
a finitely generated extension of Q, and so by Theorem 1 of [6], embeds in some
Qp. Hence P1 has a root in Qp. Then by Theorem 7.2, Th(Qp)D has no model
companion. ■

Remark 7.4. The base field k does have an impact on when the uniform companion
exists. If k is algebraically closed, then the only model complete theory of fields
containing k is ACF0, and hence the existence of a uniform companion for D-fields
is equivalent to the existence of the model companion of ACF0 ∪ “D-fields”; this
exists for all D by Theorem 7.6 of [27].

However, for other fields k the question is still open. For instance, suppose
k = R. No model of Th(Qp) can be an R-algebra, and so Th(Qp) ∪ “D-fields”
is inconsistent. Hence the above method does not show that there is no uniform
companion in the case D = R× C, for instance.
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