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This thesis makes a contribution to the model theory of fields with free operators,
as introduced by Moosa and Scanlon. The classical Weil restriction, a result of
algebraic geometry, establishes the existence of a left adjoint to base extension of
algebras. Generalising the corresponding differential result of León Sánchez and
Tressl, we extend this to the case of algebras equipped with free operators – given
an extension of rings with free operators whose underlying extension of rings is free
and of finite rank, and subject to a mild algebraic condition on the endomorphisms
definable in the free operator structure, we show that there is a unique sequence
of free operators on the classical Weil restriction that ensures the unit and counit
of the classical adjunction preserve the free operator structure. Thus base change
in the category of algebras with free operators has a left adjoint, which we call the
D-Weil restriction. Properties of the free operator structure preserved under the D-
Weil restriction are investigated, including triviality of the associated endomorphisms
and commutativity of the operators, and a partial converse to the main adjunction
result is shown: the existence of a left adjoint to base change over a field implies the
associated endomorphisms must have the aforementioned algebraic condition.

The theory UCD in the language of rings with free operators is introduced as
a suitable weakening of the geometric axiom of Moosa and Scanlon’s theory of D-
closed fields D-CF0, the model companion of the theory of fields of characteristic
zero with free operators. We show that whenever T is a model complete theory of
difference large fields of characteristic zero – a notion of Cousins – T ∪ UCD is the
model companion of the theory T ∪“free operators”, establishing the existence of the
uniform companion for theories of difference large fields of characteristic zero with
free operators, following Tressl’s result in the differential context. We show that
quantifier elimination transfers from T to T ∪ UCD – from which it immediately
follows that stability and NIP do as well – and we use the D-Weil restriction to
show that the algebraic closure of a model of UCD is a model of D-CF0.

We provide an axiomatic framework for proving the transfer of various neosta-
bility properties from theories of fields to theories of fields with operators, show that
this unifies many proofs of stability and simplicity of theories of fields with operators
existing already in the literature, and use it to characterise forking in the theory of
separably differentially closed fields of infinite differential degree of imperfection, as
defined by Ino and León Sánchez.

Finally, we introduce the class of bounded pseudo D-closed fields in analogy to
the class of bounded pseudo-differentially closed fields as a case study for some of
the general results just described.
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Introduction

This thesis is primarily concerned with D-fields. These structures were introduced by
Rahim Moosa and Thomas Scanlon in their trilogy [51, 52, 53] in order to provide
a common framework for fields equipped with operators. As noted by Gogolok
and Kowalski in [20], there have been several other attempts at formulating such
a framework: Bia lynicki-Birula’s fields with operators [5]; Buium’s jet operators [8];
Hardouin’s iterative q-difference operators [23]; Takeuchi’s C-ferential operators [63];
and of course Gogolok and Kowalski’s B-operators [20]. All of these frameworks have
strengths suited to the tasks their authors’ introduced them for – differential Galois
theory seems to be a common theme. Moosa and Scanlon introduced theirs to unify
many model-theoretic properties common to the theories DCF0 and ACFA0; their
series of papers culminated in proving the Zilber dichotomy for finite-dimensional
minimal types in D-CF0, adapting the jet space methods of Pillay and Ziegler [56]
(itself an adaptation of jet space arguments of Campana [9] and Fujiki [19] in the
setting of complex manifolds) to the setting ofD-fields using their earlier construction
of D-jet spaces from [52]. This thesis will attempt to fill in some of the remaining
model theory surrounding D-fields of characteristic zero.

The uniform companion

Fix a base field k, a finite-dimensional k-algebra D, and a k-algebra homomorphism
π : D → k. A D-field is then a field K extending k equipped with a k-algebra
homomorphism ∂ : K → K ⊗k D which is a section to idK ⊗ π. Thus ordinary
differential fields are an instance of this framework – a map δ : K → K is a k-linear
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derivation if and only if the map

K → K[ε]/(ε2)
a 7→ a+ δ(a)ε

is a k-algebra homomorphism, as are ordinary difference rings – a map σ : K → K

is a k-linear endomorphism if and only if the map

K → K ×K

a 7→ (a, σ(a))

is a k-algebra homomorphism.
In [53], Moosa and Scanlon proved that, subject to the condition that every max-

imal ideal of D has residue field k, the theory of D-fields of characteristic zero, ax-
iomatisable in the language of rings together with unary function symbols ∂1, . . . , ∂l
(here l + 1 is the dimension of D as a k-vector space), admits a model companion
D-CF0, unifying the proofs establishing model companions for the theories of differ-
ential fields and difference fields of characteristic zero. A natural question to ask is
whether other theories of D-fields admit model companions.

In [65], Tressl constructs a theory of differential fields with m commuting deriva-
tions, UCm, such that T∪UCm is the model companion of T∪ “differential fields with
m commuting derivations” whenever T is a model complete theory of large fields of
characteristic zero. This will be our blueprint.

There is a complication however. Every D-field has a sequence of definable endo-
morphisms, σ1, . . . , σt, called the associated endomorphisms.1 Thus if some theory
of D-fields has a model companion, so must the reduct to the language of differ-
ence fields. In [33], Kikyo and Shelah prove that if T is model complete and has
the strict order property, then the theory T ∪ “σ is an automorphism” has no model
companion. This immediately implies that the theory of real closed fields equipped
with an endomorphism has no model companion, and hence the theory of real closed
fields equipped with a D-field structure has no model companion whenever there is
at least one nontrivial associated endomorphism. We resolve this dialectical tension
by proving the following: if T is a model complete theory of difference large fields of

1This is the case subject to the condition that every maximal ideal of D has residue field k, one
associated endomorphism for each maximal ideal except the one corresponding to π.
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characteristic zero, then T ∪ UCD is the model companion of T ∪ “D-fields”.
Following Cousins [15], a difference field (K, σ1, . . . , σt) is called difference large

if for any pair of K-irreducible varieties V and W such that

(i) W ⊆ V × V σ1 × · · · × V σt,

(ii) the projections W → V σi are dominant for all i = 0, . . . , t, and

(iii) W has a smooth K-rational point,

W has a Zariski-dense set of K-rational points of the form (a, σ1(a), . . . , σt(a)) for
a ∈ V (K). Difference largeness is just a suitable weakening of the geometric axiom
of ACFA0,t; the only examples of difference large fields currently known to the author
are models of ACFA0,t. However, in the case of fields (that is, when t = 0), K is
difference large if and only if it is large: every K-irreducible variety with a smooth
K-rational point has a Zariski-dense set of K-rational points. There are plenty of
model complete large fields; Section 1.4 details some of them.

Similarly, the axiom scheme UCD is a suitable weakening of the geometric axiom
scheme of D-CF0: for every pair of K-irreducible varieties V and W such that

(i) W ⊆ τV ,

(ii) the projections W → V σi are dominant for each i = 0, . . . , t, and

(iii) W has a smooth K-rational point,

W has a Zariski-dense set of K-rational points of the form ∇(a) for a ∈ V (K).
We establish the following two facts about the theory UCD, analogously to Tressl’s

result for UCm in [65]:

Theorem A. 1. Suppose M,N |= UCD contain a common D-subfield A. If the
associated difference fields of M and N have the same existential theory over
A as difference fields, then M and N have the same existential theory over A
as D-fields.

2. Every D-field whose associated difference field is difference large can be ex-
tended to a model of UCD, and the extension of their associated difference
fields is elementary.

The theorem establishing that UCD is indeed the uniform companion follows
immediately.
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Theorem B. Let T be a model complete theory of difference large fields, and suppose
it is the model companion of some T0. Then

(i) T ∪ UCD is the model companion of T0 ∪ “D-fields”;

(ii) if T is the model completion of T0, then T ∪ UCD is the model completion of
T0 ∪ “D-fields”; and

(iii) if T has quantifier elimination in some expansion by definitions, then T ∪UCD

has quantifier elimination in the same expansion.

In the case D is local, there are no nontrivial associated endomorphisms: the
associated difference field is just the underlying field and difference largeness is just
largeness; our result in this case is precisely the D-field analogue of Tressl’s. This
yields the uniform companion in the following cases:

• several (not necessarily commuting) derivations;

• truncated, non-iterative higher derivations; and

• operators combining these two.

In particular, RCF∪UCD is the model companion of RCF∪“D-fields”, and Th(Qp)∪
UCD is the model companion of Th(Qp) ∪ “D-fields”.

Remark. Restricted to the setting of derivations, the above result coincides with
Tressl’s only for the case of a single derivation. For that of several derivations,
Tressl’s deals with the commuting case, ours with the noncommuting case. However,
the case of noncommuting derivations does appear in a recent paper of Fornasiero
and Terzo [17] where they consider generic derivations on algebraically bounded
structures – a wider context than the large and model complete fields considered
here.

We then explore some equivalent characterisations in the local case: one in terms
of D-varieties, and one analagous to the notion of differential largeness from [38]. Like
Theorem 5.11 of that paper, we prove that algebraic extensions of models of UCD

whose underlying field is large are again models of UCD. This requires establishing
the appropriate Weil restriction functor in the category of D-algebras, and hence an
interlude into non-model-theoretic geometry.
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The D-Weil descent

Suppose T → S is a morphism of schemes. Given a scheme Y over T , we define
WT/S(Y ) to be the scheme over S representing the functor

SchS → Set

U 7→ HomT (U ×S T, Y ),

if it exists. WT/S(Y ) is uniquely determined, and we call it the Weil restriction of
Y with respect to T → S; see Section 1.3 of [67] for the original statement by Weil
and [21] for Grothendieck’s generalisation.

We will only be interested in the case when S = Spec(A) for some commutative
ring A and T = Spec(B) where B is a finite and free A-algebra. Then WT/S is
actually a functor on affine schemes

WB/A : AffB → AffA

which is right adjoint to base change. Hence we will often work with its algebraic
dual, W : AlgB → AlgA, which is left adjoint to base change

F : AlgA → AlgB
R 7→ R⊗A B.

If T → S comes from a finite separable field extension, then WT/S(Y ) is an abelian
variety if Y is. In [48], Milne uses this fact to show that the Birch–Swinnerton-Dyer
conjecture holds for Y if and only if it holds for WT/S(Y ). Thus one can reduce the
full conjecture from its statement over number fields to one over Q.

This classical Weil restriction is also fundamental to the construction of prolon-
gation spaces in the sense of Moosa and Scanlon [51], which we make extensive use
of in establishing the uniform companion. For example, if K is a field, the tangent
bundle of a K-variety V (a special case of their prolongation) can be seen as the
Weil restriction of V ×K K[ε]/(ε2) over K → K[ε]/(ε2).

Furthermore, since WT/S(U) represents the functor U 7→ HomT (U ×S T, Y ), we
obtain a bijection between the T -points of U and the S-points of WT/S(U). This
fact is used by Pop in [58] to show that algebraic extensions of large fields are large.

In [39] the case of differential algebras is considered. The authors show that the
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differential base change functor, F δ, has a left adjoint, which they call the differential
Weil descent functor, W δ. More precisely, they show that if (A, ∂) is a differential
ring and (B, d) an (A, ∂)-algebra, where B is finite and free as an A-module, then for
any (B, d)-algebra (D, δ), there exists a unique derivation δW on W (D) making the
unit of the classical adjunction into a differential ring homomorphism. The authors
then use this result in a similar way to Pop to show that algebraic extensions of
differentially large fields are again differentially large (see [38]).

It is natural, then, to explore whether the difference base change functor, F σ –
here difference rings are rings equipped with a not necessarily injective endomorphism
– also has a left adjoint. In general, it does not. Let A be a commutative ring with
identity and consider the case when B = A[ε]/(ε2) for an indeterminate ε. Let
τ : B → B be given by τ(a + bε) = a so that (A, idA) ≤ (B, τ). Let R = B[x]
and let ρ : R → R be the unique endomorphism extending τ and sending x 7→ ε. If
F σ = F σ

B/A had a left adjoint W σ, then the unit of this adjunction at R

ησR : R→ F σW σ(R)

would be a difference ring homomorphism. In particular

ησR(ρ(x)) = (θ ⊗ τ)(ησR(x)) (⋆)

where θ is the endomorphism of W σ(R). Let λ1 and λ2 be the coordinate projections
with respect to the A-basis {1, ε} of B. Then equation (⋆) translates to

 λ1(ρ(x))
λ2(ρ(x))

 =
 λ1(τ(1)) λ1(τ(ε))
λ2(τ(1)) λ2(τ(ε))

 θ(λ1(ησR(x)))
θ(λ2(ησR(x)))

.
See Lemma 2.6.1 for details on this. Using the facts ρ(x) = ε, τ(1) = 1, and τ(ε) = 0,
the above yields  0

1

 =
 1 0

0 0

 θ(λ1(W σ
R(x)))

θ(λ2(W σ
R(x)))

,
which is clearly inconsistent. Hence, equation (⋆) cannot hold, and the left adjoint
W σ cannot exist. The issue here is that the 2× 2 matrix on the right-hand side that
we associate to (B, τ) is not invertible. In this case we say that τ does not have
invertible matrix. We will see in the course of Section 2.4 that τ having invertible
matrix is sufficient for a left adjoint to exist, and, in Section 2.5, that in the case
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when A is a field, it is also necessary.

Theorem C. Let (A, σ) be a difference ring and (B, τ) a difference (A, σ)-algebra
where B is finitely generated and free as an A-module. Assume that τ has invertible
matrix. If (C, ρ) is a difference (B, τ)-algebra, then there is a unique endomorphism
ρW on the classical Weil restriction, W (C), making (W (C), ρW ) into a difference
(A, σ)-algebra and the unit of the classical adjunction ηC : C → W (C) ⊗A B into
a difference ring homomorphism (C, ρ) → (W (C) ⊗A B, ρ

W ⊗ τ). The assignment
(C, ρ) 7→ (W (C), ρW ) is the left adjoint to the difference base change functor.

One might initially think to define ρW = W (ρ). However, while ρ is a ring
endomorphism, it is not in general a B-algebra homomorphism, and thus the functor
W cannot be applied to it. There is a natural way to make ρ into a B-algebra
homomorphism though: let Cτ be the B-algebra which, as a ring, is just C, but whose
B-algebra structure is given by b 7→ τ(b) ∈ C; then ρ is a B-algebra homomorphism
considered as a map C → Cτ . Applying W gives an A-algebra homomorphism
W (ρ) : W (C)→ W (Cτ ). However, this does not correspond to an endomorphism of
W (C). If we had an A-algebra homomorphism W (Cτ ) → W (C)σ, then composing
with W (ρ) gives an A-algebra homomorphism W (C)→ W (C)σ, which corresponds
to an endomorphism of W (C) extending σ. In Section 2.3 we will see that such a
map W (Cτ ) → W (C)σ exists if τ has invertible matrix and in Section 2.4 that it
yields the left adjoint.

As this is a thesis on D-rings, we prove the above theorem in this more general
setting. Let (A, e) be a D-ring and (B, f) an (A, e)-algebra where B is finite and
free as an A-module. Subject to the condition that every maximal ideal of D has
residue field k, the D-structure on B has associated endomorphisms and, as in the
difference case, if the associated endomorphisms of (B, f) do not have invertible
matrix, then the left adjoint to the D-base change functor (see Definition 2.2.2) does
not generally exist. Nonetheless, our main result states that this is indeed the main
obstacle: if the associated endomorphisms of (B, f) have invertible matrix, then
the D-base change functor has a left adjoint, and if A is a field, this condition is
necessary. See Theorem 2.4.5 and Corollary 2.5.21. Section 2.5 contains results on
properties preserved under the D-Weil descent. For instance, we show that if the
D-operators of some (B, f)-algebra pairwise commute, then the same is true of its D-
Weil restriction, and that if some associated endomorphism is an automorphism, then
the same is true of its D-Weil restriction. Thus our main result truly generalises the
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differential Weil descent of [39] and establishes the existence of Weil descent functors
in the categories of difference rings with several (commuting) endomorphisms and
difference rings with several (commuting) automorphisms. In addition we also prove
the partial converse to the main theorem alluded to above: that if A is a field and
the left adjoint exists, the associated endomorphisms must necessarily have invertible
matrix.

Derivation-like theories and neostability

In Chapter 4 we return to a model-theoretic analysis and examine what neostability
properties of models of UCD are determined by its underlying field. For instance, it
is immediate from the transfer of quantifier elimination in Theorem B that if T is
stable or NIP, then so is T ∪UCD. For simplicity, we must do more work. To apply
the Kim–Pillay theorem, we need to understand what nonforking independence looks
like in the underlying field – we use the notion of slimness from [32]. The authors
show that model complete, large fields are very slim in the language of rings, and
hence that, in such a field, algebraic independence is an independence relation (in
the sense of Adler [2]). From the proof of the Kim–Pillay theorem, we then get that
if two D-fields are independent in the sense of nonforking, they are algebraically
independent as fields. This fact will allow us to amalgamate independent (in the
sense of nonforking) D-fields, and thus prove that if the independence theorem holds
in T , it must also hold in T ∪ UCD.

In fact, the methods used are not reliant on the particular behaviour of D-fields:
they work for any suitable theory of fields with operators. Hence we formulate these
results using an axiomatic approach. Given a complete and model complete L-theory
T and a monster model U that has some relation |0⌣ on triples of small subsets, we
say that a D-theory ∆ (for D ⊇ L) is derivation-like (with respect to T and |0⌣) if
the following four conditions hold:

(a) if M |= ∆ and M ≤L N |= T , then there is a D-structure on N extending the
one on M such that N |= ∆;

(b) if M |= T ∪ ∆ and A ≤D M ≤L U, then aclT (A) ≤D M and aclT (A) |= ∆;
moreover, this is the only D-structure on aclT (A) extending the one on A that
makes aclT (A) into a model of ∆;
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(c) if M |= T ∪ ∆ with M ≤L U and A and B are two models of ∆ which are
D-substructures of M with a common aclT -closed D-substructure C such that
A |0⌣C B, then ⟨AB ⟨L ≤D M and ⟨AB ⟨L |= ∆; moreover, this is the only
D-structure on ⟨AB ⟨L extending the ones on A and B and making it into a
model of ∆; and

(d) if A and B are two models of ∆ which are L-substructures of U with a common
aclT -closed D-substructure C such that A |0⌣C B, then there is a D-structure
on ⟨AB ⟨L ≤L U extending the ones on A and B that makes ⟨AB ⟨L into a model
of ∆.

If T is the theory of a very Lring(C)-slim field of characteristic zero (where C is
some set of constant symbols) and |0⌣ is algebraic independence, then the following
are examples of derivation-like theories:

1. differential fields with m noncommuting derivations;

2. differential fields with m commuting derivations;

3. D-fields (where D is a local k-algebra); and

4. D-fields (where D is a local k-algebra) with pairwise commuting operators.

Endomorphisms are not examples of derivation-like operators with respect to this
choice of T (or even with T = ACF0): they fail axiom (a). In the case of character-
istic p > 0, we can take T = SCFλ

p,∞, the theory of separably closed fields of infinite
degree of imperfection in the language of rings expanded by the λ-functions (see
Proposition 27 of [16]), with nonforking independence |0⌣. Then the theory of differ-
ential fields is also derivation-like with respect to this choice of T . If T = ACFA0,t

and |0⌣ is nonforking independence, then D-fields (where each maximal ideal of D
has residue field k) is derivation-like with respect to T .

The main result of Chapter 4 is the following.

Theorem D. Suppose ∆ is derivation-like with respect to T and that T ∪∆ has a
model companion T+. Let C be a monster model of (some completion of) T+, and
define the following relation on triples of subsets of C:

A |∗⌣
C
B ⇐⇒ acl(AC) |0⌣

acl(C)
acl(BC).

Then
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(i) if |0⌣ is an abstract independence relation, so is |+⌣;

(ii) if |0⌣ is a strict independence relation, so is |+⌣;

(iii) for some parameter set M , if |0⌣ is an independence relation that satisfies the
independence theorem over M , so is |+⌣; and

(iv) for some parameter set M , if |0⌣ is an independence relation that satisfies
stationarity over some M , so is |+⌣.

Thus simplicity and stability of T are transferred to T+. This unifies many of the
proofs of stability and simplicity of theories of fields with operators occurring in the
literature (the simplicity of D-CF0 as proved in Theorem 5.9 of [53] for instance).
One novel result stemming from this axiomatic work is that we may characterise
nonforking independence in SDCFp,∞, the theory of separably differentially closed
fields of characteristic p > 0 and infinite differential degree of imperfection, defined
and analysed by Ino and León Sánchez in [28], as p-disjointness plus algebraic inde-
pendence, analogously to the field-theoretic case of SCFp,∞, the theory of separably
closed fields of characteristic p > 0 and infinite degree of imperfection, characterised
by Srour in [61].

Pseudo D-closed fields

Finally, Chapter 5 functions as a case study for many of the general results stated
throughout the thesis. We study the PAC substructures inD-CF0 using the definition
from [25] of being existentially closed in every Lring(∂)-regular extension (that is, an
extension of D-fields A ≤ B where acl(A) ∩ dcl(B) = dcl(A)), and we show that
they are characterised as those D-fields which are models of UCD and PAC as fields.
We use this in conjunction with Chapter 4 to prove simplicity and elimination of
imaginaries for the theory of a bounded D-field which is a PAC substructure in
D-CF0, extending the corresponding differential results from Section 5 of [26] to the
case of D-fields.

Conventions. All rings are commutative with identity. Ring homomorphisms pre-
serve the identity.
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Chapter 1

Preliminaries

1.1 Model theory

While model theory appears throughout this thesis, it is not so thoroughly ingrained
that a non-model-theorist is incapable of reading it. I will give a brief exposition of
the model theory that makes an appearance; all of it can be found in [24], [43], and
[64].

Predicate logic

First we fix a language L. This language is a set of predicate symbols, function
symbols, and constant symbols. Each predicate symbol and function symbol comes
with a particular arity – some n ∈ N. An L-structureM is defined by the following
data:

• a nonempty set M – the universe of the L-structure;

• for each predicate symbol P of arity n, a subset PM ⊆Mn;

• for each function symbol f of arity n, a function fM : Mn →M ; and

• for each constant symbol c, an element cM ∈M .

These are the interpretations of the symbols of L in M. We will also assume that
there is always a 2-ary predicate symbol = which is always interpreted as equality;
since every structure has such a predicate, we do not include it in the language L.
The language L also contains an infinite set of variables xi.

The L-terms are defined as follows:
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• the variables xi are terms;

• the constant symbols are terms; and

• if t1, . . . , tn are terms and f is an n-ary function symbol, then f(t1, . . . , tn) is
a term.

The atomic L-formulas are defined as follows:

• if s, t are terms, then s = t is an atomic formula; and

• if t1, . . . , tn are terms and P is an n-ary predicate symbol, then P (t1, . . . , tn) is
an atomic formula.

The L-formulas are defined as follows:

• the atomic formulas are formulas;

• if φ and ψ are formulas, then φ ∧ ψ, φ ∨ ψ, ¬φ, φ → ψ, φ ↔ ψ are formulas;
and

• if φ is a formula and xi is a variable, then ∃xiφ, and ∀xiφ are formulas.

We write φ ∈ L to mean that φ is an L-formula.
If xi is a variable appearing in some formula φ, then it is a bound variable if it only

ever occurs within the scope of some quantifier ∃xi or ∀xi. It is a free variable oth-
erwise. A formula with no free variables is called a sentence. We write φ(x1, . . . , xn)
to stress that the free variables of φ are contained in the tuple (x1, . . . , xn).

If φ(x1, . . . , xn) is an L-formula and (a1, . . . , an) is a tuple fromM, then we write
M |= φ(ā) if φ(ā) is true in M in the natural sense.1 The formula φ(x̄) defines a
subset of Mn in a natural way:

φ(M) = {ā ∈Mn : M |= φ(ā)}.

If we partition the variables of φ as φ(x̄, ȳ), where x̄ has length n and ȳ length m,
then for any b̄ ∈Mm we can form the b̄-definable set

φ(M, b̄) = {ā ∈Mn : M |= φ(ā, b̄)}.
1Tarski’s definition of truth: the symbols ¬, ∧, ∨, →, ↔ mean “not”, “and”, “or”, “implies”, “if

and only if” respectively.
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If T is a set of L-sentences, then we say that T is consistent if there is some
L-structureM such thatM |= φ for each φ ∈ T . In this case, we writeM |= T and
say that M is a model of T .

The Compactness Theorem. A set of L-sentences T is consistent if and only if
every finite subset of it is consistent.

A consistent set of L-sentences is also called an L-theory. If T is a set of L-
sentences and φ is an L-sentence, then we say that T logically implies φ if every
model of T is also a model of φ, and we write T |= φ.

The L-theory of an L-structure M is the set of all L-sentences true in M.

Th(M) := {φ ∈ Sent(L) : M |= φ}.

If two L-structures M and N have the same L-theory, then they are elementarily
equivalent and we write M ≡ N . A maximally consistent set of L-sentences is
called a complete L-theory. A consistent theory is complete if and only if for any
two models M and N , we have M≡ N .

Many-sorted predicate logic

Everything defined in the previous section has been for one-sorted structures. How-
ever, we could have started with the notion of a many-sorted structure. A many-
sorted language also has a decomposition into predicate, function, and constant
symbols, but also has a set of sorts S. The arity of a predicate symbol is no longer
some n ∈ N, but a tuple (s1, . . . , sn) ∈ Sn. The arity of a function symbol is
(s1, . . . , sn, s) ∈ Sn+1, and the arity of a constant symbol is s ∈ S.

If L is a many-sorted language, then an L-structure M consists of the following
data:

• for each sort s ∈ S, a nonempty set Ms;

• for each predicate symbol P of arity (s1, . . . , sn), a subset PM ⊆Ms1×· · ·×Msn ;

• for each function symbol f of arity (s1, . . . , sn, s), a function fM : Ms1 × · · · ×
Msn →Ms;

• for each constant symbol c of arity s, an element cM ∈Ms.
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For each sort we have an infinite set of variables (whose arity is that sort), and
terms and formulas are defined in the usual way but now with the extra condition
that all the sorts are compatible. Unless discussing elimination of imaginaries, all
our languages will be one-sorted.

Maps between structures

Suppose M and N are two L-structures and g : M → N is a map between their
underlying universes. We say that g is an L-embeddingM→N when the following
conditions hold:

• (a1, . . . , an) ∈ PM ⇐⇒ (g(a1), . . . , g(an)) ∈ PN for every predicate symbol
P (including equality);

• g(fM(a1, . . . , an)) = fN (g(a1), . . . , g(an)) for every function symbol f ; and

• g(cM) = cN for every constant symbol c.

If M ⊆ N , thenM is an L-substructure of N if inclusion is an L-embedding. In
this case we write M≤ N .
Remark 1.1.1. SupposeM is an L-structure and A is a subset of M . Then for A to
be an L-substructure of M we need each constant cM to lie in A and each function
fM to restrict to a function on An.

An L-isomorphism is a bijective L-embedding. An L-embedding g : M→ N is
called L-elementary if for any L-formula φ(x1, . . . , xn) and any (a1, . . . , an) ∈Mn,

M |= φ(ā) ⇐⇒ N |= φ(g(ā)).

If the inclusion map M ≤ N is L-elementary, say that M is an elementary sub-
structure of N and writeM⪯ N . If A ⊆M and B ⊆ N and g : A→ B is a map of
sets, we say g is a partial L-elementary map if for any L-formula φ(x1, . . . , xn) and
any (a1, . . . , an) ∈ An,

M |= φ(ā) ⇐⇒ N |= φ(g(ā)).

Note that if M≤ N and φ is an L-sentence, then

1. if φ is existential, we have

M |= φ =⇒ N |= φ;
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2. if φ is universal, we have

M |= φ ⇐= N |= φ.

Diagrams

Suppose M is an L-structure and A ≤ M is an L-substructure. We can form the
language L(A) = L ∪ {ca : a ∈ A} by adding new constant symbols, and consider
M as an L(A)-structure MA by interpreting each new constant symbol ca as a.
Then the (quantifier-free) diagram of A is the set of quantifier-free L(A)-sentences
true in MA. The diagram of A does not depend on which M it is computed in.
We denote it by diagL(A) or diag(A) if no confusion arises. The key fact is that
N |= diag(A) if and only if there is some embedding A → N . One also defines the
complete or elementary diagram of A as the set of L(A)-sentences true inMA. Then
N |= eldiag(A) if and only if there is an elementary embedding A→ N .

We will say that an L(A)-formula is an L-formula with parameters from A.

The Löwenheim–Skolem theorems

One aspect of first-order model theory is that it cannot distinguish between different
sizes of infinity. The following two theorems formalise this idea.

The Downward Löwenheim–Skolem Theorem. SupposeM is an L-structure,
A ⊆ M , and κ an infinite cardinal with |L| + |A| ≤ κ ≤ |M |. Then M has an
elementary substructure of cardinality κ containing A.

The Upward Löwenheim–Skolem Theorem. LetM be an infinite L-structure
and κ an infinite cardinal with κ ≥ |L|+ |M |. ThenM has an elementary extension
of cardinality κ.

Existentially closed models, model companions, and quanti-
fier elimination

IfM≤ N is an extension of L-structures, thenM is existentially closed in N if for
every existential L-formula φ with parameters from M we have

N |= φ =⇒ M |= φ.
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That is, for every quantifier-free L-formula φ(x̄, ȳ) and every ā ∈M ,

N |= ∃x̄φ(x̄, ā) =⇒ M |= ∃x̄φ(x̄, ā).

If T0 is some L-theory, then M |= T0 is an existentially closed model of T0 if for
every N |= T0 with N ≥M, we have that M is existentially closed in N .

An L-theory T is called model complete if for any two models M≤ N , we have
M ⪯ N . So T is model complete if and only if for any model M, we have that
the L(M)-theory T ∪ diag(M) is complete.2 If T is model complete, then every
L-formula φ(x̄) is T -equivalent to an existential L-formula ψ(x̄) and a universal
L-formula θ(x̄):

T |= ∀x̄(φ(x̄)↔ ψ(x̄));
|= ∀x̄(φ(x̄)↔ θ(x̄)).

Suppose T0 and T are two L-theories. Then we say that T is a model companion
of T0 if the following conditions hold:

1. every model of T0 embeds in a model of T ;

2. every model of T embeds in a model of T0;

3. T is model complete.

Conditions (1) and (2) together are equivalent to the fact that T0 and T have the
same universal theory.

If T0 is inductive (that is, axiomatised by ∀∃-sentences), then T0 has a model
companion if and only if the class of existentially closed models of T0 is axiomatis-
able by some L-theory. In this case, its model companion is given by the L-theory
axiomatising its existentially closed models.

Remark 1.1.2. Suppose T0 is inductive and T is the model companion of T0. Then
every model of T is a model of T0.

T is a model completion of T0 if for any M |= T0, we have that T ∪ diag(M) is
complete. T has quantifier elimination if for any M |= T and any L-substructure
A ≤ M, we have that T ∪ diag(A) is complete. Fortunately, quantifier elimination
does correspond to being able to eliminate quantifiers: T has quantifier elimination

2This is how Robinson first defined model completeness [60] and is where the name comes from.
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if and only if for every L-formula φ(x̄), there is some quantifier-free L-formula ψ(x̄)
such that T |= ∀x̄(φ(x̄)↔ ψ(x̄)).3

For use in Chapters 3 and 4, we summarise below.

Fact 1.1.3. Suppose T0 and T are two L-theories with the same universal L-theory.
Then

(i) T is the model companion of T0 if for everyM |= T , T ∪diag(M) is complete;

(ii) T is the model completion of T0 if for everyM |= T0, T ∪diag(M) is complete;
and

(iii) T has quantifier elimination if for every A ≤M |= T , T ∪diag(A) is complete.

Historical Remark. The notion of a model companion was first introduced by Robin-
son. It has seemed to be most useful in studying the model theory of fields –
conveniently the topic of this thesis.

Expansions by definitions and Morleyisation

Suppose L ⊆ L∗ are two languages, T is an L-theory, and T ∗ ⊇ T is an L∗-theory.

Definition 1.1.4. T ∗ is an expansion by definitions of T if

• for every new predicate symbol P of arity n in L∗, there is some L-formula
φP (x1, . . . , xn),

• for every new function symbol f of arity n in L∗, there is some L-formula
φf (x1, . . . , xn, y) such that T |= ∀x1 . . . xn∃!y φf (x1, . . . , xn, y),4

• for every new constant symbol c in L∗, there is some L-formula φc(y) such that
T |= ∃!y φc(y),

and T ∗ is logically equivalent to

T ∪ {∀x1 . . . xn(P (x1, . . . , xn)↔ φP (x1, . . . , xn)) : P is a new predicate}
∪ {∀x1 . . . xny(f(x1, . . . , xn) = y ↔ φf (x1, . . . , xn, y)) : f is a new function}
∪ {φc(c) : c is a new constant}

3As long as x̄ is not the empty tuple (that is, φ is not a sentence), ψ can always be taken so
that its free variables also appear among x̄. If φ is a sentence, then ψ may need to contain a free
variable – if L has no constant symbols, then there are no quantifier-free L-sentences.

4Here ∃!yφ(x̄, y) means “there exists a unique y such that φ(x̄, y) holds” and is just an abbrevi-
ation of ∃y(φ(x̄, y) ∧ ∀z(φ(x̄, z)→ z = y)).
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Remark 1.1.5. 1. Note that the defining L-formulas, φP , φf , and φc, are not al-
lowed to contain any parameters.

2. If T ∗ is an expansion by definitions of T and M |= T , then M can be uniquely
expanded to an L∗-structure which is a model of T ∗.

Example 1.1.6. There is a natural example of an expansion by definitions for any
L-theory T . For every n ∈ ω and every L-formula φ(x1, . . . , xn), let Rφ be a new
n-ary predicate symbol. Let L∗ = L ∪ {Rφ : φ(x1, . . . , xn) is an L-formula}, and let
T ∗ be the L∗-theory

T ∗ := T ∪ {∀x1 . . . xn(Rφ(x1 . . . xn)↔ φ(x1 . . . xn))}.

T ∗ is called the Morleyisation of T , and it has quantifier elimination.

We can always Morleyise a theory, but it is often overkill; we may be able to find
a more reasonable language in which our theory eliminates quantifiers. This also
gives us a better understanding of the definable sets in our theory.

Example 1.1.7. Consider the Lring-theory of real closed fields, the model companion
of the theory of formally real fields. This theory is model complete, but it does not
have quantifier elimination: the set of non-negative elements, defined by ∃y x = y2,
is not quantifier-free Lring-definable – any quantifier free Lring-formula in a single
variable defines a finite or cofinite set in a field.

Let L∗ := Lring ∪ {≤}, and let RCF∗ be the L∗-theory RCF ∪ {∀x∀y(x ≤ y ↔
∃z y − x = z2). Then RCF∗ has quantifier elimination by the Tarski–Seidenberg
theorem; see Section 3.3 of [43] for instance.

So every set definable in a real closed field is a Boolean combination of solution
sets of polynomial equations and inequalities: a semialgebraic set.

Example 1.1.8. Consider the Lring-theory pCF of p-adically closed fields (of p-
rank 1), the model companion of the theory of formally p-adic fields (of p-rank 1).
Expanding by definitions to the language Lring(O, (Pn)n∈N) by defining O as the
valuation ring and each unary predicate Pn as the set of nth powers, this theory has
quantifier elimination. See Theorem 5.6 of [59].
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Types

Let M be an L-structure. For some parameter set A ⊆ M and tuple b̄ ∈ M, the
(complete) type of b̄ over A is

tp(b̄/A) = {φ(x̄) ∈ L(A) : M |= φ(b̄)}.

Here x̄ is a fixed tuple of variables of the same length (possibly infinite) as b̄.

Remark 1.1.9. The definition above prima facie depends on M. But note that if
N ⪰M, then the type of b̄ ∈M over A ⊆M is the same computed in eitherM or
N .

Now let p(x̄) be a set of L-formulas with parameters from A ⊆M. We say that
p is a type over A if there is some N ⪰M and b̄ ∈ N such that p = tp(b̄/A). If b̄ can
be taken in M, then M realises p; otherwise it omits p. A set π(x̄) of L-formulas
with parameters from A ⊆M is called a partial type over A if it a subset of a type
over A. Note then that partial types over A are precisely those sets of L-formulas
with parameters from A which are finitely satisfiable in M and that types are the
partial types which are maximal (with respect to inclusion) among sets of L-formulas
which are finitely satisfiable in M.

Remark 1.1.10. If b̄ and c̄ have the same type over A, we write b̄ ≡A c̄. The map
that fixes A and sends b̄ to c̄ is a partial elementary map.

We write S(A) for the set of all types over A.

The monster

Algebraic geometry used to be conducted inside some universal domain: a large
algebraically closed field containing all the points of all the varieties geometers were
interested in. It has since progressed past this to the more sophisticated machinery
of schemes. Our version of the universal domain is the monster model. The power
of the monster model C lies in the fact that it contains all the objects we would ever
want: C will contain realisations of all types over small subsets, any small model
elementarily equivalent to C will embed elementarily inside C, and any two tuples
with the same type over some small parameter set A will be conjugate by some
σ ∈ Aut(C/A).
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This subsection follows the construction of Hodges in Section 10.4 of [24] and is
also one of the two approaches taken by Tent and Ziegler in [64]. It requires some
minor set theory, for which [29] is a good reference.

Definition 1.1.11. For a cardinal κ, an L-structure M is called κ-saturated if
whenever A ⊆M with |A| < κ and p is a type over A, then p is realised in M.

If M is of infinite cardinality κ, then it is called special if it is the union of an
elementary chain ⋃

µ<κMµ where each Mµ is µ+-saturated (here the elementary
chain is indexed over cardinals, not ordinals).

Definition 1.1.12. A cardinal κ is a strong limit cardinal if µ < κ implies 2µ < κ.

Example 1.1.13. Recall that the beth numbers are defined as follows.

• ℶ0 = ℵ0;

• ℶα+1 = 2ℶα ; and

• ℶλ = ⋃
α<λ ℶα for limit ordinals λ.

Let λ be any limit ordinal. Then ℶλ is a strong limit: if µ < ℶλ = ⋃
α<λ ℶα, then

µ < ℶα for some α < λ, and so 2µ ≤ 2ℶα = ℶα+1 < ℶλ.

Definition 1.1.14. For an ordinal α, its cofinality cf(α) is the least ordinal β such
that there is an unbounded function β → α. A regular cardinal is one whose cofinality
is itself.

Theorem 10.4.2 of [24]. Let M be an infinite L-structure and κ a strong limit
cardinal greater than |M| + |L|. Then M has a special elementary extension of
cardinality κ.

We now examine the properties of special structures.

Definition 1.1.15. M is called strongly κ-homogeneous if every partial elementary
map A→ B with |A|, |B| < κ extends to an automorphism of M.
M is called κ-universal if every structure of cardinality strictly less than κ which

is elementarily equivalent to M can be elementarily embedded in M.

Theorem 10.4.5 of [24]. IfM is special of cardinality κ and A is a set of elements
of size less than cf(κ), thenMA is special as an L(A)-structure.

The following is clear from the definition. It will be important in Chapter 4.
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Theorem 1.1.16. Every reduct of a special structure is special.

Fact 1.1.17. Special structures of cardinality κ are κ+-universal, strongly cf(κ)-
homogeneous, and cf(κ)-saturated.

Proof. κ+-universality is by Corollary 10.4.10 of [24]; strong cf(κ)-homogeneity is by
Corollary 10.4.6; cf(κ)-saturation is by Corollary 10.4.12(a). ■

Remark 1.1.18. Suppose F is a normal function (that is, a strictly increasing con-
tinuous class function on ordinals). Then cf(F (λ)) = cf(λ) for any limit ordinal λ.
The map α 7→ ℶα is such a function.

Now given a complete theory T , fix a regular cardinal γ larger than all the models
of T and parameter sets we wish to consider. Use Theorem 10.4.2 of [24] to construct
a special model C |= T of cardinality ℶγ. Then by Fact 1.1.17 and Remark 1.1.18,
C is γ-universal, strongly γ-homogeneous, and γ-saturated. This C is our monster
model for T .

Algebraic closure and definable closure

Let C be the monster model. For a ∈ C and A ⊆ C, a is said to be algebraic over A
if it is contained in some finite A-definable set. The algebraic closure of A is

acl(A) := {a ∈ C : a is algebraic over A}.

An element a ∈ C is definable over A if {a} is A-definable. The definable closure of
A is

dcl(A) := {a ∈ C : a is definable over A}.

A type p = tp(a/A) is algebraic if a is algebraic over A; equivalently if p has only
finitely many realisations in C.

Elimination of imaginaries

Suppose X is some definable set in C. We say that a finite tuple d is a canonical
parameter (or a code) for X if for every σ ∈ Aut(C), σ fixes X setwise if and only if
it fixes d pointwise.
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Aut(C) acts on S(C) in a natural way:

σ · p(x̄) = pσ(x̄) := {φ(x̄, σ(b̄)) : φ(x̄, b̄) ∈ p}.

A set B is the canonical base of p ∈ S(C) if it is fixed pointwise by every automor-
phism that fixes p.

Definition 1.1.19. A theory T eliminates imaginaries if for any 0-definable equiv-
alence relation E, every equivalence class e/E has a canonical parameter.

It is often convenient to work in a theory that eliminates imaginaries, but not all
theories do. However, one can always pass to T eq which will eliminate imaginaries.

Enumerate all 0-definable equivalence relations on C as (Ei)i∈I where Ei has arity
ni. We form the many-sorted structure Ceq = (C,Cni/Ei : i ∈ I) in the language of C
with extra function symbols πi : Cni → Cni/Ei interpreted as the natural projections.
The elements of C are called real elements, and the elements of Cni/Ei are called
imaginary elements. T eq is the theory of Ceq; Ceq is its monster model.

Proposition 8.4.5 of [64]. T eq eliminates imaginaries.

Definition 1.1.20. T eliminates finite imaginaries if every finite set of tuples has
a canonical parameter.

T has weak elimination of imaginaries if for every imaginary e there is a real c
such that e ∈ dcleq(c) and c ∈ acl(e).

Corollary 8.4.6 of [64]. T eliminates imaginaries if and only if in T eq every imag-
inary is interdefinable with a real.

Lemma 8.4.10 of [64]. T eliminates imaginaries if and only if it has weak and
finite elimination of imaginaries.

The following is very useful for us.

Lemma 1.1.21. If T is a theory of fields, then T eliminates finite imaginaries.

Proof. This is shown in the proof of Corollary 8.4.12 of [64]. ■
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Simplicity

Let T be a complete theory with infinite models and monster model C.

Definition 1.1.22. We say that a formula φ(x, b) k-divides over A ⊆ C if there is a
sequence (bi)i∈ω of realisations of tp(b/A) such that {φ(x, bi) : i ∈ ω} is k-inconsistent.
It divides over A if it k-divides for some k. A partial type π(x) divides over A if it
implies some formula which divides over A.

The partial type π(x) forks over A if it implies a finite disjunction of formulas
each of which divides over A.

We write A |⌣C B and say A is (nonforking) independent from B over C if
tp(A/BC) does not fork over C.

T is simple if nonforking independence is symmetric:

A |⌣
C
B ⇐⇒ B |⌣

C
A.

In this thesis, we will follow Adler [2] in his treatment of abstract independence
relations.

Definition 1.1.23. A relation |∗⌣ on triples of small subsets of C is called an ab-
stract independence relation if it is invariant under automorphisms and satisfies the
following conditions.

1. normality: X |∗⌣A B =⇒ X |∗⌣A AB;

2. monotonicity: X |∗⌣A B =⇒ X |∗⌣A B
′ for B′ ⊆ B;

3. base monotonicity: X |∗⌣A D =⇒ X |∗⌣B D for A ⊆ B ⊆ D;

4. transitivity: X |∗⌣A B and X |∗⌣B D =⇒ X |∗⌣A D for A ⊆ B ⊆ D;

5. symmetry: X |∗⌣A B ⇐⇒ B |∗⌣A X;

6. full existence: for any X,A,B there is X ′ ≡A X such that X ′ |∗⌣A B (recall
that X ′ ≡A X means that X ′ and X have the same type over A);

7. finite character: if X0 |∗⌣A B for all finite X0 ⊆ X, then X |∗⌣A B;

8. local character: there is a cardinal κ such that for all X and A, there is A0 ⊆ A

with |A0| < κ such that X |∗⌣A0 A.

There are three extra properties that an abstract independence relation |∗⌣ might
satisfy that we are interested in:
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9. strictness: if b |∗⌣A b, then b ∈ acl(A);

10. independence theorem over M : if A1 |∗⌣M A2, a1 |∗⌣M A1, a2 |∗⌣M A2, and
a1 ≡M a2, then there is a |= tp(a1/MA1) ∪ tp(a2/MA2) with a |∗⌣M A1A2;

11. stationarity over M : whenever A ⊇ M , a, b ∈ C with a ≡M b, a |∗⌣M A and
b |∗⌣M A, then a ≡A b.

For 10 and 11, M is usually an acl-closed set or a model.

These axioms also appear in various forms throughout the literature – often with
normality, monotonicity, base monotonicity, and transitivity combined into a single
axiom, and sometimes with extension instead of full existence – see Theorem 7.3.13
of [64] and Definition 4.1 of [35].

One of the results that sparked widespread interest in the study of simple theories
was the Kim–Pillay theorem [35]. This gave a semantic way of proving a theory was
simple and characterising the behaviour of nonforking independence.

The Kim–Pillay Theorem. Suppose |∗⌣ is an abstract independence relation on
T which satisfies the independence theorem over models. Then T is simple and |∗⌣
coincides with nonforking independence |⌣.

Remark 1.1.24. In any theory T , nonforking independence satisfies normality, mono-
tonicity, base monotonicity, finite character, and strictness. If nonforking indepen-
dence satisfies transitivity, symmetry, or local character, then T is simple.

Stability

Let T be a complete theory with infinite models, and C a monster model. Let κ be
some infinite cardinal. We say that T is κ-stable if for any parameter set A ⊆ C with
|A| ≤ κ, we have |S(A)| ≤ κ. We say ω-stable instead of ℵ0-stable.

T is stable if it is κ-stable for some κ. An equivalent characterisation is if no
formula has the order property.

Definition 1.1.25. Let φ(x, y) be a formula whose free variables are partitioned
into two tuples x and y. We say that φ(x, y) has the order property if there are
sequences of tuples (ai)i∈ω and (bi)i∈ω from C such that

C |= φ(ai, bj) ⇐⇒ i < j.
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T is stable if no formula has the order property.

We will be more interested in a third characterisation, one in terms of nonforking
independence, similar to the Kim–Pillay theorem. Indeed, simple theories initially
received interested because it was observed that much of the desirable behaviour of
nonforking independence in stable theories also held in simple theories.

Fact 2.1.4 of [34]. Suppose |∗⌣ is an abstract independence relation on C which
satisfies stationarity over models. Then T is stable and |∗⌣ coincides with nonforking
independence.

The independence property

As before, let T be a complete theory and C a monster model. We say that a formula
φ(x, y) has the independence property (IP) if there are (ai)i∈ω and (bI)I⊆ω in C such
that

C |= φ(ai, bI) ⇐⇒ i ∈ I.

T is NIP if no formula has the independence property.

Remark 1.1.26. As is usually the case with combinatorial neostability properties, it
does not matter whether we allow the formula φ(x, y) to contain parameters from C

or not.

1.2 Algebraic geometry

In this section we will briefly explain the geometric perspective we will take through-
out this thesis. Analysing the model theory of fields lends itself to the classical view-
point of algebraic geometry: that of affine varieties being solution sets of polynomials.
However, the construction of the prolongation of a variety is more naturally done
in the language of schemes. Hence we will lay out the classical viewpoint first, and
then briefly explain how to translate concepts into the scheme-theoretic viewpoint.
This final aspect is taken from Section 10.8 of [18].

The classical viewpoint

Let U be an algebraically closed field which is κ-saturated, strongly κ-homogeneous,
and κ-universal for some large enough cardinal κ. This is our universal domain.
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Affine n-space, An, is the set of all n-tuples of elements of U. Let K be a small
subfield of U and X = (X1, . . . , Xn) a tuple of variables. For each subset a ⊆ K[X],
we define the K-algebraic (or K-closed) set

V (a) := {x ∈ An : f(x) = 0 for all f ∈ a}.

Then the K-algebraic sets form the closed sets of a topology on An. This is the
K-Zariski topology on An.

Now for any A ⊆ An, define the following ideal of K[X]

IK(A) := {f ∈ K[X] : f(x) = 0 for all x ∈ A}.

Then V and IK define an inclusion-reversing correspondence between K-closed sub-
sets of An and radical ideals of K[X].

A K-closed set V is called K-reducible if it can be written as the union of
two proper K-closed sets. It is K-irreducible otherwise. A K-closed set V is K-
irreducible if and only if IK(V ) is a prime ideal in K[X]. In this case, the coordinate
ring of V is K[V ] = K[X]/IK(V ), and the function field of V is the quotient field of
its coordinate ring, denoted by K(V ).

Suppose f1, . . . fm ∈ K[X] so that V = V (f1, . . . , fm) is a K-closed set. Then
for any L ≥ K, fi ∈ L[X], and hence V is also an L-closed set. However, if V is
K-irreducible, it might not be L-irreducible. We say that V is absolutely irreducible
if it is L-irreducible for every L ≥ K, or equivalently, if it is K̃-irreducible (here K̃
is the algebraic closure of K).

If V is K-irreducible, then K[V ] = K[X]/IK(V ) embeds in U. Let x be the
image of X + IK(V ) under this embedding. The point x ∈ V is called a K-generic
point of V . Now given any point x ∈ An, there is a K-irreducible K-variety V such
that x is a K-generic point of V ; take V = V (IK(x)). We write V = loc(x/K).

For a field extension L ≥ K, a point x ∈ V is L-rational if its entries are in L.
The L-rational points of V correspond to K-algebra homomorphisms K[V ] → L.
We write the set of L-rational points of V as V (L). Thus V (U) = V .

Given a K-variety V = V (f1, . . . , fm) and a homomorphism of fields σ : K → L,
we can form the conjugation of V by σ:

V σ := V (fσ
1 , . . . , f

σ
m),
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where fσ
i ∈ L[X] is the polynomial formed from fi by applying σ to its coefficients.

Since U is strongly κ-homogeneous, σ extends to an automorphism of U and induces
a map

V (U)→ V σ(U)
(x1, . . . , xn) 7→ (σ(x1), . . . , σ(xn)).

Translating to the language of schemes

Now for each K-closed set V , there is an associated reduced affine scheme of finite
type over K. Since V = V (a) for some radical ideal a ⊆ K[X], let R = K[X]/a;
this ring is reduced and finitely generated over K. The associated scheme over K is
V ′ = SpecR→ SpecK. Now each x ∈ V corresponds to aK-algebra homomorphism
R → U. The kernel of this homomorphism defines a prime ideal of R, and hence a
point of V ′. So K-isomorphism classes of points of V correspond to points of V ′.

For L ≥ K, V is also an L-closed set, but V ′ is not a scheme over L. Hence we
consider the base change of V ′ to L, given by V ′ ×K L (formally V ′ ×SpecK SpecL).
An L-rational point of V ′ is a K-morphism SpecL → V ′. This corresponds to a
K-algebra homomorphism R → L, and hence a point in V (L). Note that a K-
morphism SpecL → V ′ corresponds to an L-morphism SpecL → V ′ ×K L. Hence
V ′(L) = (V ′ ×K L)(L).

1.3 The Weil restriction

In this section we briefly go over the details of the construction of the classical Weil
descent. We will not give proofs, but the reader can consult Section 7.6 of [6] and
Section 2 of [51] for further details. Our approach is modelled after [39], so the reader
can also consult there for a more in-depth explanation.

Let A be a ring, and B an A-algebra. For any A-algebra R we can form the
base change5 of R to B, namely R⊗A B, where the B-algebra structure is given by
b 7→ 1 ⊗ b. This base change naturally extends to a functor F : AlgA → AlgB where
we set F (φ) = φ ⊗ idB. If we let G : AlgB → AlgA be the scalar restriction functor,
where G(C) is the A-algebra given by composing A → B → C, then G is right

5This is just the dual of the geometric base change given in the previous section.

35



Preliminaries

adjoint to F . More importantly, if B is free and of finite rank as an A-module, then
F has a left adjoint: Weil restriction W : AlgB → AlgA.

We state the following useful fact about adjunctions from Theorem 2 and Corol-
laries 1 and 2 of [41].

Theorem 1.3.1. Let F : X → Y be a functor, and suppose that for each C ∈ Y,
there is some W (C) ∈ X and ηC : C → F (W (C)) in Y such that the assignment
g 7→ F (g) ◦ ηC is a bijection HomX (W (C), R)→ HomY(C,F (R)). Then W extends
to a functor Y → X which is left adjoint to F . The unit of this adjunction is given
by ηC.

In particular, for a morphism C
f−→ C ′ in Y, W (f) is defined to be the unique

morphism W (C) g−→ W (C ′) such that F (g) ◦ ηC = ηC′ ◦ f .

This fact will allow us to construct the left adjoint using only the data of its
object map and unit. This fact is also the method of proof for the differential Weil
descent in [39].

We now explain the situation in the classical setup. Let b1, . . . , br be an A-basis
of B. For each i = 1, . . . , r, let λi : B → A be the A-module homomorphism with
λi
(∑r

j=1 ajbj
)

= ai. If R is an A-algebra, we consider the base change of λi to R –
the R-module homomorphism idR ⊗ λi : R ⊗A B → R. Note that idR ⊗ λi simply
picks out the coefficient of the basis element 1 ⊗ bi. We will write λi for idR ⊗ λi
throughout, but it will be clear from context which we mean.

Now let T be a set of indeterminates, and define

W (B[T ]) = A[T ]⊗r = A[T ]⊗A · · · ⊗A A[T ]

For each i and t ∈ T , let t(i) = 1 ⊗ · · · ⊗ 1 ⊗ t ⊗ 1 ⊗ · · · ⊗ 1, where the t occurs in
the ith position. We also let ηB[T ] be the B-algebra homomorphism

ηB[T ] : B[T ]→ F (W (B[T ]))

t 7→
r∑

i=1
t(i)⊗ bi

These choices make the following map τ(B[T ], R) a bijection for each A-algebra
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R:

HomAlgA(A[T ]⊗r, R)→ HomAlgB(B[T ], R⊗A B)
φ 7→ F (φ) ◦ ηB[T ]

where the compositional inverse is defined as follows. For aB-algebra homomorphism
ψ : B[T ] → R ⊗A B, let φ be the unique A-algebra homomorphism with φ(t(i)) =
λi(ψ(t)).

Now let C be a B-algebra, and take a surjective B-algebra homomorphism
πC : B[T ] → C for some set of indeterminates T . Let IC be the ideal of W (B[T ])
generated by all the λi(ηB[T ](f)) where f ranges over ker πC . Now define W (C) =
W (B[T ])/IC and W (πC) : W (B[T ])→ W (C) as the residue map.

Then we induce a map τ(C,R) : HomAlgA(W (C), R)→ HomAlgB(C,F (R)) which
makes the following diagram commute:

HomAlgA(W (C), R) HomAlgB(C,F (R))

HomAlgA(W (B[T ]), R) HomAlgB(B[T ], F (R))

◦W (πC)

τ(C,R)

◦πC

τ(B[T ],R)

Let ηC = τ(C,W (C))(idW (C)), and note that

ηC(πC(t)) =
r∑

i=1
W (πC)(t(i))⊗ bi

From this we see that τ(C,R)(φ) = F (φ) ◦ ηC and that τ(C,R) is a bijection,
satisfying the conditions of Theorem 1.3.1. Then W is a functor which is left adjoint
to F with unit ηC . This W is the classical Weil descent functor.

1.4 Some field theory

We will not need much field theory, but we record some notions and facts that will
be important later.
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Linear and algebraic disjointness

Let U be a special algebraically closed field containing small subfields F ≤ L, and
F ≤ K. The compositum of L and K inside U is the smallest subfield of U containing
both L and K.

We say that L and K are linearly disjoint over F if every finite subset of L
which is linearly independent over F remains linearly independent over K. This is
equivalent to saying that the multiplication map

L⊗F K → LK

a⊗ b 7→ ab

is an injection. Note then that linear disjointness is symmetric in L and K.
We say that L and K are algebraically independent, or algebraically disjoint,

or free, over F if every finite subset of L that is algebraically independent over F
remains algebraically independent over K. If this is the case, we write L |alg⌣F K.

Fact 1.4.1. If L and K are linearly disjoint over F , then they are algebraically
independent. The converse holds if at least one of the extensions F ≤ L or F ≤ K

is a regular extension, that is, relatively algebraically closed and separable.

Large fields

For Chapter 3 we will need the notion of a large field. These were first introduced
by Pop [58] as fields over which regular inverse Galois problems could be solved.
Model-theoretically, most “tame” fields are large. We recall the definition, equivalent
characterisations, and some examples.

Definition 1.4.2. A field K is called large if every K-irreducible variety with a
smooth K-rational point has a Zariski-dense set of K-rational points.

Proposition 1.1 of [58]. The following are equivalent.

1. K is large;

2. if a curve over K has a smooth K-rational point, then it has infinitely many
K-rational points; and

3. K is existentially closed in the Laurent series field K((t)).
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Example 1.4.3. 1. Algebraically closed fields, real closed fields, and fields that
admit a nontrivial Henselian valuation are all large. Pseudo-algebraically closed
fields, pseudo-real closed fields, and pseudo-p-adically closed fields are large.

2. By Falting’s theorem, number fields are not large.

Large fields play an important role in Tressl’s uniform companion [65]. They will
play a similar role in the results of Chapter 3 once we generalise to the notion to
difference largeness.

Fields of positive characteristic

We now explain some of the algebra and model theory of separably closed fields of
characteristic p > 0. This part is heavily based on [14], [16], and [46].

Definition 1.4.4. Let K be a field of characteristic p > 0. For n ∈ N, let pn be the
set of n-tuples with entries from {0, . . . , p− 1}.

a) For a finite set ā = (a1, . . . , an) ⊆ K, the p-monomials over ā are the elements
mi(ā) := a

i(1)
1 · · · ai(n)n ∈ K for i ∈ pn. The finite set ā is p-independent in K if

the set of p-monomials over ā is linearly independent over Kp. An infinite set
is p-independent if each finite subset is.

b) The set ā is p-independent in K over F ⊆ K if it is linearly independent over
FKp.

c) A p-basis of K is a maximal p-independent subset of K. The cardinality of a
p-basis is called the degree of imperfection.

d) A field extension F ⊆ K is separable if each p-independent set in F re-
mains p-independent in K, equivalently if there is some p-basis of F that is
p-independent in K, equivalently if F and Kp are linearly disjoint over F p.

e) K is separably closed if it has no proper separable algebraic extension.

The theory of separably closed fields of characteristic p and degree of imperfection
e ∈ N ∪ {∞} is denoted SCFp,e. In Proposition 27 of [16], Delon finds a language in
which SCFp,e has quantifier elimination.

If e is finite, define the language

Lλ := {+,−, · , 0, 1} ∪ {λi : i ∈ pe}
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where each λi is an (e + 1)-ary function symbol. We let SCFλ
p,e be the expansion

by definitions of SCFp,e to Lλ given by defining the functions λi as follows. If ȳ is
p-dependent, then λi(x, ȳ) = 0 for each i ∈ pe. Otherwise,

x =
∑
i∈pe

λi(x, ȳ)pmi(ȳ).

If e is infinite, we let Lλ be the language

Lλ := {+,−, · , 0, 1} ∪ {λn,i : n ∈ ω, i ∈ pn}

where λn,i is an (n + 1)-ary function symbol. We let SCFλ
p,∞ be the expansion by

definitions of SCFp,∞ to Lλ given by defining the functions λn,i as follows. If ȳ is
p-dependent or (x, ȳ) is p-independent, then λn,i(x, ȳ) = 0 for each n ∈ ω and i ∈ pn.
Otherwise,

x =
∑
i∈pn

λn,i(x, ȳ)pmi(ȳ).

The key fact about the λ functions is that Lλ-extensions are precisely the sepa-
rable extensions. See Lemma 1.9 of [11].

Fact 1.4.5. Let K be a field of characteristic p and degree of imperfection e in the
language L. Let F be a subfield of K. Then F is an L-substructure if and only if
K/F is a separable field extension.

Definition 1.4.6. Suppose that F ≤ K,L ≤ U are all separable extensions. We
say that K and L are p-disjoint over F (inside U) if every subset of K which is
p-independent over F in U remains p-independent over L in U.

Equivalently, there are p-bases BF , BK , and BL of F , K and L, respectively,
with BF ⊆ BK , BL such that BK ∪BL is p-independent in U.

This notion guarantees that composita of separable subfields remain separable.

Fact 1.4.7. Suppose K and L are p-disjoint over F inside U. Then KL ⊆ U is
separable.

Proof. BK ∪BL is a p-basis of KL. By p-disjointness, BK ∪BL is p-independent in
U. ■

The following fact characterises nonforking independence in SCFp,∞. See Theo-
rem 13 of [61] and the paragraph after its proof.
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Fact 1.4.8. Suppose U |= SCFp,∞ is a monster model and that F ≤ K,L ≤ U are
all separable extensions. Then K and L are nonforking independent over F if and
only if they are algebraically independent and p-disjoint over F .

1.5 Differential fields and difference fields

Differential fields and difference fields are the main motivating examples for this
thesis’s work on fields with operators.

Differential fields

Definition 1.5.1. (K, δ1, . . . , δm) is a differential field if K is a field and each δi is
a derivation:

δi(a+ b) = δi(a) + δi(b)
δi(ab) = aδi(b) + δi(a)b

It is an ordinary differential field if m = 1. We can axiomatise the theory of differ-
ential fields with m derivations in the language

Lring(δ) = {+,−, · , 0, 1, δ1, . . . , δm}

where each δi is a unary function symbol.

The theory of differential fields of characteristic zero with m commuting deriva-
tions has a model completion, DCF0,m. This theory has quantifier elimination, elim-
ination of imaginaries and is ω-stable [45].

The theory DCF0,1 can be axiomatised in a geometric fashion; see [54]. Our
axioms for the uniform companion will also be geometric, so it is useful to see the
simplest case of ordinary differential fields. But first, we need a preliminary notion.

Definition 1.5.2. Let (K, δ) be an ordinary differential field. Let V ⊆ An be an
affine K-variety. The δ-prolongation of V is the affine K-variety defined as

τδV =
{

(x, y) ∈ A2n : x ∈ V and f δ(x) +
n∑

i=1

∂f

∂xi
(x)yi = 0 for each f ∈ IK(V )

}
.
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Here f δ(x) is the polynomial obtained by applying δ to the coefficients of f . There is a
natural algebraic morphism τδV → V given by projecting onto the first n coordinates.

A differential field (K, δ) |= DCF0,1 if and only if:

1. K is algebraically closed; and

2. for every affine K-irreducible variety V , and every affine K-irreducible W ⊆
τδV such that W → V is dominant, W has a Zariski dense set of K-rational
points of the form (a, δ(a)) ∈ W (K).

Remark 1.5.3. In [37], León Sánchez gives a geometric characterisation of DCF0,m.
The commutativity of the derivations means the axiomatisation is more complex
than ours will be in Chapter 3.

Difference fields

Definition 1.5.4. (K, σ1, . . . , σm) is a difference field if K is a field and each σi is a
field endomorphism. The endomorphisms do not need to commute.

The theory of difference fields has a model companion, ACFA0,m; see [27]. It has
elimination of imaginaries and is simple.

(K, σ1, . . . , σm) |= ACFA0,m if and only if

1. K is algebraically closed; and

2. for every affine K-irreducible variety V , and every affine K-irreducible W ⊆
V × V σ1 × · · · × V σm such that each W → V σi is dominant, W has a Zariski
dense set of K-rational points of the form (a, σ1(a), . . . , σm(a)) ∈ W (K).

The two geometric axioms described above are very similar; this is part of the
reason Moosa and Scanlon developed their theory of prolongations in [51] and their
theory of fields with free operators in [53].

1.6 Fields with free operators

Fix a base field k. Let D be a finite-dimensional k-algebra, and let ε0, . . . , εl be a
k-basis of D. We require that there exists a k-algebra homomorphism π : D → k that
sends ε0 7→ 1 and εi 7→ 0 for i = 1, . . . , l. If R is a k-algebra, 1⊗ ε0, . . . , 1⊗ εl is an
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R-basis of R⊗kD. Write πR : R⊗kD → R for the k-algebra homomorphism idR⊗π.
Recall that rings and algebras are commutative and unital and that homomorphisms
preserve the unit.

Definition 1.6.1. Let R be a k-algebra and ∂i : R→ R a sequence of unary functions
on R for i = 1, . . . , l. We say that (R, ∂1, . . . , ∂l) is aD-ring if the map ∂ : R→ R⊗kD
given by

r 7→ r ⊗ ε0 + ∂1(r)⊗ ε1 + · · ·+ ∂l(r)⊗ εl

is a k-algebra homomorphism. Equivalently, we will say that (R, ∂) is a D-ring if
∂ : R→ R⊗k D is a k-algebra homomorphism such that πR ◦ ∂ = idR.

If R is a k-algebra and S is an R-algebra given by a : R → S, we say that
∂ : R → S ⊗k D is a D-operator along a : R → S if it is a k-algebra homomorphism
and πS ◦ ∂ = a. Then (R, ∂) is a D-ring if and only if ∂ is a D-operator along idR.

The ring structure of D determines the additive and multiplicative rules of the
functions ∂i. Indeed, let aijk, bi ∈ k be the elements defined by εiεj = ∑l

k=0 aijkεk

and 1D = ∑l
i=0 biεi. Then k-linearity of ∂ corresponds to k-linearity of each ∂i.

Multiplicativity of ∂ corresponds to the following “product rule” being satisfied for
each k: ∂k(rs) = ∑l

i,j=0 aijk∂i(r)∂j(s). That ∂ preserves the unit corresponds to the
equation ∂i(1R) = bi.

Note that being a D-ring imposes no additional relations between the functions
∂i. For example, commutativity of the operators is not imposed by being a D-ring
(though a particular D-ring may indeed have ∂i∂j = ∂j∂i).

We can axiomatise the theory of D-rings in the language

Lring(∂) = {+,−, · , 0, 1, (ca)a∈k, ∂1, . . . , ∂l},

where ca is a constant symbol for the element a ∈ k.

Example 1.6.2. 1. Take D to be the algebra of dual numbers, k[ε]/(ε2), with
the standard k-algebra structure, basis {1, ε}, and π : D → k the map that
quotients by ε. Then (R, ∂1) is a D-ring precisely when R is a k-algebra and
∂1 is a k-linear derivation of R.

2. Let D = k[ε1, . . . , εl]/(ε1, . . . , εl)2 with basis {1, ε1, . . . , εl} and π the map that
quotients by (ε1, . . . , εl). Then (R, ∂1, . . . , ∂l) is a D-ring if R is a k-algebra
and each ∂i is a k-linear derivation of R. As explained before, these derivations
will in general be noncommuting.
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3. Take D = kl+1 with the product k-algebra structure, the standard basis, and
π the projection to the first coordinate. Then (R, ∂1, . . . , ∂l) is a D-ring if and
only if R is a k-algebra and each ∂i is a k-linear endomorphism of R. These
endomorphisms will in general be noncommuting.

4. We can combine the above examples. Let D = k[ε]/(ε2) × k with basis
{(1, 0), (ε, 0), (0, 1)} and π the map which projects to the first coordinate and
then quotients by ε. Then a D-ring (R, ∂1, ∂2) is a k-algebra with a derivation
∂1 and an endomorphism ∂2.

5. Let D = k[ε]/(εl+1) with basis {1, ε, . . . , εl} and π the map that quotients by
ε. Then D-rings are k-algebras with non-iterative, truncated higher deriva-
tions (∂1, . . . , ∂l). That is, they satisfy the following higher-order Leibniz rule:
∂i(xy) = ∑

r+s=i ∂r(x)∂s(y).
The reader is referred to [53] for more examples.

Since D is a finite-dimensional k-algebra, it is artinian and can be written as a
finite product of local finite-dimensional k-algebras D = ∏t

i=0Bi. For each i let mi

be the unique maximal ideal of Bi. Then the residue field is a finite field extension of
k: Bi/mi = k[x]/(Pi) for some k-irreducible polynomial Pi. We define the k-algebra
homomorphism πi : D → k[x]/(Pi) by the composition D → Bi → k[x]/(Pi), and
we let πR

i = idR ⊗ πi be the k-algebra homomorphism R ⊗k D → R[x]/(Pi) for any
k-algebra R. Note that the k-algebra homomorphism π : D → k gives a maximal
ideal of D with residue field k. So π must correspond to one of the πi. By renaming
if necessary, say π corresponds to π0, and hence B0 has residue field k.

Definition 1.6.3. Suppose ∂ : R → S ⊗k D is a D-operator along a : R → S.
Composing ∂ and the map πS

i gives the following k-algebra homomorphism:

R S ⊗k D S[x]/(Pi).∂ πS
i

This is called the ith associated homomorphism, σi, of ∂.
Now, σ0 = πS

0 ◦ ∂ = πS ◦ ∂ = a and the associated homomorphism corresponding
to B0 is always a.

Suppose now that (R, ∂) is a D-ring. If α ∈ R is a root of Pi, we have a map
R[x]/(Pi)→ R. The composition of σi with this map gives an endomorphism of R,
σi,α : R→ R. This endomorphism is uniformly quantifier-free α-definable in Lring(∂).
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In [53], the authors impose the following condition on the k-algebra D.

Assumption A. For each i = 0, 1, . . . , t, the field Bi/mi, which is necessarily a finite
extension of k, is k itself.

As a consequence of this assumption, all the associated homomorphisms of a D-
ring (R, ∂) are now endomorphisms R→ R. In this thesis, we will often impose this
assumption, or the stronger assumption that D is a local ring. In the latter case,
there are no nontrivial associated endomorphisms.

For the construction of the uniform companion, we will need to understand how
to extend D-structures. We will follow the proof of Lemma 2.7 of [4], which is based
on the notions of being 0-smooth and 0-étale; see Section 25 of [44].

Definition 1.6.4. Let a : R → S be an R-algebra. We say that S is 0-smooth
over R if it has the following property: for any R-algebra C, any nilpotent ideal
N of C, and any R-algebra homomorphism u : S → C/N , there is some lifting of
u to an R-algebra homomorphism v : S → C. That is, given a diagram of ring
homomorphisms

S C/N

R C

u

a

there is some v such that
S C/N

R C

u

va

S is 0-unramified over R if there is at most one such v, and it is 0-étale if there
is exactly one such v.

Lemma 1.6.5. Suppose R is a k-algebra, S is an R-algebra given by a : R → S, T
is an S-algebra given by b : S → T and ∂ : R → T ⊗k D is a D-operator along ba
(that is, πT ◦ ∂ = ba). Let σi : R → T [x]/(Pi) be the associated homomorphisms of
∂, πT

i ◦ ∂. Let τi : S → T [x]/(Pi) be k-algebra homomorphisms extending σi. If S is
0-smooth over R, there is an extension of ∂ to a D-operator ∂′ : S → T ⊗k D along
b with associated homomorphisms τi. If S is 0-étale over R, there is a unique such
extension.
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Proof. We have a diagram
S T [x]/(Pi)

R T ⊗k Bi

τi

a

where the composition anticlockwise is σi. Note that the vertical map on the right
is surjective with nilpotent kernel T ⊗k mi. Since R → S is 0-smooth (0-étale),
there is a (unique) homomorphism S → T ⊗k Bi fitting into this diagram. Let ∂′

be the product of these. This gives a (unique) map S → T ⊗k D whose associated
homomorphisms are τi. The commutativity of the lower triangle implies that ∂′

extends ∂. ■

Remark 1.6.6. 1. Separable extensions are 0-smooth (Theorem 26.9). Separable
algebraic extensions are 0-étale (Theorem 25.3). If a field extension shares
a p-basis, then it is 0-étale (Theorem 26.7). Localisations are 0-étale. All
references are to [44].

2. When D is local, this lemma appears as Lemma 2.7 in [4].

3. In Chapter 3, we will only need this result in the case T = S and b = idS. The
extra generality will be necessary in Chapter 4.

1.7 The prolongation of an affine variety

In Section 1.5, we saw that the axiomatisations of DCF0,1 and ACFA0,t required
the geometric objects τδV and V × V σ1 × · · · × V σt . These objects are sometimes
called prolongations. In [51], the authors develop a generalisation of these objects to
the case of D-fields; they then apply them in their model-theoretic analysis in [53].
These prolongations will also play a key role in the uniform companion developed in
this thesis.

Let (K, ∂) be a D-field, and V an affine K-variety. Since ∂ : K → K ⊗k D is a
k-algebra homomorphism, it is also a K-algebra homomorphism considered as a map
∂ : K → D∂(K), where D∂(K) is the K-algebra whose underlying ring is K ⊗k D
and whose K-algebra structure map is ∂. Thus we may consider the base change
of V from K to D∂(K); denote this V ×K D∂(K). This object is a scheme over
D(K) = K ⊗k D given by projecting onto the second coordinate. Since D(K) is a
finite-dimensional K-algebra, we can take the Weil restriction of this scheme from
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D(K) to K.
τV := WD(K)/K

(
V ×K D∂(K)

)
.

The functor V 7→ τV can also be seen as the right adjoint to the functor which is
defined (algebraically) as:

AlgK → AlgK
R 7→ D∂(R).

Here D∂(R) is the ring R⊗k D with K-algebra structure given by K ∂−→ K ⊗k D →
R⊗k D. See the discussion after Remark 2.10 of [4].

We can construct τV more explicitly. For a polynomial g ∈ K[X], where X =
(X1, . . . , Xn), g∂ means the polynomial in D(K)[X] given by applying ∂ to the
coefficients of g. Now compute the polynomials g(0), . . . , g(l) ∈ K[X(0), . . . , X(l)]
which make the following true in D(K)[X(0), . . . , X(l)].

g∂
(

l∑
i=0

X(i)εi

)
=

l∑
i=0

g(i)(X(0), . . . , X(l))εi.

If V = Spec(K[y]/I), then τV = Spec(K[y(0), . . . , y(l)]/I ′) where I ′ is the ideal
generated by the g(0), . . . , g(l) as g ranges over I.

Suppose Assumption A holds. Then each associated endomorphism σi : K → K

for i = 0, . . . , t induces an algebraic morphism π̂i : τV → V σi ; see Section 4.1 of [51].
We summarise the crucial facts in the following.

Fact 1.7.1. Suppose (K, ∂) is a D-field, V is a scheme over K, and τV its prolon-
gation. Then

1. if V is affine, so is τV ;

2. if V is of finite type, so is τV ;

3. if L ≥ K is a field extension, there is an identification τV (L) ↔ V (D∂(L));
and

4. if (L, δ) ≥ (K, ∂) is a D-field extension, there is a (nonalgebraic) map

∇ : V (L)→ τV (L);
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with respect to the above coordinates, it is given as

∇(a) = (a, δ1(a), . . . , δl(a)).

Proof. 1 and 2 are clear by the construction above. 3 is by Lemma 4.5 of [51]. See
the discussion after Proposition 4.6 of [51] for 4. ■

1.8 The theory D-CF0

Suppose Assumption A holds. By axiomatising the existentially closed models,
Moosa and Scanlon prove that the theory of D-fields of characteristic zero has a
model companion, D-CF0.

Theorem 4.6 of [53]. (K, ∂) |= D-CF0 if and only if

• K |= ACF0;

• the associated endomorphisms σ1, . . . , σt : K → K are all automorphisms; and

• for any K-irreducible varieties V and W with W ⊆ τV such that each projec-
tion π̂i : W → V σi is dominant, there is some a ∈ V (K) such that ∇a ∈ W (K).

They then prove that D-CF0 eliminates imaginaries and that every completion
of D-CF0 is simple, where A and B are nonforking independent over C exactly when
acl(AC) is linearly disjoint from acl(BC) over acl(C).

Remark 1.8.1. The appendix to [53] gives an axiomatisation of the existentially closed
D-fields in the absence of Assumption A.

Theorem 4.6 of [53] can be seen as a proof that ACFA0,t∪ “D-fields” has a model
companion under Assumption A. In Chapter 3, we will see that a similar result holds
when replacing ACFA0,t by any model complete theory of difference large fields.
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Chapter 2

The Weil descent functor in the
category of algebras with free
operators

In this chapter we explore the existence of the Weil descent functor in the appropriate
categories ofD-rings. In Sections 2.1 and 2.2, we establish the objects and morphisms
in the category of D-algebras, as well as define the appropriate notion of D-base
change. Following on from the example in the Introduction that shows the difference
base change functor cannot always have a left adjoint, in Section 2.3 we associate to
every finite and free extension of D-rings a matrix whose invertibility corresponds to
the invertibility of a certain natural transformation. Section 2.4 contains the main
theorem of this chapter: we construct the D-Weil restriction using the classical Weil
restriction together with the functorial nature of D-ring structures. In Section 2.5,
we show that several properties of a D-ring such as commutativity of its individual
operators and triviality of its associated endomorphisms are preserved under the D-
Weil descent as well as a partial converse to the main theorem. Section 2.6 details
an explicit construction of the D-Weil descent and explicates any algebraic notions
necessary for it. The content of this chapter appears in the author’s published paper
[50].
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The D-Weil descent

2.1 Some more D-algebra

Let k be a field of arbitrary characteristic, and letD be a finite-dimensional k-algebra.
Recall Assumption A: Since D is a finite-dimensional k-algebra, we may decompose
it as a finite product of local finite-dimensional k-algebras, say D = B1 × · · · × Bt.
We assume that the residue field of each Bi is actually k.

For any k-algebra R, we define D(R) = R ⊗k D to be the base change of D to
R. Note that D(R) remains free and finite as an R-module. We will often identify a
k-basis of D with the corresponding R-basis of D(R). By a slight abuse of notation,
we think of D also as a functor Algk → Algk, where for a k-algebra homomorphism
φ : R→ S, D(φ) = φ⊗ idD.

For this chapter only, a D-ring is a k-algebra R equipped with a k-algebra ho-
momorphism e : R → D(R). That is, we do not require that e is a section to the
k-algebra homomorphism πR : D(R) → R. Relaxing this definition changes the be-
haviour of some of our examples. In Section 2.5, we will see that our results also
work with the original definition of a D-ring.

Example 2.1.1. 1. Take D to be the algebra of dual numbers, k[ε]/(ε2), with
the standard k-algebra structure. If (R, e) is a D-ring, let σ and δ be such
that e(r) = σ(r) + δ(r)ε. Then σ is a k-linear endomorphism of R, and δ is
a k-linear derivation on R which is twisted by σ. Indeed, the k-linearity of e
implies k-linearity of σ and δ, and multiplicativity implies that

σ(rs) + δ(rs)ε = σ(r)σ(s) + (σ(r)δ(s) + δ(r)σ(s))ε

Note that if a D-ring has σ = idR (that is, it satisfies our original definition of
a D-ring), then it is a differential k-algebra.

2. Take D = kl with the product k-algebra structure. If (R, e) is a D-ring, let
e(r) = ∑

i σi(r)εi where εi is the standard basis ofD. ThenD-rings are precisely
rings with l (not necessarily commuting) k-linear endomorphisms σ1, . . . , σl.

3. We can combine the above two examples. Let D = k[ε]/(ε2)×k. Then D-rings
can be viewed as rings with two endomorphisms σ1 and σ2, and a derivation
δ twisted by the first endomorphism σ1. A D-ring with σ1 = id is then a ring
with an endomorphism and a derivation which do not necessarily commute.

4. Let D = k[ε]/(εl). Coordinatising the D-structure of a D-ring (R, e) as
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e(r) = σ(r) + δ1(r)ε + . . . + δl−1(r)εl−1, we see that D-rings are rings with
non-iterative, truncated Hasse-Schmidt derivations (δ1, . . . , δl−1) twisted by the
endomorphism σ:

δk(xy) = δk(x)σ(y) + σ(x)δk(y) +
∑
i,j>0
i+j=k

δi(x)δj(y).

We now specify the morphisms of the categories we are working in. These were
defined in Section 3.1 of [52].

Definition 2.1.2. If (R, e) and (S, f) are two D-rings, then φ : (R, e) → (S, f) is
a D-homomorphism if it is a k-algebra homomorphism and the following diagram
commutes:

D(R) D(S)

R S

D(φ)

φ

e s

If S is an R-algebra, then we will call (S, f) an (R, e)-algebra if the structure
map R → S is a D-homomorphism. If (S, f) and (T, g) are both (R, e)-algebras
and φ : S → T is a map between them, then we say that φ is a (R, e)-algebra
homomorphism if it is an R-algebra homomorphism and a D-homomorphism.

Remark 2.1.3. Note that in the context of Example 2.1.1(1) above, under our original
definition of a D-ring where σ is the identity map, a map being a D-homomorphism
is equivalent to it being a differential ring homomorphism. In the context of Ex-
ample 2.1.1(2), being a D-homomorphism is equivalent to being a difference ring
homomorphism for each endomorphism.

From now on the category of (R, e)-algebras with (R, e)-algebra homomorphisms
is denoted by Alg(R,e).

2.2 The tensor product of D-structures

We now need the correct notion of base change in the context of D-algebras. That
is, given a D-ring (R, e) and an (R, e)-algebra (T, g), for any (R, e)-algebra (S, f) we
need a D-ring structure on S ⊗R T that makes S ⊗R T into a (T, g)-algebra. In [4],
it is proved that there exists a unique D-structure, f ⊗ g (called (f̃ , g̃) in [4]), on
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S ⊗R T which makes the natural maps φS : S → S ⊗R T and φT : T → S ⊗R T into
D-homomorphisms. We recall the definition of this structure:

D(S ⊗R T )

D(S) D(T )

S ⊗R T

D(R)

S T

R

D(φS) D(φT )

f⊗g

D(ιS) D(ιT )

φS

f

φT

g

ιS

e

ιT

Explicitly,
(f ⊗ g)(s⊗ t) = (D(φS) ◦ f(s)) · (D(φT ) ◦ g(t))

where · is the product in D(S ⊗R T ). The existence and uniqueness of this map
f ⊗ g follow from the fact that S ⊗R T is the pushout in the category of k-algebras.
Remark 2.2.1. A short computation shows that this agrees with the correct notions
of derivations on tensor products: (δ ⊗ d)(s ⊗ t) = δ(s) ⊗ t + s ⊗ d(t) (see page 21
of [7]), and endomorphisms on tensor products: (σ ⊗ τ)(s⊗ t) = σ(s)⊗ τ(t).

Definition 2.2.2. Let (R, e) be a D-ring and let (T, g) be an (R, e)-algebra. The
D-base change functor from (R, e) to (T, g) is defined as follows.

FD : Alg(R,e) → Alg(T,g)
(S, f) 7→ (S ⊗R T, f ⊗ g)

(S θ−→ U) 7→ (S ⊗R T
θ⊗idT−−−→ U ⊗R T )

Proposition 2.2.3. The map FD is a functor.

Proof. If θ : (S, f) → (U, h) is an (R, e)-algebra homomorphism, then θ ⊗ idT is a
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T -algebra homomorphism. It remains to show it is also a D-homomorphism, that is,
that the following square commutes.

D(S ⊗R T ) D(U ⊗R T )

S ⊗R T U ⊗R T

D(θ⊗idT )

θ⊗idT

f⊗g h⊗g

Now consider the following diagram of k-algebra homomorphisms.

D(U) D(U ⊗R T )

D(S) D(S ⊗R T ) D(T )

U U ⊗R T

S S ⊗R T T

θ

θ⊗idT

We should also include the R-algebra structure maps and squares expressing that
they are D-homomorphisms, but they have been omitted to declutter.

Every square except the dashed one commutes since θ is an (R, e)-algebra homo-
morphism or by the result above. Now consider a path S → D(U ⊗R T ) and a path
T → D(U ⊗R T ) both avoiding the dashed square. These two paths agree on R,
and hence there is a unique map S ⊗R T → D(U ⊗R T ) through which they factor.
But these paths also factor through both directions along the dashed square. By
uniqueness, both directions must be equal, and θ ⊗ idT is a D-homomorphism. ■

We finish this section with the following lemma which will be used in Section 2.5.
It describes the associated endomorphisms of the D-structure on a tensor prod-
uct. Recall that since Assumption A is in force, we have k-algebra homomor-
phisms πi : D → Bi → k for each i = 1, . . . , t given by quotienting D by each of
its finitely many maximal ideals. We can lift these to k-algebra homomorphisms
πR
i := idR ⊗k πi : D(R) → R for any k-algebra R. Then if (R, e) is a D-ring, each

composition πR
i ◦ e is a k-linear endomorphism of R. These are the associated endo-

morphisms σ1, . . . , σt of the D-ring (R, e).
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Lemma 2.2.4. Let (R, e) be a D-ring and (S, f), (T, g) ∈ Alg(R,e). If the ith asso-
ciated endomorphism of (S, f) is σi and that of (T, g) is τi, then the ith associated
endomorphism of (S ⊗R T, f ⊗ g) is σi ⊗ τi.

Proof. Using the notation above, we have

πS⊗RT
i ◦ (f ⊗ g)(s⊗ t) = πS⊗RT

i (D(φS) ◦ f(s)) · πS⊗RT
i (D(φT ) ◦ g(t))

= (πS
i ◦ f(s)⊗ 1) · (1⊗ πT

i ◦ g(t))
= σi(s)⊗ τi(t)

■

2.3 The matrix associated to a free and finite D-
ring

In this section we establish some technical results that will be needed to construct
a left adjoint to FD in Section 2.4. We carry forward the notation from the pre-
vious section. In particular, k is a field, D is a finite-dimensional k-algebra, and
Assumption A still holds.

Recall from the example in the introduction that, in general, the difference base
change functor had no left adjoint. There, the nonexistence of the left adjoint is due
to the fact that the matrix associated to the endomorphism,

 λ1(f(1)) λ1(f(ε))
λ2(f(1)) λ2(f(ε))

 =
 1 0

0 0

,
is not invertible.

We will show in Section 2.4 that if the associated matrix is invertible, then we
can construct a left adjoint to FD. The next subsection investigates conditions under
which the associated matrix is invertible.

The matrix associated to an endomorphism

As before, let A be a ring and B an A-algebra which is finite and free as an A-module.
We fix a ring endomorphism σ : B → B with σ(A) ⊆ A.
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Definition 2.3.1. For an A-basis b = (b1, . . . , br) of B, let Mσ
b be the following

matrix associated to σ:

Mσ
b =


λ1(σ(b1)) λ1(σ(b2)) · · · λ1(σ(br))
λ2(σ(b1)) λ2(σ(b2)) · · · λ2(σ(br))

... ... . . . ...
λr(σ(b1)) λr(σ(b2)) · · · λr(σ(br))


where λi is the ith coordinate projection B → A with respect to the basis b. Note
that the maps λi are dependent on the basis b1, . . . , br and hence will change if the
basis changes.

We will say that σ has invertible matrix with respect to the basis b = (b1, . . . , br)
if Mσ

b is invertible in Matr×r(A).

Proposition 2.3.2. The following are equivalent:

(i) σ has invertible matrix with respect to some A-basis of B;

(ii) σ has invertible matrix with respect to every A-basis of B

(iii) if b1, . . . , br is an A-basis of B, then σ(b1), . . . , σ(br) is also an A-basis of B;
and

(iv) spanA(σ(B)) = B.

Proof. (ii) ⇒ (i) and (iii) ⇒ (iv) are clear.
For (ii) ⇔ (iii), note that Mσ

b is just the change of basis matrix between the two
tuples b1, . . . , br and σ(b1), . . . , σ(br).

For (i) ⇒ (ii), say σ has invertible matrix with respect to b1, . . . , br, and let
β1, . . . , βr be some other basis. Let X be the change of basis matrix from the b to
the β, that is, βi = ∑

j xjibj, let Y = X−1, and let µi be the A-module homomorphism
with µi(

∑
j ajβj) = ai. Then

σ(βi) =
∑
j

σ(xji)σ(bj)

=
∑
j

∑
k

σ(xji)λk(σ(bj))bk

=
∑
j

∑
k

∑
n

σ(xji)λk(σ(bj))ynkβn
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and so µn(σ(βi)) = ∑
j

∑
k σ(xji)λk(σ(bj))ynk, that is, Mσ

β = YMσ
b σ(X). Now since

X is invertible, σ(X) is invertible in Matr×r(A). So Mσ
β is invertible.

For (iv) ⇒ (iii), assume b1, . . . , br is an A-basis of B. Any b ∈ B has b =∑
i aiσ(βi) for some βi ∈ B. Also, βi = ∑

j αijbj since the bi are a basis, and so
b = ∑

i

∑
j aiσ(αij)σ(bj). Then σ(b1), . . . , σ(br) spans B over A. Now write X for the

matrix where σ(bi) = ∑
j xjibj, and Y for the matrix where bi = ∑

j yjiσ(bj). Then,
since b1, . . . , br is a basis, we have that XY = I, and so by taking determinants, we
see that X and Y are invertible in Matr×r(A). Then σ(b1), . . . , σ(br) is an A-basis
of B. ■

Definition 2.3.3. As a result of this proposition, having invertible matrix is inde-
pendent of the choice of A-basis of B. We will say that σ has invertible matrix if
any of the above conditions hold.

The following results explain the connection between the endomorphism σ having
invertible matrix and being an automorphism.

Lemma 2.3.4. If σ|A : A→ A is an automorphism, then σ is an automorphism on
B if and only if σ has invertible matrix.

Proof. DefineBσ to be theA-algebra with underlying ringB, butA-algebra structure
map a 7→ σ(a). Since σ|A is an automorphism, Bσ is a finite and free A-algebra of
the same rank as B; in fact, if b1, . . . , br is a basis of B, then it is also a basis of Bσ.
Now the map f : B → Bσ given by f(b) = σ(b) is actually A-linear, with

f(bi) =
∑
j

λj(σ(bi))bj

=
∑
j

σ(σ|−1
A λj(σ(bi)))bj

and so the matrix of the A-linear map f is σ|−1
A (Mσ

b ). Then f is an isomorphism if
and only if σ|−1

A (Mσ
b ) is invertible, if and only if σ has invertible matrix. ■

Lemma 2.3.5. If σ is an automorphism on B, then σ|A is an automorphism on A.

Proof. It is enough to show that σ|A is surjective onto A. Note that since σ is
surjective onto B, the A-linear span of {σ(b1), . . . , σ(br)} is B, and by a similar
argument to the proof of (iv) ⇒ (iii) in Proposition 2.3.2, it must be an A-basis.
Now, let a ∈ A. Then there is a b ∈ B such that aσ(b1) = σ(b). Writing b = ∑r

i=1 aibi
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for some ai ∈ A, we get aσ(b1) = ∑r
i=1 σ(ai)σ(bi). Since {σ(b1), . . . , σ(br)} is an A-

basis, we get that a = σ(a1), and hence σ|A is surjective onto A. ■

As a result, we see that if σ is an automorphism of B, then it has invertible matrix.
It turns out the converse is not true, as we point out in the following example.

Example 2.3.6. Let A = R(x1, x2, . . . ), B = C(x1, x2, . . . ), with basis b1 = 1, b2 = i,
σ|C = idC, and σ(xi) = xi+1. Note that A and B are fields and that σ and σ|A are
not surjective. However, the associated matrix is

Mσ
b =

 λ1(σ(b1)) λ1(σ(b2))

λ2(σ(b1)) λ2(σ(b2))

 =

 1 0

0 1


which is invertible.

On the other hand, one can have an injective endomorphism σ that does not have
invertible matrix.

Example 2.3.7. Let K be a field, A = K[x] and B = A[ε]/(ε2) with σ(p(x) +
q(x)ε) = p(x) + xq(x)ε. Then with respect to the basis b = {1, ε}, we have

Mσ
b =

 λ1(σ(b1)) λ1(σ(b2))

λ2(σ(b1)) λ2(σ(b2))

 =

 1 0

0 x


which is not invertible in Mat2×2(K[x]).

The matrix associated to a D-ring

We now extend the ideas of the previous subsection to the more general case of D-
rings. Just as we can associate a matrix to an endormophism of B, we can associate
a matrix to a D-ring structure on B which, when invertible, will allow us to construct
a left adjoint to FD in Section 2.4. Here, we analyse this matrix and the conditions
on its invertibility.

Let (A, e) be a D-ring and let (B, f) be an (A, e)-algebra, where B is a finite
and free A-algebra. For any k-basis ε1, . . . , εl of D and any A-basis b1, . . . , br of B,
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consider the following rl × rl matrix with entries in A:

M =



M11 M12 · · · M1,l

M21 M22 · · · M2,l
... ... . . . ...

Ml,1 Ml,2 · · · Ml,l


,

where Mmj is the r × r matrix given by

(Mmj)ni =
l∑

k=1
ajkmλn(fk(bi)).

Recall that λn : B → A is the coordinate bn-projection. The elements ajkm ∈ k are
defined by εjεk = ∑l

m=1 ajkmεm, and fk : B → B is the coordinate of f with respect
to εk given by f(r) = ∑l

k=1 fk(r)εk. We call M the matrix associated to (B, f).
We will now briefly explain where this matrix comes from and why we need to

consider its invertibility. Define the functor De : AlgA → AlgA by setting De(R) to
be the ring D(R) but with A-algebra structure given by the composition of e : A→
D(A) with the natural map D(A) → D(R); we defined this A-algebra structure in
Section 1.7. On morphisms, De(α) = D(α). We define Df : AlgB → AlgB similarly.
Suppose u : R → D(R) is a D-ring structure on the A-algebra R. Then (R, u) is an
(A, e)-algebra if and only if u is an A-algebra homomorphism R→ De(R).

We now define a natural transformation µ : FDe → DfF in the following way: for
any A-algebra R, we have a natural A-algebra homomorphism De(R)→ Df (R⊗AB)
and an A-algebra homomorphism B → Df (R ⊗A B) coming from the composition
of f with the natural map. Since De(R) ⊗A B is the coproduct of A-algebras, we
get an A-algebra homomorphism µR : De(R) ⊗A B → Df (R ⊗A B), which is also a
B-algebra homomorphism. It is clear from its construction that µ is natural in R.

Lemma 2.3.8. The component of µ at R, µR : De(R) ⊗A B → Df (R ⊗A B), is an
R-linear map of free R-modules with the natural R-module structure. With respect
to the R-bases {εn⊗ bm} of De(R)⊗AB and {1⊗ bnεm} of Df (R⊗AB), the matrix
representation of µR is M , the matrix associated to (B, f). In particular, µ is a
natural isomorphism if and only if M is invertible.

Proof. That µR is R-linear is clear from construction. The explicit formula for µR is
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given by

r∑
i=1

 l∑
j=1

rijεj

⊗ bi 7→ r∑
i=1

 l∑
j=1

rij ⊗ 1 εj

 · ( l∑
k=1

1⊗ fk(bi)εk
)

=
r∑

i=1

l∑
j=1

l∑
k=1

l∑
m=1

ajkmrij ⊗ fk(bi) εm

=
r∑

i=1

l∑
j=1

l∑
k=1

l∑
m=1

r∑
n=1

ajkmλn(fk(bi))rij ⊗ bn εm

which immediately shows that M is the matrix of µR with respect to the aforemen-
tioned bases. ■

From the lemma, we see that if M is invertible, we have a natural transformation
WDf → WDfFW → WFDeW → DeW coming from the composition of µ−1

with the unit and counit of the classical Weil restriction adjunction W ⊣ F . If
g : C → Df (C) is a B-algebra homomorphism, then composing the above natural
transformation with the morphism W (g) : W (C) → WDf (C) gives an A-algebra
homomorphism gW : W (C)→ DeW (C). In the next section, we will see that this D-
structure on W (C) yields the left adjoint of FD. For now, we study the invertibility
of M .

Note that M depends on the choice of the k-basis of D and the A-basis of B.
The following result shows us that invertibility of M is actually independent of the
k-basis of D. After the proof of Theorem 2.3.10, we will see that invertibility of M
is also independent of the A-basis of B.

Proposition 2.3.9. Suppose we have two bases ε = {ε1, . . . , εl} and ω = {ω1, . . . , ωl}
of D, with X the change of basis matrix from the ε to the ω; that is, ωi = ∑l

j=1 xjiεj.
Let X̃ be the rl×rl matrix obtained from X by replacing each entry x by the r×r block
xI, where I is the r × r identity matrix. Write M ε for the matrix M corresponding
to the basis ε and similarly for Mω. Then

Mω = X̃−1M εX̃.

Proof. Let aijk be the product coefficients of the ε and αijk for the ω. Also, write f ε
i

for the ith operator with respect to the basis ε and similarly for fω
i . We can obtain a

relation between these by noting that the homomorphism f : B → D(B) they induce
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must be the same; that is

l∑
i=1

f ε
i (b) εi =

l∑
i=1

fω
i (b) ωi for all b ∈ B.

To ease notation, let Ỹ = X̃−1. Let N = Ỹ M εX̃. Then the mj block of N is

Nmj =
∑
p

∑
q

ỸmpM
ε
pqX̃qj

=
∑
p

∑
q

ympM
ε
pqxqj.

Then the ni element of Nmj is

(Nmj)ni =
∑
p

∑
q

ympxqj(M ε
pq)ni

=
∑
p

∑
q

∑
k

ympxqjaqkpλn(f ε
k(bi))

=
∑
p

∑
q

∑
k

ympxqjaqkpλn

(∑
r

xkrf
ω
r (bi)

)

=
∑
p

∑
q

∑
k

∑
r

xkrympxqjaqkpλn(fω
r (bi))

=
∑
r

(∑
p

∑
q

∑
k

xkrympxqjaqkp

)
λn(fω

r (bi)).

We now claim that αjrm = ∑
p,q,k xkrympxqjaqkp. Indeed, we have

ωjωr =
(∑

q

xqjεq

)(∑
k

xkrεk

)

=
∑
q,k,p

xqjxkraqkpεp

=
∑

q,k,p,u

xqjxkraqkpyupωu.

Then the claim follows.
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Now

(Nmj)ni =
∑
r

αjrmλn(fω
r (bi))

=
∑
k

αjkmλn(fω
k (bi))

= (Mω
mj)ni,

and hence Mω = Ỹ M εX̃. ■

This proposition tells us that invertibility of M is independent of which k-basis of
D we choose. We now construct a particular basis of D that allows us to characterise
invertibility of M in Theorem 2.3.10 below. This basis is constructed as follows.
Write D = B1 × · · · × Bt where each Bi is a local finite-dimensional k-algebra
with residue field k (see Assumption A). Let mi be the unique maximal ideal of
Bi. Nakayama’s Lemma tells us that mi is nilpotent: say di is minimal such that
mdi+1

i = 0. It then follows that for each Bi we can find a k-basis Bi = ⋃di
j=0 B

j
i where

Bj
i /m

j+1
i is a k-basis of mj

i/m
j+1
i . Note that since the residue field of Bi is k, we may

choose B0
i = {1}. Embed these bases inside D in the usual way, that is, if x ∈ Bi,

send x to the element of D with x in the ith position and zeros elsewhere. Then the
union of these forms a basis B of D. Order B = ⋃t

i=1
⋃di

j=0 B
j
i lexicographically on i

and j. The ordering of each Bj
i does not matter. We will write the elements of B as

ε1, . . . , εl according to this order. Let ajkm be the product coefficients of B; that is,
εjεk = ∑l

m=1 ajkmεm.
By the construction of the basis, we know that εjεk = 0 whenever εj and εk come

from different Bi. If they come from the same Bi, then εjεk can be expressed as a
linear combination of Bi, and so if εm does not come from Bi, it will not appear in
this linear combination. So we see that ajkm = 0 unless εj, εk, and εm all come from
the same Bi.

Furthermore, if εj ∈ Bn
i and εk ∈ Bp

i , then εjεk ∈ span(⋃di
q=n+p B

q
i ). Hence, if

εm ∈ Bq
i for q < n+ p, ajkm = 0. From these facts we can deduce the values of ajkm

in specific cases:

1. m < j and p > 0: ajkm = 0.

Since m < j, q ≤ n, and hence q < n+ p. By the above, ajkm = 0.

2. m < j and p = 0: ajkm = 0.
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Since p = 0, εk is the 1 in Bi. Then εjεk = εj ̸= εm.

3. m = j and p > 0: ajkm = 0.

Again, as m = j, q = n and so q < n+ p.

4. m = j and p = 0: ajkm = 1.

εjεk = εj = εm. So ajkm = 1.

Now, recall the definition of the matrix M :

M =



M11 M12 · · · M1,l

M21 M22 · · · M2,l
... . . .

Ml,1 Ml,2 · · · Ml,l


,

where
(Mmj)ni =

l∑
k=1

ajkmλn(fk(bi)).

With respect to the chosen basis, B = {ε1, . . . , εl}, we now investigate the shape
of each block Mmj for m ≤ j. Consider first the case when m < j. As pointed out
above, if εj and εm belong to different Bi, then ajkm = 0 for all k. Otherwise, we are
in cases (1) or (2) above, and hence ajkm = 0 for all k. Hence, the block Mmj is 0.

Now consider the case m = j, that is, the block Mjj. Again, if εj and εm belong
to different Bi, then ajkj = 0 for all k. If they belong to the same Bi, then case (3)
tells us that ajkj = 0 when p > 0, and (4) tells us that ajkj = 1 when p = 0. In
conclusion, (Mjj)ni = λn(fk(bi)) where k is such that εk ∈ B0

r and εj ∈ Br.
From Definition 1.6.3 we see that the ith projection map πi is just the map

that projects onto the coefficient of εk where εk ∈ B0
i . Hence, the ith associated

endomorphism of (B, f), denoted σi, is just fk. Note that σi has this form because
of the chosen basis of D.

So in all, M is a block lower triangular matrix whose diagonal r × r blocks Mjj
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are of the form

Mσi
b =


λ1(σi(b1)) λ1(σi(b2)) · · · λ1(σi(br))
λ2(σi(b1)) λ2(σi(b2)) · · · λ2(σi(br))

... ... . . . ...
λr(σi(b1)) λr(σi(b2)) · · · λr(σi(br))


where i is determined by εj ∈ Bi.

Note that Mσi
b is the matrix associated to the endomorphism σi as in the previous

subsection. Hence, we have proved the following important result:

Theorem 2.3.10. M is invertible if and only if each associated endomorphism of
(B, f) has invertible matrix (in the sense of the previous subsection).

Remark 2.3.11. Combining this theorem with Propositions 2.3.2 and 2.3.9, we see
that invertibility of M is independent of the choice of bases of D and B.

2.4 Weil descent for D-algebras

In this section we prove the main theorem: Theorem 2.4.5 below. As before, we let
(A, e) be a D-ring, (B, f) an (A, e)-algebra where B is a finite and free A-algebra.

The proofs in this section make use of the natural transformation µ : FDe → DfF

defined in the previous section whose invertibility is equivalent to the invertibility of
the matrix M – the matrix associated to (B, f) – by Lemma 2.3.8. Furthermore,
recall that in Theorem 2.3.10 we proved that M is invertible if and only if the
associated endomorphisms of (B, f) have invertible matrix. For the remainder of
this section, in addition to Assumption A, we make the following assumption:

Assumption 2.4.1. The associated endomorphisms of (B, f) all have invertible
matrix. Equivalently, µ is a natural isomorphism.

The following is part of the content of our main theorem.

Theorem 2.4.2. The D-base change functor, FD, has a left adjoint WD. More
precisely, for a (B, f)-algebra (C, g), there exists a unique D-structure gW on W (C)
that makes the unit of the classical adjunction, ηC, into a D-homomorphism. WD

has the form WD(C, g) = (W (C), gW ).
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Before proving this result, we fix some notation. Since W ⊣ F , we have the nat-
ural transformations given by the unit, η : idAlgB → FW , and the counit, ε : WF →
idAlgA . We do not need to refer to the k-basis of D in this section, so we will
use ε to denote the counit. We will often identify a functor with the identity nat-
ural transformation on that functor. Recall the functors De : AlgA → AlgA and
Df : AlgB → AlgB defined in the previous section where De(R) is the ring D(R)
but with A-algebra structure given by the composition of e : A → D(A) with the
natural map D(A) → D(R), and on morphisms, De(α) = D(α). Recall also that a
D-ring structure on R making it into an (A, e)-algebra is equivalent to an A-algebra
homomorphism R→ De(R).

Remark 2.4.3. Suppose (R, u) is an (A, e)-algebra so that u : R → De(R) is an A-
algebra homomorphism. Then µR ◦ F (u) : F (R) → DfF (R) is the D-ring structure
on F (R) corresponding to u⊗ f from the D-base change functor in Section 2.2.

We now use the natural isomorphism µ to define a suitable D-ring structure on
W (C). For ease of notation we first define the natural transformation

ζ : WDf → DeW

by the composition

WDf WDfFW WFDeW DeW
WDfη Wµ−1W εDeW (
)

Now suppose (C, g) is a (B, f)-algebra, so that g corresponds to the B-algebra
homomorphism g : C → Df (C). Let gW := ζC ◦W (g) : W (C) → DeW (C). Then
(W (C), gW ) is an (A, e)-algebra. We define the functor WD as

WD(C, g) := (W (C), gW );
WD(α) := W (α).

Since both W and ζ are natural, it is clear that if α is a D-homomorphism, then
W (α) is a D-homomorphism, so that WD is actually a functor. We now need to
show that WD is left adjoint to FD by showing that the natural bijection coming
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from the classical adjunction

HomAlgA(W (C), R)→ HomAlgB(C,F (R))
φ 7→ F (φ) ◦ ηC

εR ◦W (ψ)←[ ψ

restricts to a natural bijection

HomAlg(A,e)(W
D(C, g), (R, u))→ HomAlg(B,f)((C, g), FD(R, u))

φ 7→ FD(φ) ◦ ηC
εR ◦WD(ψ)← [ ψ

We will do this by showing that both ηC and εR are D-homomorphisms with the
appropriate D-structures defined above. Consider the following diagram of natural
transformations.

FWDf FWDfFW FWFDeW FDeW DfFW

Df DfFW FDeW

FWDfη FWµ−1W FεDeW µW

ηDf

Dfη

ηDfFW

µ−1W

ηFDeW

The squares commute due to naturality of η, and the equality is due to the
adjunction axiom: Fε ◦ ηF = F . The composition along the top row is µW ◦ Fζ.
By naturality of η, we get

FW (C) FWDf (C)

C Df (C)

FW (g)

ηC

g

ηDf (C)

and putting these together we get

Df (C) DfFW (C)

C FW (C)

Df (ηC)

ηC

g µW (C)◦F (gW )

65



The D-Weil descent

so that ηC is a D-homomorphism by Remark 2.4.3.

Suppose now that g′ is a D-ring structure W (C) → DeW (C) making ηC into a
D-homomorphism, so that the following diagram of B-algebras commutes.

Df (C) DfFW (C)

C FW (C)

Df (ηC)

ηC

g µW (C)◦F (g′)

Since µ is an isomorphism, this is equivalent to the following diagram of B-
algebras commuting:

Df (C) FDeW (C)

C FW (C)

µ−1
W (C)◦D

f (ηC)

ηC

g F (g′) (⋄)

Consider now the diagram of A-algebras

WDf (C) WFDeW (C) DeW (C)

W (C) WFW (C) W (C)

W (µ−1
W (C)◦D

f (ηC)) εDeW (C)

W (ηC)

W (g) WF (g′)
εW (C)

g′

Note that the left square commutes by applying W to square (⋄), and the right
square commutes by naturality of ε. By the adjunction axiom εW ◦Wη = W , the
composition along the bottom is idW (C), and the composition along the top is ζC by
definition. So gW = g′, and we have proved the following.

Lemma 2.4.4. gW is the unique D-structure on W (C) making (W (C), gW ) into an
(A, e)-algebra and the unit, ηC, into a D-homomorphism.

The adjunction axioms tell us that Fε ◦ ηF = F , so that DfFε ◦ DfηF = DfF .
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Since µ is natural, the following diagram commutes :

FDeWF FDe

DfFWF DfF

DfF

FDeε

µWF µ

DfFε

DfηF

Now apply W and use naturality of the counit to get

DeWF De

WFDeWF WFDe

WDfFWF WDfF

WDfF

Deε

εDeWF

WFDeε

WµWF Wµ

εDe

WDfFε

WDfηF

Note that the composition up the left is precisely ζF . So εDe = Deε ◦ ζF ◦Wµ.
Naturality of ε gives

WF (R) WFDe(R) DeWF (R)

R De(R)

WF (u)

εR εDe(R)

ζF (R)◦W (µR)

De(εR)
u

and since the composition along the top row is (µR ◦ F (u))W , the counit εR is a
D-homomorphism.

We have thus proved the following.

Theorem 2.4.5 (The D-Weil Descent). Suppose (A, e) is a D-ring and (B, f)
is an (A, e)-algebra, where B is a finite and free A-algebra. Suppose also that the
associated endomorphisms of (B, f) all have invertible matrix. Then the D-base
change functor, FD : Alg(A,e) → Alg(B,f) has a left adjoint denoted WD called the
D-Weil descent. More precisely, WD(C, g) = (W (C), gW ) where gW is the D-ring
structure defined by ζC ◦W (g) and ζ : WDf → DeW is the natural transformation
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defined in equation (
).
In fact, the natural bijection τ(C,R) from the classical adjunction restricts to a

natural bijection:

τD((C, g), (R, u)) : HomAlg(A,e)(W
D(C, g), (R, u))→ HomAlg(B,f)((C, g), FD(R, u))

Remark 2.4.6. If we apply this theorem to the case when D = k, we get what we call
the difference Weil descent and denote it W σ. In this case, D-rings are rings with a
single (not necessarily injective) endomorphism.

2.5 Further remarks

In this section we investigate three further aspects. Firstly, we make some observa-
tions about properties of the associated endomorphisms that are transferred by the
D-Weil descent. In particular, we prove that if the ith associated endomorphism of
(C, g) is trivial, then the same is true of the D-Weil descent, (W (C), gW ). Secondly,
we prove results about the composition of a D1-structure and a D2-structure and
their Weil descents. In particular, we will show that commutativity of these struc-
tures is preserved after taking the Weil descent. These two subsections imply that
the result of this paper is an actual generalisation of the case of several commuting
derivations from [39]. Thirdly, we explore the necessity of the condition that the
associated endomorphisms of (B, f) have invertible matrix for the existence of the
D-Weil descent.

Throughout this section, unless stated otherwise, (A, e) is a D-ring, (B, f) is
an (A, e)-algebra, where B is finite and free over A, and (C, g) is a (B, f)-algebra.
Assumption A is still in force.

Transferred properties of the associated endomorphisms

Recall from Definition 1.6.3 the projection maps for D. If D = ∏t
i=1Bi where each Bi

is a local k-algebra with residue field k, then πi : D → Bi → k is the composition of
the projection onto the ith component of D with the residue map onto k. These πi lift
to R-algebra homomorphisms πR

i : D(R)→ R. Then the associated endomorphisms
of a D-ring (R, e) are defined by πR

i ◦ e for each i = 1, . . . , t.
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Lemma 2.5.1. Let (C, g) be a (B, f)-algebra, and suppose that the associated en-
domorphisms of (B, f) have invertible matrix. Then the associated endomorphisms
of the D-Weil descent of (C, g) are the difference Weil descents of the associated
endomorphisms of (C, g). In particular, if an associated endomorphism of (C, g) is
trivial, then so is the corresponding one of WD(C, g).

Proof. Let (σi), (τi), (υi), and (ρi) be the associated endomorphisms of (A, e), (B, f),
(C, g), and (W (C), gW ), respectively. We need to show that ρi = υW

σ

i . Consider the
following diagrams for each i = 1, . . . , t:

C F (W (C))

D(C) D(F (W (C)))

C F (W (C))

ηC

πC
i

D(ηC)
π
F (W (C))
i

g

ηC

gW⊗f

The compositions of the vertical maps on the left are υi by definition. On the
right they are ρi ⊗ τi by Lemma 2.2.4. Hence ρi is a difference structure on W (C)
that makes (W (C), ρi) into an (A, σi)-algebra and ηC into a (B, τi)-algebra homo-
morphism. Since τi has invertible matrix, Lemma 2.4.4 tells us that such a difference
structure is unique, and so we must have ρi = υW

σ

i .
For the in particular clause, since the following square commutes

C F (W (C))

C F (W (C))

ηC

idC

ηC

idW (C)⊗idB

we must have (idC)W = idW (C) by the uniqueness of the difference structure on W (C)
making it an (A, idA)-algebra and ηC a (B, idB)-algebra homomorphism. Note here
that idB has invertible matrix. ■

Remark 2.5.2. This lemma tells us that we may apply our D-Weil descent result
(Theorem 2.4.5) in the context of [53], this thesis’s original definition of a D-ring.
Recall that, there and in Section 1.6, a D-ring (R, e) must have e be a section to
πR
1 , and hence the first associated endomorphism must be the identity. Thus, if

(A, e) and (B, f) have trivial first associated endomorphism, we may consider the
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category of (A, e)-algebras (R, u) where u has trivial first associated endomorphism,
and similarly for (B, f)-algebras. Denote these subcategories Alg∗(A,e) and Alg∗(B,f).
One checks that FD can now be considered as a functor Alg∗(A,e) → Alg∗(B,f), and the
previous lemma tells us that WD restricts to a functor Alg∗(B,f) → Alg∗(A,e) which is
still left adjoint to FD. In particular, our result is an actual generalisation of the
single derivation case from [39], since the category of differential A-algebras is equal
to Alg∗(A,e) when we take D = k[ε]/(ε2).

We point out here that WD does not in general preserve injectivity of the associ-
ated endomorphisms. That is, if the ith associated endomorphism of g is injective,
the ith associated endomorphism of gW may no longer be injective.

Example 2.5.3. Let D = k so that the associated endomorphism of a D-ring struc-
ture is just the D-ring structure itself. Let A = F2 be the field with two elements,
and let B = F2[ε]/(ε2). Let idA and idB be the D-ring structures on A and B respec-
tively. Note then that if (C, ρ) is a (B, idB)-algebra, ρ is a B-algebra endomorphism
of C making the following diagram commute:

C F (W (C))

C F (W (C))

ηC

ρ

ηC

ρW⊗idB

Note also that since ρ is a B-algebra endomorphism, it is a morphism in AlgB,
and so we may apply the classical Weil descent to it. Theorem 1.3.1 tells us that
W (ρ) = ρW .

Let C = B[t] and let ρ be the unique map extending idB on B and sending t 7→ t2.
Then ρ is injective. Recall from Section 1.3 that W (B[t]) = A[t] ⊗A A[t] and that
ηC(t) = t(1)⊗ 1 + t(2)⊗ ε. Then

ηC(ρ(t)) = ηC(t2)
= ηC(t)2

= t(1)2 ⊗ 1

where the last equality holds because ε2 = 0 and we are in characteristic 2.
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Also

(W (ρ)⊗ idB)(ηC(t)) = W (ρ)(t(1))⊗ 1 +W (ρ)(t(2))⊗ ε.

By the commutativity of the diagram, we have W (ρ)(t(1)) = t(1)2 and W (ρ)(t(2)) =
0. Hence W (ρ) is not injective.

Remark 2.5.4. 1. This example tells us that in general the difference Weil descent
functor does not restrict to the categories of algebras equipped with an injective
endomorphism. However, Corollary 2.5.9 will tell us that the difference Weil
descent does preserve automorphisms, and hence will restrict to a functor in
the categories of inversive difference algebras (see [40]).

2. The example above uses in an essential way the fact that the characteristic is
positive. We are not currently aware of such an example in characteristic zero.

The composition of a D1-structure and a D2-structure

Suppose we now have two finite-dimensional k-algebras D1 = ∏t1
i=1Bi and D2 =∏t2

j=1Cj where each Bi and each Cj is local with residue field k. Then D2 ⊗k D1 =∏t1
i=1

∏t2
j=1Cj ⊗k Bi. From [62] we know that Cj ⊗k Bi is local with residue field k,

and hence D2 ⊗k D1 satisfies Assumption A. We may then consider the category of
D2 ⊗k D1-rings. We will write these as D1D2-rings since

(D2 ⊗k D1)(R) = R⊗k (D2 ⊗k D1) ∼= (R⊗k D2)⊗k D1 = D1(D2(R))

for a k-algebra R.
If some k-algebra R has a D1-structure e1 and a D2-structure e2, we can form a

D1D2-structure on R by the k-algebra homomorphism

D1(e2) ◦ e1 : R→ D1D2(R).

We now investigate the Weil descent of this composition of D1-structures and D2-
structures. Suppose R, S, and T all have a D1-structure e1, f1, g1 and a D2-structure
e2, f2, g2 that make (S, f1) and (T, g1) into (R, e1)-algebras and (S, f2) and (T, g2)
into (R, e2)-algebras. We can then define D1D2-structures on each of them as above.
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Lemma 2.5.5. Assuming the notation of the paragraph above, we have

D1(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (D1(f2) ◦ f1)⊗ (D1(g2) ◦ g1)

as D1D2-structures on S ⊗R T .

Proof. Consider the following diagram.

D1D2(S) D1D2(S ⊗R T )

D1D2(R) D1D2(T )

D1(S) D1(S ⊗R T )

D1(R) D1(T )

S S ⊗R T

R T

D1(f2)
D1(f2⊗g2)

D1(e2)
D1(g2)

f1

f1⊗g1

e1

g1

The horizontal maps are just the natural maps. The lower cube commutes due to
the definition of the tensor product of D1-algebras, and the upper cube commutes by
applying D1 to the cube that commutes due to the definition of the tensor product
of D2-algebras. This means that D1(f2⊗g2)◦(f1⊗g1) is a D1D2-structure on S⊗RT

that extends the ones on S and T , and hence by uniqueness of the tensor product of
D1D2-structures, we must have that

D1(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (D1(f2) ◦ f1)⊗ (D1(g2) ◦ g1).

■

We now return to the case when B is a finite and free A-algebra.

Definition 2.5.6. For any B-algebra C, let D-StrB(C) be the collection of triples
(e, f, g) where e is a D-structure on A, f one on B, and g one on C such that (B, f) is
an (A, e)-algebra and (C, g) is a (B, f)-algebra, and the associated endomorphisms of
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(B, f) have invertible matrix. For any A-algebra R, let D-StrA(R) be the collection
of pairs (e, u) where e is a D-structure on A and u one on R such that (R, u) is an
(A, e)-algebra. The D-Weil descent then tells us that we have a map

( · )WD : D-StrB(C)→ D-StrA(W (C))
(e, f, g) 7→ (e, gWD).

Unless we need to be precise, we will drop the tuple notation and just use g for
(e, f, g) and u for (e, u). We will also suppress the D notation in the map ( · )WD and
just write ( · )W . In what follows, we will make use of these maps for D1, D2, and
D1D2, but it will be clear from context which we mean: (·)WD1 will be applied only to
D1-structures, ( · )WD2 only to D2-structures, and ( · )WD1D2 only to D1D2-structures.

Lemma 2.5.7. The following map is well-defined.

ΘB : D1-StrB(C)×D2-StrB(C)→ D1D2-StrB(C)
((e1, f1, g1), (e2, f2, g2)) 7→ (D1(e2) ◦ e1,D1(f2) ◦ f1,D1(g2) ◦ g1).

Proof. Since (e1, f1, g1) ∈ D1-StrB(C), the following diagram commutes:

D1(A) D1(B) D1(C)

A B C

e1 f1 g1

Since (e2, f2, g2) ∈ D2-StrB(C), we get a similar diagram. Apply D1 to this second
diagram and compose the vertical maps to get the following commuting diagram:

D1D2(A) D1D2(B) D1D2(C)

A B C

D1(e2)◦e1 D1(f2)◦f1 D1(g2)◦g1)

So these D1D2-structures make the algebra structure maps A→ B and B → C into
D1D2-homomorphisms.

Finally, we need to check that the associated endomorphisms of (B,D1(f2) ◦ f1)
have invertible matrix. Recall that the associated endomorphisms are defined using
the projection maps D2 ⊗k D1 → k. For 1 ≤ i ≤ t1 and 1 ≤ j ≤ t2, we will say that
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the (i, j)th projection map for D2⊗kD1 is the composition D2⊗kD1 → Cj⊗kBi → k.
Then we claim that the (i, j)th associated endomorphism of (B,D1(f2) ◦ f1) is σjτi
where τi is the ith associated endomorphism of (B, f1) and σj is that of (B, f2). To
see this, consider the following commuting diagram:

D1D2(B) D1(B) B

D1(B) B

B

D1(π2
j
) π1

i

π1
i

D1(f2)
D1(σj) σj

f1 τi

where π1
i is the ith projection map for D1 and π2

j is the jth projection map for D2.

The lower triangle commutes due to the definition of τi. The triangle in the upper
left commutes by applying D1 to the definition of σj. It remains to show that the
composition along the top row is the (i, j)th projection map for D2 ⊗k D1. But this
follows from the commutativity of the following diagram

D2 ⊗k D1 Cj ⊗k D1 k ⊗k D1

Cj ⊗k Bi k ⊗k Bi

k ⊗k k

where the composition along the top row is D1(π2
j ), the composition along the right

column is π1
i and the diagonal composition is the (i, j)th projection map for D2⊗kD1.

Recall that Proposition 2.3.2 says that an endomorphism has invertible matrix if
and only if it sends any A-basis of B to another A-basis. Then, since τi and σj both
have invertible matrix, σjτi must as well. ■
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A similar proof also shows that we have a well-defined map

ΘA : D1-StrA(R)×D2-StrA(R)→ D1D2-StrA(R)
((e1, u1), (e2, u2)) 7→ (D1(e2) ◦ e1,D1(u2) ◦ u1).

We also get maps

D2-StrB(C)×D1-StrB(C)→ D2D1-StrB(C)

and
D2-StrA(R)×D1-StrA(R)→ D2D1-StrA(R)

by exchanging the roles of D1 and D2. We will also denote these maps by ΘB and
ΘA, but it will be clear from context which one we mean.

Theorem 2.5.8. For g1 ∈ D1-StrB(C) and g2 ∈ D2-StrB(C),

ΘB(g1, g2)W = ΘA(gW1 , gW2 ).

Proof. Using the D1-Weil descent and the D2-Weil descent, the following squares
commute:

D1(C) D1(FW (C))

C FW (C)

D1(ηC)

g1

ηC

gW1 ⊗f1

D2(C) D2(FW (C))

C FW (C)

D2(ηC)

g2

ηC

gW2 ⊗f2

Apply D1 to the second square and compose the vertical maps so that the fol-
lowing square commutes:

D1D2(C) D1D2(FW (C))

C FW (C)

D1D2(ηC)

D1(g2)◦g1
ηC

D1(gW2 ⊗f2)◦(gW1 ⊗f1)

By Lemma 2.5.5, the right vertical map is equal to (D1(gW2 )◦gW1 )⊗ (D1(f2)◦f1).
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And hence, by the uniqueness of the D1D2-structure on W (C) that makes it into an
(A,D1(e2) ◦ e1)-algebra and ηC into a (B,D1(f2) ◦ f1)-algebra homomorphism, we
must have

(D1(g2) ◦ g1)W = D1(gW2 ) ◦ gW1 .

■

We now specialise this theorem to the difference case. Let D = D1 = D2 =
k. Then D2 ⊗k D1 = k and ΘA and ΘB are just composition of endomorphisms.
D-StrB(C) is a monoid with composition ΘB and identity (idA, idB, idC). Similary,
D-StrA(R) is a monoid under ΘA and (idA, idR).

Corollary 2.5.9. In the notation of the above paragraph,

( · )W : D-StrB(C)→ D-StrA(W (C))

is a monoid homomorphism.

Proof. We have that ΘB(g1, g2)W = (g1 ◦ g2)W and ΘA(gW1 , gW2 ) = gW1 ◦ gW2 . Then
Theorem 2.5.8 tells us that (g1 ◦ g2)W = gW1 ◦ gW2 . Lemma 2.5.1 then tells us that
(idC)W = idW (C). ■

Remark 2.5.10. Corollary 2.5.9 tells us that the difference Weil descent restricts
to the categories of inversive difference algebras, that is, algebras equipped with
an automorphism. Indeed, if (A, e), (B, f) and (C, g) are all inversive difference
algebras, applying ( · )W to the equations g ◦ g−1 = idC = g−1 ◦ g tells us that gW is
also an automorphism on W (C).

We now further develop these results to study the commutativity of aD1-structure
and a D2-structure. Let Γ be the canonical isomorphism

Γ: D2 ⊗k D1 → D1 ⊗k D2

α2 ⊗ α1 7→ α1 ⊗ α2.

For any k-algebra S, Γ lifts to ΓS : S⊗kD2⊗kD1 → S⊗kD1⊗kD2 in the usual way.
Therefore, Γ induces maps D1D2-StrB(C) → D2D1-StrB(C) and D1D2-StrA(R) →
D2D1-StrA(R) by applying the appropriate Γ coordinate-wise. We will also denote
these maps Γ. It should be clear from context which we mean.
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Definition 2.5.11. Let S be a k-algebra, equipped with a D1-structure e1 and a
D2-structure e2. We will say that e1 commutes with e2 if

ΓS ◦ D1(e2) ◦ e1 = D2(e1) ◦ e2.

For g1 ∈ D1-StrB(C) and g2 ∈ D2-StrB(C), we will say that g1 commutes with g2
if

Γ ◦ΘB(g1, g2) = ΘB(g2, g1).

Similarly, for u1 ∈ D1-StrA(R) and u2 ∈ D2-StrA(R), we will say that u1 commutes
with u2 if Γ ◦ΘA(u1, u2) = ΘA(u2, u1).

Remark 2.5.12. If we choose bases of D1 and D2 and think of e1 and e2 as their
corresponding sequence of free operators, the condition

ΓS ◦ D1(e2) ◦ e1 = D2(e1) ◦ e2

says that every operator of e1 commutes with every operator of e2.

We now prove a modification of Theorem 2.5.8 that includes Γ.

Lemma 2.5.13. For g1 ∈ D1-StrB(C) and g2 ∈ D2-StrB(C),

(Γ ◦ΘB(g1, g2))W = Γ ◦ΘA(gW1 , gW2 ).

Proof. Firstly, suppose e1, f1, g1 and e2, f2, g2 are D1- and D2-structures on R, S,
and T making (S, f1) and (T, g1) into (R, e1)-algebras and (S, f2) and (T, g2) into
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(R, e2)-algebras. Consider the following diagram:

D2D1(S) D2D1(S ⊗R T )

D2D1(R) D2D1(T )

D1D2(S) D1D2(S ⊗R T )

D1D2(R) D1D2(T )

S S ⊗R T

R T

ΓS

ΓS⊗RT

ΓR

ΓT

where the horizontal maps are the usual ones and the vertical ones in the lower cube
are the compositions of the D1-structure and D2-structure. By the uniqueness of the
D2D1-structure on S ⊗R T , we have that

ΓS⊗RT ◦ D1(f2 ⊗ g2) ◦ (f1 ⊗ g1) =
(
ΓS ◦ D1(f2) ◦ f1

)
⊗
(
ΓT ◦ D1(g2) ◦ g1

)
.

Now, returning to the original context, the following diagram also commutes:

D2D1(C) D2D1(F (W (C)))

D1D2(C) D1D2(F (W (C)))

C F (W (C))

ΓC ΓF (W (C))

ηC

D1(g2)◦g1 (D1(gW2 )◦gW1 )⊗(D1(f2)◦f1)

Hence, ΓW (C) ◦ D1(gW2 ) ◦ gW1 is a D2D1-structure on W (C) making it into an
(A,ΓA◦D1(e2)◦e1)-algebra and ηC into a (B,ΓB◦D1(f2)◦f1)-algebra homomorphism.
If the associated endomorphisms of ΓB ◦ D1(f2) ◦ f1 all had invertible matrix, then
by the uniqueness of such a D2D1-structure, we must have that (ΓC ◦D1(g2)◦g1)W =
ΓW (C) ◦ D1(gW2 ) ◦ gW1 , from which the result follows.

Now, note that the (i, j)th projection map for D1 ⊗k D2 = ∏t2
i=1

∏t1
j=1Bj ⊗ Ci
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is D1 ⊗k D2 → Bj ⊗k Ci → k. Let πD1⊗D2
(i,j) denote the (i, j)th projection map for

D1⊗kD2, and let πD2⊗D1
(i,j) denote the (i, j)th projection map for D2⊗kD1: D2⊗kD1 →

Cj⊗kBi → k. Then πD1⊗D2
(i,j) ◦Γ = πD2⊗D1

(j,i) . Thus, the (i, j)th associated endomorphism
of ΓB ◦D1(f2) ◦ f1 is the (j, i)th associated endomorphism of D1(f2) ◦ f1, σiτj, which
has invertible matrix. ■

Corollary 2.5.14. Let g1 ∈ D1-StrB(C) and g2 ∈ D2-StrB(C). If g1 commutes with
g2, then gW1 commutes with gW2 .

Proof. If g1 commutes with g2, then Γ ◦ΘB(g1, g2) = ΘB(g2, g1). Applying ( · )W to
this equation and using Theorem 2.5.8 and Lemma 2.5.13, we get Γ ◦ΘA(gW1 , gW2 ) =
ΘA(gW2 , gW1 ). Hence, gW1 commutes with gW2 . ■

For a k-algebra S, we will say that aD-structure e on S commutes if ΓS◦D(e)◦e =
D(e) ◦ e. Note that this is equivalent to saying that, with respect to a fixed basis of
D, the free operators corresponding to e pairwise commute. For g ∈ D-StrB(C), we
will say g commutes if Γ ◦ ΘB(g, g) = ΘB(g, g), and similarly for u ∈ D-StrA(R), u
commutes if Γ◦ΘA(u, u) = ΘA(u, u). An immediate consequence of Corollary 2.5.14
is the following.

Corollary 2.5.15. Let g ∈ D-StrB(C). If g commutes, then gW commutes.

These results allow us to deduce that commutativity is preserved by the D-Weil
descent in several cases. We give details for the case of m endomorphisms and n

derivations.

Example 2.5.16. Suppose D = k[x1, . . . , xn]/(x1, . . . , xn)2 × km and that for every
D-structure, the first associated endomorphism is trivial (unless n = 0, in which
case we do not impose that any associated endomorphism is trivial). Then a D-
structure is a collection of n derivations and m endomorphisms. Suppose also that
for a given A, B, C, all of the derivations and endomorphisms pairwise commute.
Then, by Corollary 2.5.15, we have that the Weil descents of all the derivations and
endomorphisms pairwise commute.

Remark 2.5.17. The n = 0 case also follows from Corollary 2.5.9. The m = 0 case
appears in [39].

Remark 2.5.18. It seems possible that Corollary 2.5.15 could be extended to a more
general context where commutativity is replaced by an iterativity condition as in
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Section 2.2 of [52]. We leave this for future work as it goes beyond the scope of this
thesis.

On the necessity of having invertible matrix

It is a natural question to ask whether a converse to our main theorem holds.

Question 2.5.19. If FD has a left adjoint, must every associated endomorphism of
(B, f) have invertible matrix?

We do not yet know the answer in general, but we do have the following partial
converse which imposes some mild conditions on such a left adjoint. We use the
following notation. For each z ∈ D(B), let gz : B[t] → D(B[t]) be the D-structure
on B[t] that extends f on B and sends t 7→ z.

Theorem 2.5.20. Suppose FD has a left adjoint, WD, and that for each z ∈ D(B)
the underlying A-algebra of WD(B[t], gz) is a faithfully flat A-module. Then the
associated endomorphisms of (B, f) all have invertible matrix.

Proof. Note that by Section 1.9 of [66], for any R-algebra S, S is a faithfully flat
R-module if and only if S is a flat R-module and every linear system of equations
defined over R which has a solution in S already has a solution in R.

For z ∈ D(B), consider the unit of the adjunction η : (B[t], gz)→ FDWD(B[t], gz).
That this is a D-homomorphism at t means that

l∑
m=1

r∑
n=1

λn(η(gzm(t)))⊗ bn εm = (∗)

r∑
i=1

l∑
j=1

l∑
k=1

r∑
n=1

l∑
m=1

ajkmλn(fk(bi))hzj(λi(η(t)))⊗ bn εm

where hz is the D-structure on WD(B[t], gz). Write z = ∑
m βmεm and βm =∑

n anmbn. Then λn(η(gzm(t))) = λn(η(βm)) = λn(βm) = anm since η is a B-algebra
homomorphism.

Let ā be the vector in Arl of the elements anm. Then equation (∗) tells us that
we have a solution in WD(B[t], gz) to the linear system ā = Mx̄. Since WD(B[t], gz)
is faithfully flat, we have a solution in A, and hence M is onto as a linear map
Arl → Arl. Then M is invertible. ■
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If A is a field, then WD(B[t], gz) is a free A-module – hence faithfully flat – and
so Theorems 2.4.5 and 2.5.20 yield the following:

Corollary 2.5.21. Suppose A is a field. Then FD has a left adjoint if and only if
the associated endomorphisms of (B, f) all have invertible matrix.

This result specialises to the difference case:

Corollary 2.5.22. Suppose (K, σ) ≤ (L, τ) is an extension of difference fields where
L/K is finite and σ is an automorphism. Then the difference base change functor
has a left adjoint (the difference Weil descent).

Proof. Note that by Lemma 2.3.4, τ is an automorphism if and only if it has invertible
matrix. Since σ is an automorphism, L/K is a finite-dimensional K-vector space,
and τ is injective, τ must also be an automorphism. ■

2.6 An explicit construction of the D-Weil descent

While the construction of theD-ring structure gW given in Section 2.4 is very natural,
it does not yield an explicit or computational construction. In this appendix we will
sketch a construction that parallels the classical one. Let ε1, . . . , εl be a k-basis of D
and b1, . . . , br an A-basis of B. We continue to impose Assumption A.

Recall the following notation. If (R, e) is a D-ring, ei : R → R denotes the i-
th coordinate map of e with respect to the basis ε. That is, the maps ei are the
additive operators of R such that e(r) = ∑l

i=1 ei(r)εi for all r ∈ R. We also have
that λn : B → A is the A-module homomorphism given by b = ∑r

i=1 λi(b)bi.
The matrix M is defined as follows.

M =



M11 M12 · · · M1,l

M21 M22 · · · M2,l
... ... . . . ...

Ml,1 Ml,2 · · · Ml,l


where

(Mmj)ni =
l∑

k=1
ajkmλn(fk(bi)).
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We need some notation and a technical result relating the matrix M to whether
an algebra homomorphism is also a D-homomorphism.

Notation. For a collection of elements {xij : 1 ≤ i ≤ r, 1 ≤ j ≤ l} in some A-algebra,
we write (xij) for the rl-vector ordered reverse lexicographically on the indices i and
j. We write M · (xij) to denote the standard matrix multiplication of an rl × rl

matrix with an rl-vector resulting in an rl-vector.

Lemma 2.6.1. Let (C, g) be a (B, f)-algebra, (R, u) an (A, e)-algebra, and φ : C →
F (R) = R⊗A B a B-algebra homomorphism. Then φ is a (B, f)-algebra homomor-
phism if and only if the following equation holds for every c ∈ C:

(λiφgj(c)) = M · (ujλiφ(c)) (∗)

As a result, when M is invertible, the values ujλiφ(c) are uniquely determined.

Proof. φ is a (B, f)-algebra homomorphism if and only if it is a D-homomorphism,
if and only if the following diagram commutes:

D(C) D(F (R))

C F (R)

D(φ)

g

φ

u⊗f

Now expand both compositions and equate coefficients of the bnεm. ■

Remark 2.6.2. If some S ⊆ C generates C as a B-algebra, then it is enough to ask
for equality (∗) to hold for every s ∈ S.

Our explicit construction of the D-Weil descent parallels the classical construc-
tion. So we need the algebraic notions of D-ideals, D-quotients, and D-polynomial
rings.

Definition 2.6.3. Let (R, e) be a D-ring, and let I be an ideal of R. We define
D(I) to be the k-submodule of D(R) given by D(I) := I ⊗k D. We say that I is a
D-ideal if e(I) ⊆ D(I). Note that D(I) is an ideal of D(R): if IR ⊆ I, then

D(I) · D(R) = (I ⊗k D) · (R⊗k D) ⊆ I ⊗k D.
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Remark 2.6.4. In the context of Example 2.1.1(1) where σ is trivial, I is a D-ideal
if and only if it is a differential ideal, that is, if δ(I) ⊆ I. For Example 2.1.1(2),
D-ideals are ideals with σi(I) ⊆ I for each i.

Lemma 2.6.5. Let (R, e) and (S, f) be two D-rings and suppose φ : R → S is a
D-homomorphism. Then kerφ is a D-ideal.

Proof. Since φ is a D-homomorphism, the following diagram commutes:

D(R) D(S)

R S

D(φ)

φ

e f

For g ∈ kerφ, f ◦ φ(g) = 0, and so D(φ) ◦ e(g) = 0. Then e(g) ∈ kerD(φ).
Consider the standard kernel-cokernel exact sequence for φ:

0 kerφ R S cokerφ 0φ

D is a free (and hence flat) k-module, so tensoring is exact:

0 D(kerφ) D(R) D(S) D(cokerφ) 0D(φ)

We also have the kernel-cokernel exact sequence for D(φ):

0 kerD(φ) D(R) D(S) cokerD(φ) 0D(φ)

Now D(kerφ) ⊆ kerD(φ) and hence we get the following commuting diagram with
exact rows:

0 D(kerφ) D(R) D(S)

0 kerD(φ) D(R) D(S)

⊆

D(φ)

D(φ)

Then the four lemma tells us that the inclusion is onto, so kerD(φ) = D(kerφ) and
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e(g) ∈ D(kerφ). ■

Lemma 2.6.6. Let I be an ideal of R. Then D(R)/D(I) ∼= D(R/I).

Proof. We have the following exact sequence:

0 I R R/I 0

Since D is a flat k-module, tensoring is exact:

0 D(I) D(R) D(R/I) 0

So D(R/I) ∼= D(R)/D(I). ■

Lemma 2.6.7. Let (R, e) be a D-ring, (S, f) an (R, e)-algebra, and I a D-ideal of
S. Then there exists a unique D-ring structure on the quotient S/I given by

f̄ : S/I → D(S/I)
s+ I → f(s) +D(I)

which makes the quotient map q : S → S/I into an (R, e)-algebra homomorphism.

Proof. First, note that, by Lemma 2.6.6, f̄ is indeed a well-defined k-algebra homo-
morphism since I is a D-ideal of S. Consider the following diagram:

D(R) D(S) D(S/I)

R S S/I

D(q)

e f

q

f̄

The left square commutes since (S, f) is an (R, e)-algebra, and the right square
commutes because of Lemma 2.6.6. Then q is a D-homomorphism. Note that the
composition of the lower horizontal maps is the R-algebra structure on S/I, and
hence S/I is an (R, e)-algebra. This shows that q is an (R, e)-algebra homomorphism.

■

We now need the natural notion of a D-polynomial ring. These have been defined
in Section 3.1 of [52] (implicitly) and in Remark 3.8 of [53]. We expand on the details
here.
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Definition 2.6.8. We denote by Θ the set of all finite words on the alphabet
{1, . . . , l}. For a D-ring (R, e) and θ ∈ Θ, we will write eθ for the corresponding com-
position of coordinatised D-operators. For example, if θ = 123, then eθ = e3 ◦ e2 ◦ e1.
Note then that eθ1θ2 = eθ2 ◦ eθ1 .

Definition 2.6.9. Let (R, e) be a D-ring and T = (t)t∈T a collection of indetermi-
nates. The D-polynomial algebra in indeterminates T over (R, e) with respect to ε
is the ring

R{T}εD = R[tθ : t ∈ T and θ ∈ Θ]

where (tθ)t∈T,θ∈Θ is a new family of indeterminates, equipped with D-ring structure

e′ : R{T}εD → D(R{T}εD)
tθ 7→ tθ1ε1 + tθ2ε2 + · · · tθlεl
r 7→ e(r)

This makes (R{T}εD, e′) an (R, e)-algebra.

Suppose (S, f) is an (R, e)-algebra and X ⊆ S. We denote by R{X}D the D-ring
generated in S by X over (R, e). This is a well-defined notion since the intersection
of a collection of D-subrings is a D-subring.

Lemma 2.6.10. Suppose that (S, f) is an (R, e)-algebra which is generated as a
D-ring by the (possibly infinite) tuple ā = (ai)i∈I over (R, e), so that S = R{ā}D.
Let t̄ = (ti)i∈I be a tuple of indeterminates. Then there exists a unique surjective
(R, e)-algebra homomorphism evā : R{t̄}εD → S which maps ti 7→ ai for each i ∈ I.

Proof. Define evā(tθi ) = fθ(ai) (see Definition 2.6.8). Then evā is clearly a surjective
R-algebra homomorphism. To show it is a D-homomorphism, we need to show that
the following diagram commutes:

D(R{t̄}εD) D(S)

R{t̄}εD S

D(evā)

e

evā

f

As both R{t̄}εD and S are (R, e)-algebras, it is sufficient to check commutativity
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of this diagram for each tθi . We have

D(evā) ◦ e(tθi ) = D(evā)(
l∑

j=1
tθji εj) =

l∑
j=1

fθj(ai)εj

and
f ◦ evā(tθi ) = f(fθ(ai)) =

l∑
j=1

fj(fθ(ai))εj =
l∑

j=1
fθj(ai)εj.

For uniqueness, note that if φ is also an (R, e)-algebra homomorphism with
φ(ti) = ai, then, since it is a D-homomorphism, φ(tθi ) = fθ(ai) for all θ ∈ Θ. Then φ
and evā agree on the generators of the polynomial algebra and are both R-algebra
homomorphisms, so must be equal. ■

This lemma yields the following.

Corollary 2.6.11. Suppose that ε and ω are two bases of D. Then R{T}εD and
R{T}ωD are isomorphic as (R, e)-algebras.

As a result of this corollary, we omit the superscript and just write R{T}D.

Remark 2.6.12. Combining the above results, we see that any (R, e)-algebra is a
quotient of some D-polynomial algebra over (R, e) by a D-ideal.

We now return to the construction of the D-Weil restriction. As usual, (A, e) is a
D-ring, and (B, f) is an (A, e)-algebra where B is finite and free as an A-module with
basis b1, . . . , br. Recall that the component of the unit of the classical adjunction at
the polynomial algebra B{T}D is

ηB{T}D

(
tθ
)

=
r∑

i=1
tθ(i)⊗ bi

We first construct the D-Weil descent for a D-polynomial algebra over (B, f).

Lemma 2.6.13. Let T be a set of indeterminates. Then there exists a D-structure
s on W (B{T}D) making (W (B{T}D), s) into an (A, e)-algebra and ηB{T}D into a
D-homomorphism.

Proof. As A-algebras, we have W (B{T}D) = A{T}⊗r
D , and applying Lemma 2.6.1

with ηB{T}D tells us that ηB{T}D is a D-homomorphism if and only if

(λiηB{T}Dhj(tθ)) = M · (sjλiηB{T}D(tθ))

86



An explicit construction of the D-Weil descent

for every tθ. Here h is the D-structure on the D-polynomial ring B{T}D described
in Definition 2.6.9. Now, (sjλiηB{T}D(tθ)) = sj(tθ(i)), and (λiηB{T}Dhj(tθ)) = tθj(i).
Since M is invertible we have sj(tθ(i)) = M−1 · (tθj(i)). This gives an explicit
expression for sj on each generator of A{T}⊗r

D and hence an explicit expression for
s. Since A{T}⊗r

D is a polynomial algebra, this gives a D-ring structure on A{T}⊗r
D

making ηB{T}D into a D-homomorphism. ■

Remark 2.6.14. Note that W (B{T}D) is a polynomial algebra, but that, in general,
s is not the D-ring structure that makes (W (B{T}D), s) a D-polynomial algebra as
in Definition 2.6.9 – it is twisted by M−1. The same occurs in the differential case;
see the proof of Theorem 3.2 of [39].

Now let (C, g) be a (B, f)-algebra. By Lemma 2.6.10, there is a set of indeter-
minates T and a surjective (B, f)-algebra homomorphism πC : B{T}D → C, where
B{T}D has the standard D-structure h extending f with h(tθ) = tθ1ε1 + · · ·+ tθlεl.
The component of the unit of the classical adjunction at C, ηC , is given by

ηC
(
πC(tθ)

)
=

r∑
i=1

W (πC)(tθ(i))⊗ bi.

Recall from Section 1.3 the definition of the ideal IC . This ideal is generated by
the elements λi(ηB{T}D(γ)) as γ ranges over ker πC , and W (πC) is the residue map
of this ideal.

Lemma 2.6.15. The ideal IC of W (B{T}D) is a D-ideal for the D-structure s given
in Lemma 2.6.13.

Proof. Let γ ∈ kerπC . By definition of IC , we need to show s(λi(ηB{T}D(γ))) ∈ D(IC)
for each i, that is, that the vector (sjλiηB{T}D(γ)) ∈ IC .

Since ηB{T}D is a D-homomorphism, we have

(λiηB{T}Dhj(γ)) = M · (sjλiηB{T}D(γ))

Now ker πC is aD-ideal for h : B{T}D → D(B{T}D) – the standardD-polynomial
structure – and so hj(γ) ∈ kerπC . Then, by construction of IC , (λiηB{T}Dhj(γ)) is
in IC . Since M is invertible, (sjλiηB{T}D(γ)) ∈ IC . ■

Lemma 2.6.7 and Lemma 2.6.15 together imply that the s from Lemma 2.6.13
induces a D-structure gW on W (C) = W (B{T}D)/IC which makes it an (A, e)-
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algebra and W (πC) an (A, e)-algebra homomorphism. We now check it makes ηC
into a D-homomorphism by an argument similar to Theorem 3.2 of [39].

Lemma 2.6.16. The D-structure gW on W (C) makes ηC into a D-homomorphism.

Proof. Consider the following cube:

D(F (W (B{T}D))) D(F (W (C)))

F (W (B{T}D)) F (W (C))

D(B{T}D) D(C)

B{T}D C

F (W (πC))

s⊗f gW⊗f

πC

ηB{T}D

h
ηC g

The maps on the back face are just D(φ) for φ the corresponding map on the front
face.

We want to show that the right-hand face of the cube commutes.

1. The front face commutes due to the classical Weil descent.

2. The back face commutes since the front one does: it is just applying the functor
D to the front face.

3. The left face commutes due to choice of s.

4. The bottom face commutes because πC is a D-homomorphism.

5. Since W (πC) is an (A, e)-algebra homomorphism, FD(W (πC)) is a (B, f)-
algebra homomorphism, and hence the top face commutes.

Since πC is surjective, the right face of the cube also commutes. ■

Remark 2.6.17. Note that gW is necessarily the unique D-structure on W (C) making
ηC into a D-homomorphism. This is a consequence of Lemma 2.4.4, but it can also
be seen from the statement at the end of Lemma 2.6.1.

Therefore, we have provided an explicit way to construct the D-Weil descent
WD(C, g) = (W (C), gW ).
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Chapter 3

The uniform companion for
theories of D-fields in
characteristic zero

In this chapter, we return to a model-theoretic analysis of D-fields. Recall from the
introduction that we aim to construct a Lring(∂)-theory, UCD, such that whenever
T is a model complete theory of difference large fields of characteristic zero, then
T ∪ UCD is the model companion of T ∪ “D-fields”. Here “D-fields” is the Lring(∂)-
theory of D-fields defined in Section 1.6 together with additional axioms saying that
the associated endomorphisms of such a D-field coincide with the endomorphisms of
T .1

We first take Cousins’s definition of difference largeness from [15] and extract
its geometric and model-theoretic content. In Section 3.2, we define the axiom
scheme UCD and show that it has the properties from Theorem A, from which
Theorem B immediately follows. In particular, we prove that various theories of D-
fields have model companions in Corollary 3.2.8. In Section 3.3, we give alternative
characterisations of UCD in the case D is local, and we use the D-Weil descent of
the previous chapter to show that the algebraic closure of a model of UCD must be
a model of D-CF0. Finally, in Section 3.4, we examine what can be said about the
uniform companion in the absence of Assumption A: theories of large D-fields can

1Recall from Definition 1.6.3 that the associated endomorphisms are uniformly quantifier-free
Lring(∂)-definable. This means that there is a set of elements (γi,j ∈ k : i = 1, . . . , t, j = 0, . . . , l)
such that in every D-field (K, ∂), the ith associated endomorphism is given by σi =

∑l
j=0 γi,j∂j .

Then these additional axioms are just ∀x σi(x) =
∑l

j=0 γi,j∂j(x) for every i = 1, . . . , t.

89



The uniform companion for theories of D-fields in characteristic zero

only be uniformly companionised when D is local.
This chapter forms part of the content of the author’s [49], currently submitted

for publication.
Conventions. For this chapter, all rings are of characteristic zero.

3.1 Difference largeness

Recall our setup: k is a field of characteristic zero, D is a finite-dimensional k-
algebra, there is some k-algebra homomorphism π : D → k, the algebra D has a
decomposition as ∏t

i=0Bi where each Bi is a local finite-dimensional k-algebra, and,
in contrast to the previous chapter, (K, ∂) is a D-ring only when ∂ : K → K ⊗k D
is a section to idK ⊗ π. We also impose Assumption A: the residue field of each Bi,
which is necessarily a finite field extension of k, is k itself. Thus all the associated
homomorphisms are actually endomorphisms σi : K → K for i = 0, . . . , t. Recall
also from Section 1.6 that, since ∂ must now be a section to idK ⊗ π, the associated
endomorphism corresponding to π is σ0 = idK ⊗ π ◦ ∂ = idK .

Since our uniform companion will be given “relative” to the associated difference
field, to simplify notation we will also work with E-operators where

E = kt+1

so that E-fields are precisely fields with t endomorphisms that do not necessarily
commute.

Recall also that we have k-algebra homomorphisms πi : D → k given by the
composition of the projection to Bi and then the residue map to k. Let α : D → E
be the product of the maps πi. Then if (K, ∂) is a D-ring and (K, σ) is its associated
difference ring thought of as an E-ring – so that σ : K → Kt+1 is given by r 7→
(r, σ1(r), . . . , σt(r)) – then α ◦ ∂ = σ. By Section 4.1 of [51], α induces a morphism
of varieties α̂ : τDX → τEX = X ×Xσ1 × · · · ×Xσt such that the following diagram
(of nonalgebraic maps) commutes:

τDX(K) τEX(K)

X(K)

α̂

∇D ∇E
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Note also that α̂ is the product of the morphisms π̂i. As mentioned in Fact 1.7.1, if
(L, σ) is some E-field extension of (K, σ), then ∇E is also a map X(L) → τEX(L).
Since such maps are compatible, we will not distinguish them.

Lemma 3.1.1. Let (K, ∂) be a D-field, and (K, σ) its associated difference field
thought of as an E-field. Suppose X and Y ⊆ τDX are irreducible varieties over K.
Let b be a K-generic point of Y . Then the following are equivalent:

(1) Y has a Zariski-dense set of K-rational points whose projections to τEX(K)
are in ∇E(X(K));

(2) there is some difference field (L, σ) containing the function field K(b) in which
α̂(b) is in ∇E(X(L)) and which is a difference field elementary extension of
(K, σ).

Proof. (1) =⇒ (2). Working with respect to the coordinates in Section 1.7, saying
that α̂(b) is in the image of ∇E is equivalent to saying that σi(π̂0(b)) = π̂i(b) for each
i = 1, . . . , t.

Consider the following set of formulas with parameters from K in the language
of difference rings:

p(x) = qftp(b/K) ∪ {σi(π̂0(x)) = π̂i(x) : i = 1, . . . , t}.

Since b is K-generic in Y and Y has a Zariski-dense set of K-rational points c with
σi(π̂0(c)) = π̂i(c), p(x) is finitely satisiable in (K, σ), and hence is a partial type.
So there is some difference field (L, σ) ⪰ (K, σ) with a realisation of p(x). This is
precisely (2).

(2) =⇒ (1). Suppose (L, σ) is the difference field given by (2). Let U ⊆ Y be any
nonempty Zariski-open subset of Y . It is enough to check for U basic and K-Zariski-
open. Now b is K-generic in Y and hence is in U . So U contains an L-rational point
whose projection under α̂ is in the image of ∇E . That is

(L, σ) |= ∃x
(
x ∈ U ∧

t∧
i=1

σi(π̂0(x)) = π̂i(x)
)
.

Since (K, σ) ⪯ (L, σ), this sentence is true in (K, σ), and hence U contains a K-
rational point whose projection to τEX is in the image of ∇E . ■
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Recall from the introduction that we cannot hope to uniformly find the model
companion for D-fields whose underlying field is large; we need to take into account
the associated difference field. The following definition facilitates this.

Definition 3.1.2. A difference field (K, σ1, . . . , σt) is difference large if for any pair
of K-irreducible varieties V and W such that

(i) W ⊆ V × V σ1 × · · · × V σt ,

(ii) the projections W → V σi are dominant for all i = 0, . . . , t, and

(iii) W has a smooth K-rational point,

then W has a Zariski-dense set of K-rational points of the form (a, σ1(a), . . . , σt(a))
for a ∈ V (K).

Remark 3.1.3. 1. If (K, σ) is difference large, thenK is large. If V isK-irreducible
and has a smooth K-rational point, then V is absolutely irreducible, V ×V σ1×
· · · × V σt is absolutely irreducible and has a smooth K-rational point.

2. If t = 0, that is, D is local, then difference largeness is precisely largeness. If
t > 0, then the only examples of difference large fields known to the author
are models of ACFA0,t; hence we will focus on the local case in Section 3.3 and
Chapter 5.

3. This notion first appeared (for t = 1) in Cousins’s thesis [15].

3.2 The uniform companion

In this section we define the axiom scheme UCD and show it has the desired properties
from Theorem A in the Introduction. We continue to impose Assumption A.

Definition 3.2.1. Let (K, ∂) be a D-field. We say that (K, ∂) is a model of UCD if
for every pair of K-irreducible varieties V and W such that

(i) W ⊆ τV ,

(ii) the projections π̂i : W → V σi are dominant for each i = 0, . . . , t, and

(iii) W has a smooth K-rational point,

then W has a Zariski-dense set of K-rational points of the form ∇(a) for a ∈ V (K).
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Remark 3.2.2. If (K, ∂) |= UCD, then the associated difference field (K, σ) is dif-
ference large. If X and Y ⊆ X × Xσ1 × · · · × Xσt are K-irreducible and Y has
a smooth K-rational point, then let Y ′ ⊆ τX be a K-irreducible component of
α̂−1(Y ) that projects dominantly to Y under α̂. Since Y has a smooth K-rational
point and α̂ : Y ′ → Y is dominant, so does Y ′. Now apply the UCD axiom and
project the Zariski-dense set of K-rational points of Y ′ to Y . This idea is similar to
Proposition 4.12 of [53].

This axiom scheme can be expressed in a first-order fashion in the language
Lring(∂). This is nowadays a standard argument, but we provide some details follow-
ing the argument used in [65]. We will make use of Theorem 4.2 from there, which
collects results about ideals of polynomials from [66].

Theorem 4.2 of [65]. Let n, d ∈ N, x = (x1, . . . , xn). Then there are bounds
B = B(n, d), C = C(n, d), and E = E(n, d) in N such that for each field K, each
ideal I of K[x] generated by polynomials of degree at most d, and all f1, . . . , fp ∈ K[x]
of degree at most d, the following are true.

(i) If I is generated by f1, . . . , fp, then for every g ∈ I of degree at most d, there
are c1, . . . , cp ∈ K[x] of degree at most E such that g = c1f1 + · · ·+ cpfp.

(ii) I is prime if and only if 1 ̸∈ I and for all f, g ∈ K[x] of degree at most B, if
fg ∈ I, then f ∈ I or g ∈ I.

(iii) For all m ∈ {1, . . . , n}, the ideal I ∩K[x1, . . . , xm] is generated by at most C
polynomials of degree at most C.

Let n, d,m ∈ N, x = (x1, . . . , xn), f1, . . . , fm ∈ K[x], g1, . . . , gm, h ∈ K[x0, . . . , xl],
all of degree at most d. The polynomials fj generate the ideal that defines X, IX ,
the polynomials gj generate the ideal that defines Y , IY , and the nonvanishing of the
polynomial h will define the open subset U . Then also the polynomials fσi

1 , . . . , f
σi
m

generate the ideal that defines Xσi . The fact that K-irreducibility of X and Y can
be expressed as first-order Lring-axioms comes from (i) and (ii). That Y ⊆ τX can
be checked by verifying that the polynomials that define τX are elements of IY ; that
this is a first-order condition follows from (i). Indeed the polynomials that define
τX can be computed in terms of the coefficients of the fi (see the discussion at the
end of Section 3 of [53]). That π̂0 : Y → X is dominant says that IY ∩K[x] = IX .
By (iii) there is a bound, depending on n and d, on the number and degree of the
polynomials needed to generate IY ∩ K[x]. That this equality is first-order comes
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from (i). A similar argument shows that dominance of π̂i : Y → Xσi is a first-order
condition. The existence of a smooth K-point for Y can be verified by the Jacobian
condition on the gi. Note also that the dimension of Y is the Krull dimension of
IY , which is definable in terms of the coefficients of the gi. Finally, that there is a
point ∇(a) in the nonempty Zariski open set U is equivalent to the fact that that
the polynomial h either is an element of IY , which is first-order by (i), or does not
vanish at some ∇(a).

The fact that the theory UCD is the desired uniform companion will follow from
the next two theorems (Theorem 3.2.3 and Theorem 3.2.4). These form the D-field
analogue of Theorem 6.2 from [65], where the differential counterpart is stated.

Theorem 3.2.3. Let M,N |= UCD be D-fields and A a common D-subring. If M
and N have the same existential theory over A as difference fields, then they do as
D-fields.

Proof. Let F1 and F2 be the quotient fields of A inside M and N , respectively. Since
the associated endomorphisms of A are injective, they extend uniquely to F1 and F2.
By Lemma 1.6.5, the D-structure on A extends uniquely to F1 and F2, and so they
are isomorphic as D-fields. Then we may assume F = F1 = F2 is contained in both
M and N . Let L1 be the relative algebraic closure of F in M and similarly for L2

in N . Then the associated endomorphisms of M and N restrict to endomorphisms
of L1 and L2 respectively. Since M and N have the same existential theory over A
as difference fields, L1 and L2 must be isomorphic as difference fields. The D-field
structures on M and N restrict to ones on L1 and L2, and by Remark 1.6.6, they
must be isomorphic as D-fields; we may then assume L = L1 = L2 is contained in
both M and N .

Suppose that M |= ∃x̄φ(x̄) where φ(x̄) is a quantifier-free Lring(∂)-formula with
parameters in A and x̄ = (x1, . . . , xm). As usual, we can assume that φ is of the form∧n

i=1 fi(x̄) = 0, where the fi are Lring(∂)-terms with coefficients in F . Let c0 be such
that M |= φ(c0). Let Ξ be the set of all finite words on {∂1, . . . , ∂l}. For each r, let Ξr

be an enumeration of the words of length at most r such that Ξr is an initial segment
of Ξr+1, let nr = |Ξr|, and let ∇r : M → Mnr be given by b 7→ (ξ(b) : ξ ∈ Ξr). Let r
be minimal such that φ(M) = {b ∈ Mm : ∇r(b) ∈ Z} where Z ⊆ Mmnr is a Zariski
closed set over F . If r = 0, then φ is in fact an Lring-formula and since M and N

have the same existential theory over A as fields, we have a solution in N . So assume
r > 0 and let c = ∇r−1(c0).
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Let X = loc(c/L), Y = loc(∇c/L). Note that Y ⊆ τX and that π̂i(Y ) is Zariski
dense in Xσi . Let g1, . . . , gs be polynomials that generate the vanishing ideal of Y
over L. By the primitive element theorem, let α ∈ L be such that F (α) is a field of
definition for X and Y . After clearing denominators, we can rewrite the polynomials
gi(ū) instead as Gi(v, ū) ∈ F [v, ū], where Gi(α, ū) = gi(ū). Let µ(v) ∈ F [v] be the
minimal polynomial of α.

We claim that (α,∇c) ∈M is a smooth solution to the system

µ(v) = 0, G1(v, ū) = 0, . . . , Gs(v, ū) = 0. (♦)

As ∇c is L-generic in Y , it must be a smooth solution to the system g1(ū) =
0, . . . , gs(ū) = 0. Let J(∇c) be the Jacobian for g1, . . . , gs at ∇c, and let d be its
rank. Since µ(v) contains none of the ū variables, the Jacobian of the system (♦) at
(α,∇c) is of the form

 dµ
dv

(α) 0
⋆ J(∇c)

.
Since µ is the minimal polynomial of α, dµ

dv
(α) ̸= 0, and hence this matrix has

rank d+ 1. Note also that the variety defined by (♦) is a finite union of conjugates
of Y , and hence has the same dimension as Y . So (α,∇c) is a smooth point of (♦).

Consider the quantifier-free Lring(σ1, . . . , σt)-type of (α,∇c) ∈ M over F . Since
M and N have the same existential theory over F as difference fields, this partial type
is finitely satisfiable in N . We may also assume that N is sufficiently saturated. Then
there is a realisation (β, b) ∈ N of this partial type. This induces a difference field
F -isomorphism θ : F ⟨α ⟨σ → F ⟨β ⟨σ where F ⟨α ⟨σ means the difference field generated
by F and α and likewise for β. We also have that b is a smooth point of Y θ.

Both F ⟨α ⟨σ and F ⟨β ⟨σ are algebraic extensions of F , and hence by Remark 1.6.6,
the D-field structure on F extends uniquely to D-field structures on F ⟨α ⟨σ and
F ⟨β ⟨σ. So θ is a D-field isomorphism between D-subfields of M and N .

Since Y is L-irreducible, Y θ is L-irreducible, and since L is relatively algebraically
closed in N , Y θ is N -irreducible. Likewise, Xθ is N -irreducible. Proposition 4.8 of
[51] tells us that τXθ ≃ τX, and that this isomorphism respects points of the form
∇z. We also have that Y θ ⊆ τXθ and that π̂i(Y θ) is Zariski dense in (Xθ)σi . Since
θ fixes F it also fixes Z.

Since N |= UCD, there is a point a ∈ Xθ(N) with ∇a ∈ Y θ(N). Let a0 be the
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first m coordinates of a. We claim that a0 is a realisation of φ, which will conclude
the proof. As in the proof of Theorem 4.5 of [53], we prove first that ∇r−1(a0) = a.
Write a = (aξ : ξ ∈ Ξr−1). We prove by induction on the length of ξ that ξ(a0) = aξ.
For ξ = id this is clear. Suppose now that ξ = ∂iξ

′. Since ∇r−1(c0) = c, we have
that ∂icξ′ = cξ. This is an algebraic fact about ∇c over F . Since ∇a satisfies all the
algebraic relations ∇c does over F (since θ fixes F ), we also have ∂iaξ′ = aξ. By the
inductive hypothesis, ∂iaξ′ = ∂iξ

′(a0) = ξ(a0).
Since c0 realises φ, ∇r(c0) ∈ Z. This is an algebraic fact about ∇c = ∇∇r−1(c0)

over F . Since ∇a satisfies all the algebraic relations ∇c does over F , we have
∇r(a0) ∈ Z. So N |= φ(a0). ■

Theorem 3.2.4. Every D-field whose associated difference field is difference large
has a D-field extension which is a model of UCD and an elementary extension at the
level of difference fields.

Proof. Let (F, ∂) be a D-field that is difference large as a difference field, and let X
and Y be F -irreducible varieties where Y ⊆ τX, π̂i(Y ) is Zariski dense in Xσi , and
Y has a smooth F -rational point. Let U be a nonempty Zariski-open subset of Y
defined over F .

Let b ∈ Y (L) be an F -generic point in some field extension L of F . Since
π̂i(Y ) is Zariski dense in Xσi , we get that π̂i(b) is F -generic in Xσi . Let α̂ : τX →
X×Xσ1×· · ·×Xσt be the product of the morphisms π̂i. Let Z be the Zariski-closure
of α̂(Y ) in X×Xσ1 ×· · ·×Xσt . Then α̂ : Y → Z is dominant. Let V be the F -open
subset of smooth points of Z. By dominance, V has a point in the image of α̂. Then
α̂−1(V ) is a nonempty F -open set. Since F is large and Y has a smooth F -rational
point, α̂−1(V ) has an F -rational point. So V has an F -rational point – that is, Z
has an F -rational smooth point.

Let W ⊆ Y be some open subset of Y . Since Y is irreducible, W is dense in Y .
Then α̂(W ) is dense in Z. As Z has a smooth F -rational point and F is difference
large, Z has a Zariski dense set of F -rational points of the form (a, σi(a), . . . , σt(a)).
So Y has a Zariski-dense set of F -rational points whose projections under α̂ have
the form (a, σi(a), . . . , σt(a)).

So by Lemma 3.1.1 there is some difference field (K, σ) containing F (b) which is
an elementary extension of (F, σ) and in which σi(π̂0(b)) = π̂i(b). We will define a
D-field structure on K whose associated difference field is (K, σ).

As mentioned in Fact 1.7.1, there is an identification τX(K)↔ X(K ⊗kD). Let
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b′ be the tuple from K⊗kD that corresponds to b ∈ τX(K) under this identification.
Note that πi(b′) = σi(π0(b′)) in K because π̂i(b) = σi(π̂0(b)). Write a = π̂0(b) for the
F -generic point of X.

As in the proof of Theorem 4.5 of [53], we can extend ∂ : F → F ⊗kD ⊆ K ⊗kD
to a k-algebra homomorphism ∂ : F [a]→ K ⊗k D with ∂(a) = b′.

Indeed, since b ∈ τX(K), we have p∂(b′) = 0 for all p ∈ I(X/F ). Since a is
F -generic in X, I(X/F ) = I(a/F ). As p∂(b′) = 0 for all p ∈ I(a/F ), ∂ extends to
F [a] = F [x]/I(a/F ) by setting ∂(a) = b′. Since π̂0(b) = a, we have that πK

0 (b′) = a

so πK
0 ◦∂ : F [a]→ K is inclusion. We also have that πi ◦∂(a) = πi(b′) = σi(π0(b′)) =

σi(a). So πi◦∂ = σi. Now we can use Lemma 1.6.5 to extend ∂ to a D-field structure
on K extending the one on F whose associated endomorphisms are precisely the σi.
In (K, ∂) we will also have ∇(a) = b. Since b is F -generic in Y , we must have that
b = ∇a ∈ U(K).

Then we can iterate this construction transfinitely to get an extension of F that
is elementary as an extension of difference fields, which is also a model of UCD. ■

Having established Theorems 3.2.3 and 3.2.4, the following result is proved in
precisely the same way as in Proposition 6.3 of [65].

Proposition 3.2.5. The Lring(∂)-theory UCD is inductive. If U is an Lring(∂)-theory
of difference large D-fields satisfying the properties in the previous two theorems
(Theorems 3.2.3 and 3.2.4), then U contains UCD. If U is in addition inductive,
U = UCD ∪ “difference large fields”, where containment and equality here are as
deductively closed sets of sentences.

Proof. It is clear that the union of an increasing chain of models of UCD is also a
model of UCD, and likewise for difference large fields. Hence the theories UCD and
“difference large fields” are inductive.

Let U be another theory of difference large D-fields satisfying Theorems 3.2.3
and 3.2.4. Let M |= U . Since the associated difference field of M is difference large,
by Theorem 3.2.4, it embeds as a D-field in some N |= UCD such that the extension
of difference fields is elementary. By this last fact, N is also difference large, and
hence embeds in some M ′ |= U , since U satisfies the property in Theorem 3.2.4. In
addition, the associated difference field of M ′ is an elementary extension of that of
N . Thus M ≤ M ′ are two models of U whose associated difference fields have the
same existential theory over M . By the property in Theorem 3.2.3 for U , M and M ′
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have the same existential theory over M as D-fields; that is, M is existentially closed
in M ′, and hence in N . Since N |= UCD and UCD is inductive, we have M |= UCD.
So UCD ⊆ U .

If U is also inductive, then repeat the above proof with U and UCD∪“difference
large fields” exchanged to get U = UCD ∪ “difference large fields”. ■

The following theorem is also proved in like its differential counterpart: Theo-
rem 7.1 of [65].

Theorem 3.2.6. Let C be a set of new constant symbols and T a model complete
theory of difference large fields in the language Lring(C)(σ). Let T ∗ be an expansion
by definitions of T to a language L∗ ⊇ Lring(C)(σ). In addition, let A be an L∗(∂)-
structure such that when A is viewed as an Lring(∂)-structure it is a D-field.

If T ∗ ∪ diag(A|L∗) is complete, then T ∗ ∪ UCD ∪ diag(A) is complete.

Proof. We first prove a series of claims.
Claim 1. T ∗ ∪ UCD ∪ diag(A) is consistent.

Proof of claim. T ∗ ∪ diag(A|∗L) is consistent so A|∗L is a substructure of a model of
T ∗. Since the model of T ∗ has a difference structure, use Lemma 1.6.5 to extend the
D-field structure on A to one on the model of T ∗. Then by Theorem 3.2.4 we get
the claim.

Claim 2. T ∗ ∪ UCD is model complete.
Proof of claim. By the previous claim, T ∪UCD is consistent. Consider any extension
M ≤ N of models of T ∪UCD. By model completeness of T , M is existentially closed
in N as difference fields. By Theorem 3.2.3, M is existentially closed in N as D-
fields. So T ∪ UCD is model complete. As T ∗ is an expansion by definitions of T ,
T ∗ ∪ UCD is model complete.

Claim 3. If T ∗ has quantifier elimination, then so does T ∗ ∪ UCD.
Proof of claim. Let M |= T ∗ ∪ UCD and let A be an L∗(∂)-substructure. We will
show that T ∗∪UCD∪diag(A) is complete. So let N |= T ∗∪UCD containing A as an
L∗(∂)-substructure. As T ∗ has quantifier elimination, we know that M ≡A N as L∗-
structures, and so they have the same existential theory over A as difference fields.
As they are both models of UCD, Theorem 3.2.3 tells us that they have the same
existential theory over A as D-fields. Now any L∗(∂)-formula is equivalent modulo
T ∗ ∪UCD to an Lring(C)(∂)-formula, and to an existential Lring(C)(∂)-formula since
T ∪ UCD is model complete. Then M and N have the same L∗(∂)-theory over A,
and T ∗ ∪ UCD ∪ diag(A) is complete.
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Now we are able to prove the theorem. Let M and N be two models of T ∗ ∪
UCD ∪ diag(A). We need to show that M and N are elementarily equivalent as
L∗(∂)(A)-structures, that is, that M ≡A N .

Let L+ be the language extending L∗ with new k-ary predicate symbols Rφ for
each existential L∗-formula φ in k free variables. Let T+ be T ∗ with the sentences
∀u1, . . . , uk(Rφ(ū)↔ φ(ū)). T+ is an expansion by definitions of T ∗ and hence of T .
As T is model complete, so is T+. T+ proves that every formula is equivalent to an
existential one, and that every existential one is equivalent to a quantifier-free one.
So it has quantifier elimination. By the previous claim, T+ ∪ UCD has quantifier
elimination.

Let M̃ and Ñ be the unique expansions of M and N to models of T+ ∪ UCD.
Since T ∗ ∪ diag(A|L∗) is complete, M ↾L∗≡A N ↾L∗ . By definition of T+, M̃ and Ñ

induce the same structure on A. By quantifier elimination of T+ ∪ UCD, M̃ ≡A Ñ ,
and so also M ≡A N . ■

In the next theorem we argue why Theorem 3.2.6 justifies calling UCD the uniform
companion for theories of difference large D-fields. This is the precise formulation
of Theorem B from the introduction. Recall that “D-fields” is the Lring(∂)-theory
consisting of the axioms for a D-field together with additional axioms saying that
the associated endomorphisms of such a D-field coincide with the endomorphisms of
the Lring(σ1, . . . , σt)-theory T .

Theorem 3.2.7. Let C be a set of new constant symbols and T a model complete
theory of difference large fields in the language Lring(C)(σ). Let T ∗ be an L∗-theory
which is an expansion by definitions of T .

Assume T ∗ is a model companion of an L∗-theory T ∗
0 which extends the theory of

difference fields. Then:

(i) T ∗ ∪ UCD is a model companion of the L∗(∂)-theory T ∗
0 ∪ “D-fields”;

(ii) if T ∗ is a model completion of T ∗
0 , then T ∗ ∪ UCD is a model completion of

T ∗
0 ∪ “D-fields”;

(iii) if T ∗ has quantifier elimination, then T ∗ ∪ UCD has quantifier elimination;

(iv) if T is complete and M is a D-field which is a model of T , then T ∗ ∪ UCD ∪
diag(C) is complete, where C is the Lring(C)(∂)-substructure generated by ∅ in
M , that is, the D-subring of M generated by the elements (cM)c∈C.
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Proof. First note that T ∗ ∪UCD and T ∗
0 ∪ “D-fields” have the same universal theory

(equivalently, that a model of one can be embedded in a model of the other). Let
M |= T ∗ ∪ UCD. Since T ∗ and T ∗

0 have the same universal theory, there is an L∗-
structure N such that M ↾L∗≤ N . By Lemma 1.6.5, we can extend the D-structure
on M to one on N , so that M ≤ N as L∗(∂)-structures. For the other direction,
let M |= T ∗

0 ∪ “D-fields”. Then there is some L∗-structure N |= T ∗ such that
M ↾L∗≤ N . Use Lemma 1.6.5 to extend the D-structure on M to one on N , so
that N |= T ∗ ∪ “D-fields” and then use Theorem 3.2.4 to embed this in a model of
T ∗ ∪ UCD.

Now to show (i), it is enough to show that T ∗ ∪ UCD is model complete, or
equivalently, that if M |= T ∗ ∪ UCD, then T ∗ ∪ UCD ∪ diag(M) is complete. Since
T ∗ is model complete, T ∗ ∪ diag(M |L∗) is complete. Then T ∗ ∪ UCD ∪ diag(M) is
complete by Theorem 3.2.6.

For (ii), let M be a model of T ∗
0 ∪ “D-fields”. We need to show that T ∗ ∪UCD ∪

diag(M) is complete. But M |= T ∗
0 , and so T ∗ ∪ diag(M |L∗) is complete since T ∗ is

a model completion of T ∗
0 . Then apply Theorem 3.2.6.

For (iii), let M |= T ∗ ∪UCD, and let A ≤M be an L∗(∂)-substructure. We need
to show that T ∗ ∪ UCD ∪ diag(A) is complete. By quantifier elimination for T ∗, we
have that T ∗ ∪ diag(A|L∗) is complete; the result follows by Theorem 3.2.6.

For (iv), since T is complete, T ∗∪diag(C|L∗) ⊆ T ∗ is complete. By Theorem 3.2.6,
T ∗ ∪ UCD ∪ diag(C) is complete. ■

We can now collect the consequences of these theorems, similarly to the differen-
tial set-up in Section 8 of [65].

Corollary 3.2.8. (1) ACFA0,t ∪ UCD is D-CF0 from [53].

(2) If D is local, then RCF ∪ UCD is complete and is the model companion of the
theory of real closed D-fields. It admits quantifier elimination in Lring(≤)(∂).

(3) Suppose D is local. The theory pCFd of p-adically closed fields of fixed p-rank
d has quantifier elimination in the language Lring(O, c1, . . . , cd, (Pn)n∈N), where
O is a predicate for the valuation ring, c1, . . . , cn are constants that form a
Z/p-basis for O/p, and Pn is a predicate for the nth powers – see [42] for
d = 1 and [59] for any finite d. Then pCFd ∪ UCD is complete and is the
model companion of p-adically closed D-fields of fixed rank d. It has quantifier
elimination in Lring(O, c1, . . . , cd, (Pn)n∈N)(∂).
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(4) Suppose D is local. Let Psf0(C) be the Lring(C)-theory of pseudofinite fields of
characteristic zero with sentences saying that the polynomial xn + cn,1x

n−1 +
· · · + cn,n is irreducible for each n > 1. Then Psf0(C) is model complete –
this is Proposition 2.7 of [12]. We then get that Psf0(C) ∪ UCD is the model
companion of Psf0(C) ∪ “D-fields”.

3.3 Alternative characterisations of the uniform
companion

In this section we will describe some additional characterisations of UCD in the case
D is local. One in particular will use the notion of a D-variety, and will allow us to
show that an algebraic extension of a large field which is a model of UCD is also a
model of UCD. In particular, the algebraic closure of such a D-field will be a model
of D-CF0 from [53]. For this section, we impose the following.

Assumption B. The k-algebra D is local.

Example 3.3.1. The algebras in (1), (2), and (5) from Example 1.6.2 are local. We
can combine these algebras using fibred products and tensor products to form more
local examples. See Examples 3.4 and 3.5 of [53].

Since D is local, any D-ring R has only one associated homomorphism: the
identity idR; the associated difference ring is then just the underlying ring. Hence
for any affine K-variety X, there is only one induced morphism τX → X, which
we call π̂. With respect to the coordinates described in Section 1.7, this is just the
morphism induced by the inclusion K[x]/I → K[x0, . . . , xl]/I ′ where x 7→ x0.

Definition 3.3.2. Let (K, ∂) be a D-ring. A D-variety over (K, ∂) is a pair (V, s)
where V is a variety over K and s : V → τV is an algebraic morphism over K
which is a section to the canonical projection π̂ : τV → V . We say that (V, s) is
K-irreducible if V is K-irreducible, affine if V is affine, etc.

Given a D-field extension (L, δ) of (K, ∂), the (L, δ)-rational sharp points of (V, s)
are defined as (V, s)♯(L, δ) = {a ∈ V (L) : ∇a = s(a)}.

As before, we will mainly be interested in affine D-varieties. If V is an affine
variety, a D-variety structure on V is equivalent to a D-ring structure on its coordi-
nate ring, K[V ]. A K-rational sharp point is equivalent to a D-ring homomorphism
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K[V ]→ K. This is the natural D-field analogue of D-varieties as defined for differ-
ential rings; see for example [36].

We now establish some basic results about D-varieties. Recall that, if (R, ∂) is a
D-ring and a is an ideal of R, a is called a D-ideal if ∂(a) ⊆ a⊗k D, or equivalently,
if ∂i(a) ⊆ a for each i = 1, . . . , l.

Lemma 3.3.3. Let (R, ∂) be a D-ring, and a ⊆ R a radical D-ideal. Then the
minimal prime ideals above a are D-ideals.

Proof. Let p be a minimal prime ideal above a, and consider the localisation Rp.
Since a is radical, so is aRp (see Proposition 3.11 of [3]). Suppose q ⊆ pRp is a prime
ideal of Rp that also lies above aRp. Then by part iv) of the same proposition, we
must have q = pRp, and hence pRp is a minimal prime above aRp. It is also the
unique maximal ideal of Rp, and hence is the only prime ideal lying above aRp. Then
aRp =

√
aRp = pRp (the radical of an ideal is the intersection of the prime ideals

lying above it).
By Remark 1.6.6 we know that ∂ extends uniquely to a D-structure on Rp with

∂(a
b
) = ∂(a)∂(b)−1. Since a is a D-ideal it is clear that aRp is also a D-ideal.
Then pRp is a D-ideal, and hence its contraction to R, p, is also a D-ideal. ■

Lemma 3.3.4. Let (V, s) be an affine D-variety over (K, ∂). Then

a) any nonempty Zariski-open U ⊆ V defined over K is a D-subvariety of (V, s);

b) any K-irreducible component of V is a D-subvariety of (V, s).

Proof. a) Let K[V ] be the coordinate ring of V . Then s corresponds to ∂s : K[V ]→
K[V ] ⊗k D. Let U be a basic open subset of V given by the nonvanishing of some
f . By Remark 1.6.6 we then get that ∂s extends uniquely to K[V ]f → K[V ]f ⊗k D.
That is, s restricts to U → τU . Now if U = ⋃

i∈I Ui is a union of basic open subsets,
s restricts to Ui → τUi ⊆ τU , and these restrictions agree on Ui∩Uj since this is also
a basic open. Glueing the morphisms Ui → τU gives a morphism U → τU which is
a restriction of s.

b) by Lemma 3.3.3. ■

Theorem 3.3.5. Suppose (K, ∂) is a D-field and K is large. Then the following are
equivalent:

(1) (K, ∂) |= UCD;
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(2) whenever (V, s) is an affine, K-irreducible D-variety, if V has a smooth K-
rational point, then the set of K-rational sharp points of (V, s) is Zariski dense
in V ;

(3) whenever (V, s) is an affine, K-irreducible D-variety, if V has a smooth K-
rational point, then (V, s) has a K-rational sharp point;

(4) whenever (V, s) is a smooth, affine, K-irreducible D-variety, if V has a K-
rational point, then (V, s) has a K-rational sharp point; and

(5) whenever (L, δ) is a D-field extension of (K, ∂) such that K is existentially
closed in L as a field, then (K, ∂) is existentially closed in (L, δ) as a D-field.

Proof. (1) =⇒ (2): Suppose (K, ∂) |= UCD and let (V, s) be a K-irreducible D-
variety with a smooth K-rational point. Let X = V and Y = s(V ). Note that
X and Y are isomorphic. Then Y has a smooth K-rational point, Y ⊆ τX, and
π̂ : Y → X is an isomorphism. So, since K |= UCD, Y has a Zariski dense set of K-
rational points of the form ∇(a) for a ∈ X(K), and hence for each such a ∈ X(K),
∇(a) = s(a).

(2) =⇒ (3) is clear.
(3) =⇒ (1): Let X, Y , U be as in the statement of UCD. Let b ∈ L ≥ K

be a K-generic point of Y , so that a = π̂(b) ∈ L is K-generic in X by dominance.
Since b ∈ τX(K(b)), let b′ ∈ K(b) ⊗k D be the point corresponding to b under the
identification τX(K(b)) ↔ X(K(b) ⊗k D). Then P ∂(b′) = 0 for all P ∈ I(X/K),
and so ∂ extends to a homomorphism ∂ : K[a]→ K(b)⊗k D with ∂(a) = b′. Extend
this to a D-ring structure ∂ : K(b)→ K(b)⊗k D using Lemma 1.6.5. In this D-ring
structure, ∇(a) = b. Now each ∂i(bj) ∈ K(b) so ∂i(bj) = Pij(b)

Qij(b) for some polynomials
Pij, Qij ∈ K[x]. Let Q ∈ K[x] be the product of all Qij. Note that ∂ restricts to
K[b] → K[b]Q(b) ⊗k D. Again by Lemma 1.6.5, we must have that ∂ extends to
K[b]Q(b) → K[b]Q(b) ⊗k D. Let U ′ be the open subset of Y corresponding to Q(x).
This extension of ∂ gives a D-variety structure s : U ′ → τU ′.

Since K is large and V has a smooth K-point, U ∩ U ′ has a smooth K-point.
By Lemma 3.3.4, (U ∩ U ′, s|U∩U ′) is a K-irreducible D-variety with a smooth K-
rational point. By (3) there is (c, d1, . . . , dl) ∈ (U ∩ U ′)(K) with ∇(c, d1, . . . , dl) =
s(c, d1, . . . , dl). Then c ∈ X(K) with ∇(c) = (c, d1, . . . , dl) ∈ U(K).

(3) =⇒ (4) is clear.
(4) =⇒ (3): Let (V, s) be a D-variety overK with V K-irreducible and a ∈ V (K)

a smooth K-rational point. Let W ⊆ V be the smooth locus of V . Then W is a
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smooth, K-irreducible D-subvariety of V . The point a is a K-rational point of W
and so by (4), W has a K-rational sharp point. Then V has a K-rational sharp
point.

(1) =⇒ (5): Let (L, δ) be a D-field extension of (K, ∂) |= UCD such that K
is existentially closed in L as a field. Then there is a field extension L ≤ M such
that M is an elementary extension of K as a field; note that M is then also a large
field. Extend the D-field structure on L to one on M , and use Theorem 3.2.4 to
find a D-field extension (N, d) |= UCD such that K ≺ M ≺ N as fields. This last
fact implies that K and N have the same existential theory as fields over K. So by
Theorem 3.2.3, they have the same existential theory as D-fields over (K, ∂) – recall
that since D is local, the associated difference field is just the underlying field. Then
(K, ∂) is existentially closed in (N, d), and hence in (L, δ).

(5) =⇒ (1): Assume (K, ∂) has property (5). By Theorem 3.2.4, there is
(L, δ) |= UCD extending it such that K ≺ L as fields. Then K is existentially closed
in L as fields, and so (K, ∂) is existentially closed in (L, δ) as D-fields by (5). Since
UCD is inductive, we must also have (K, ∂) |= UCD. ■

We will now show that algebraic extensions of large models of UCD are again
large and models of UCD. Similar to the differential case (Theorem 5.11 of [38]), this
will rely on the D-Weil descent, established in Chapter 2.

We recall only the necessary properties of the D-Weil descent in their geomet-
ric form. Let (L, δ)/(K, ∂) be an extension of D-fields where L/K is a finite field
extension. Let (V, s) be an affine D-variety over (L, δ); as mentioned above, this is
equivalent to a D-ring structure, δs, on the coordinate ring, L[V ], extending δ on
L. The classical Weil descent of V , V W , is a K-variety such that there is a natural
bijection

V (L)↔ V W (K).

Stated algebraically, this is equivalent to the natural bijection

HomL(L[V ], L)↔ HomK(K[V W ], K).

In the previous chapter we showed that there is a unique D-ring structure, ∂s, on
K[V W ] extending ∂ on K such that the above natural bijection restricts to a natural
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bijection

Hom(L,δ)((L[V ], δs), (L, δ))↔ Hom(K,∂)((K[V W ], ∂s), (K, ∂)).

The D-ring structure ∂s corresponds to sW : V W → τ(V W ) and makes (V W , sW )
into a D-variety over (K, ∂). As mentioned above, a D-ring homomorphism L[V ]→
L corresponds to an L-rational sharp point of (V, s). Geometrically then, we have
that the first natural bijection restricts to the natural bijection

(V, s)♯(L, δ)↔ (V W , sW )♯(K, ∂).

Theorem 3.3.6. Let (L, δ)/(K, ∂) be an algebraic extension of D-fields where (K, ∂)
is a model of UCD and K is a large field. Then (L, δ) is a model of UCD and L is
large.

Proof. Consider first the case when L/K is a finite extension. We verify condition
(4) of Theorem 3.3.5. Let (V, s) be a smooth, L-irreducible D-variety defined over
(L, δ) with an L-rational point. Now apply the D-Weil descent to get a D-variety
(V W , sW ) over (K, ∂). Since V is affine and smooth, V W is affine and smooth (see
Proposition 5 of Section 7.6 of [6]). By the bijection V (L) ↔ V W (K), V W has a
K-rational point. Let (U, t) be the irreducible component of (V W , sW ) containing
the K-rational point. Since (K, ∂) satisfies condition (4), (U, t) has a K-rational
sharp point, and hence (V W , sW ) has a K-rational sharp point. By the bijection
(V, s)♯(L, δ)↔ (V W , sW )♯(K, ∂), (V, s) has an L-rational sharp point.

If L/K is algebraic, let F be an intermediate extension such that V , s, and
the L-rational point are all defined over F and F/K is finite. Then by the above,
(V, s)♯(F, δ) ̸= ∅, and hence (V, s)♯(L, δ) ̸= ∅. ■

3.4 The non-local case

Recall that throughout this chapter we assumed that either the k-algebra D was
a local ring or each component in its local decomposition had residue field k. In
this section we make some observations about the existence of model companions
of D-fields in the case when neither assumption holds. Without Assumption A
the associated homomorphisms of a D-field are not necessarily endomorphisms, and
hence it does not make sense to ask whether T ∪ “D-fields” has a model companion
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when T is a theory of difference fields. However, it does make sense to ask the
question as T varies over theories of fields. The main result of this section says that
when the base field k is finitely generated over Q, we get a full characterisation of
when the uniform companion for large D-fields exists: it exists if and only if D is
local.

We start with the general case: k is a field of characteristic zero, D is a finite-
dimensional k-algebra, and D = ∏t

i=0Bi where each Bi is a local finite-dimensional
k-algebra. We no longer impose Assumption B – that D is local – or even As-
sumption A – that the residue field of each Bi is k. For i > 0, the residue field of
Bi is k[x]/(Pi) for some k-irreducible polynomial Pi, and that of B0 is k. For an
L-theory T , the L(∂)-theory T ∪ “D-fields” is denoted by TD, and the L(σ)-theory
T ∪ “σ is an endomorphism” is denoted by Tσ.

A result of Kikyo and Shelah [33] states that if a model complete theory has
the strict order property, then the theory obtained by adding an automorphism has
no model companion. In particular, if D = k × k, D-fields correspond to fields
with an endomorphism, and so RCFD = RCFσ and Th(Qp)D = Th(Qp)σ have no
model companion. In fact, the Kikyo–Shelah theorem implies that TD has no model
companion when D is not local and T has a model in which one of the polynomials Pi

has a root. We first prove this for the case when D has at least one local component
with residue field k, and then reduce the more general statement to this case.

Proposition 3.4.1. Assume D is such that one of the local components Bi has
residue field k for i > 0. If TD has a model companion, then Tσi has a model
companion.

Proof. Note that by a particular choice of the basis ε0, . . . , εl, we may assume that
the associated endomorphism σi corresponding to Bi appears as one of the operators
∂j. So L(σi) ⊆ L(∂).

Write T+ for the model companion of TD and T− for its reduct to L(σi). We will
show that T− is the model companion of Tσi ; clearly their universal parts coincide,
so it suffices to prove T− is model complete.

Let (K, σ) |= T−. We will show that T− ∪ diagL(σi)(K) is complete. Use
Lemma 1.6.5 to equip K with a D-ring structure whose ith associated homomor-
phism is σi and whose jth associated homomorphism is inclusion K → K[x]/(Pj) for
j ̸= i. Then K |= TD, and it embeds in some L |= T+. Since T+ is model complete,
T+ ∪ diagL(∂)(L) is complete, and hence its reduct to L(σi)(K), T− ∪ diagL(σi)(K),
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is complete. ■

We now weaken the assumption that the residue field of some Bi is k to the
assumption that T has a model K in which one of the polynomials Pi has a root. If
TD has a model companion, then TD ∪ diag(K) has a model companion. Let E be
the K-algebra D ⊗k K. As mentioned in the proof of Theorem 3.2 of [4], if L is an
E-field, then E-field extensions of L coincide with D-field extensions of L. Hence if
TD∪diag(K) has a model companion, so does TE . But E now satisfies the assumption
in Proposition 3.4.1. So we have proved the following.

Corollary 3.4.2. If T is model complete and has a model with the strict order
property in which one of the Pi has a root, then TD has no model companion.

Real closed fields and Qp have the strict order property, and so this result means
if any Pi has a root in some real closed field or some p-adically closed field, there is
no uniform companion. In particular, if the base field k is a finitely generated field
extension of Q, we get a full converse to the main theorem.

Corollary 3.4.3. Suppose k is a finitely generated field extension of Q. Then there
is a uniform companion for theories of large D-fields if and only if D is a local ring.

Proof. If D is local, D-fields whose associated difference field is difference large cor-
respond precisely to D-fields whose underlying field is large. The uniform companion
then exists by Section 3.2.

Suppose D is not local. Then the splitting field of the polynomial P1 ∈ k[x] is
a finitely generated extension of Q, and so by Theorem 1 of [10], embeds in some
Qp. Hence P1 has a root in Qp. Then by Corollary 3.4.2, Th(Qp)D has no model
companion. ■

Remark 3.4.4. The base field k does have an impact on when the uniform companion
exists. If k is algebraically closed, then the only model complete theory of fields
containing k is ACF0, and hence the existence of a uniform companion for D-fields is
equivalent to the existence of the model companion of ACF0 ∪ “D-fields”; this exists
for all D by Theorem 7.6 of [53].

However, for other fields k the question is still open. For instance, suppose k = R.
No model of Th(Qp) can be an R-algebra, and so Th(Qp)∪“D-fields” is inconsistent.
Hence the above method does not show that there is no uniform companion in the
case D = R× C, for instance.
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Chapter 4

Derivation-like theories and
neostability

4.1 Introduction

We saw in the previous chapter that if T is a model complete theory of difference large
fields, then T ∪ “D-fields” has a model companion: T ∪UCD. In this chapter we will
investigate model-theoretic properties transferred from the theory of difference fields
to the theory of D-fields. For instance it is immediate from the transfer of quantifier
elimination from an expanion by definitions T ∗ to T ∗ ∪ UCD in Theorem 3.2.7 that
NIP also transfers.

Corollary 4.1.1. Let C be a set of new constant symbols, and suppose that T is the
complete, model complete Lring(C)(σ)-theory of a difference large field of character-
istic zero. If T is NIP, so is (any completion of ) T ∪ UCD.

Proof. Let T ∗ be an expansion by definitions of T with quantifier elimination where
the L∗-terms are the same as the Lring(C)(σ)-terms (for instance, if T ∗ is the Mor-
leyisation of T ). Let C be a monster model of T ∗ ∪ UCD whose reduct to L∗ is a
monster model of T ∗.

Suppose φ(x, y) is an L∗(∂)-formula with IP: so there are (ai)i∈ω, (bI)I⊆ω in C

with C |= φ(ai, bI) ⇐⇒ i ∈ I. By Theorem 3.2.7, T ∗ ∪ UCD has quantifier
elimination, and we may assume φ(x, y) is quantifier-free. Now, since the L∗-terms
are the same as the Lring(C)-terms, the L∗(∂)-terms in the variables x, y are then
just polynomials in x, y, C, and any application of the operators to these. So there
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are r ∈ N and a quantifier-free L∗-formula φ∗ such that C |= φ(x, y) if and only if
C |= φ∗(∇r(x),∇r(y)). Then

C |= φ∗(∇r(ai),∇r(bI)) ⇐⇒ C |= φ(ai, bI) ⇐⇒ i ∈ I.

Therefore the sequences (∇r(ai))i∈ω and (∇r(bI))I⊆ω witness that φ∗ has IP. ■

Remark 4.1.2. 1. This result generalises the fact of Michaux and Rivière that
CODF is NIP from Theorem 2.2 of [47].

2. In Corollary 4.3 of [22], Guzy and Point show that NIP is transferred from a
topological field (possibly with extra structure) to the model companion of the
field with a derivation. The imposition of a topological structure allows them
to consider fields with genuine extra structure, as opposed to the definitional
expansions considered here.

A similar argument to Corollary 4.1.1 shows that stability transfers via its char-
acterisation of no formula having the order property. But in the case when D is
local, stability yields something stronger.

Lemma 4.1.3. Suppose D is local and that T is the complete, model complete
Lring(C)-theory of a large field of characteristic zero. If T is stable, then T ∪UCD =
D-CF0.

Proof. A stable, large field of characteristic zero is algebraically closed by Theorem
D of [30]. The result then follows as ACF0 ∪ UCD = D-CF0. ■

We now turn our sights to simplicity. Like NIP and stability, simplicity has a
combinatorial characterisation.

Definition 4.1.4. A formula φ(x, y) has the tree property if there is a tree of pa-
rameters (as : s ∈ ω<ω) and some k ≥ 2 such that

1. for every η ∈ ω<ω the set {φ(x, aηi) : i ∈ ω} is k-inconsistent; and

2. for every σ ∈ ωω, the set {φ(x, aσ|n) : n ∈ ω} is consistent.

A complete theory T is simple if no formula has the tree property.

However, it is not clear to the author whether the previous proof will adapt to
the tree property. Instead, we tackle the problem using the more semantic character-
isation of simplicity given in the preliminaries. Recall from Section 1.1 the following
definition.
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Definition 1.1.23. Let T be a complete theory and C a monster model. A relation
|∗⌣ on triples of small subsets of C is called an abstract independence relation if it is

invariant under automorphisms and satisfies the following conditions.

1. normality: X |∗⌣A B =⇒ X |∗⌣A AB;

2. monotonicity: X |∗⌣A B =⇒ X |∗⌣A B
′ for B′ ⊆ B;

3. base monotonicity: X |∗⌣A D =⇒ X |∗⌣B D for A ⊆ B ⊆ D;

4. transitivity: X |∗⌣A B and X |∗⌣B D =⇒ X |∗⌣A D for A ⊆ B ⊆ D;

5. symmetry: X |∗⌣A B ⇐⇒ B |∗⌣A X;

6. full existence: for any X,A,B there is X ′ ≡A X such that X ′ |∗⌣A B (recall
X ′ ≡A X means that X ′ and X have the same type over A);

7. finite character: if X0 |∗⌣A B for all finite X0 ⊆ X, then X |∗⌣A B;

8. local character: there is a cardinal κ such that for all X and A, there is A0 ⊆ A

with |A0| < κ such that X |∗⌣A0 A.

There are three extra properties that an abstract independence relation |∗⌣ might
satisfy that we are interested in:

9. strictness: if b |∗⌣A b, then b ∈ acl(A);

10. independence theorem over M : if A1 |∗⌣M A2, a1 |∗⌣M A1, a2 |∗⌣M A2, and
a1 ≡M a2, then there is a |= tp(a1/MA1) ∪ tp(a2/MA2) with a |∗⌣M A1A2.

11. stationarity over M : whenever A ⊇ M , a, b ∈ C with a ≡M b, a |∗⌣M A and
b |∗⌣M A, then a ≡A b.

T is simple if and only if there is an abstract independence relation on C satisfying
1–8 and the independence theorem over models. Thus, we will use this notion of
independence for T to define one for T ∪ UCD and show it has all the required
properties.

It will turn out that the transfer of these properties is not specific to the setting
of D-fields. Hence, we will work in more generality.

4.2 Derivation-like theories

Let L ⊆ D be two languages, T a complete and model complete L-theory, and ∆ an
inductive D-theory. Let U be a monster model for T , and let |0⌣ be some relation on
triples of small subsets of U.
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Example. The reader should have in mind the following typical example.

• the language of fields as L;

• the language of differential fields as D;

• the theory of some large, model complete field as T ;

• the theory of differential fields as ∆; and

• algebraic independence or linear disjointness as |0⌣.

Remark 4.2.1. Suppose T ∗ is an expansion by definitions of T . If |0⌣ satisfies any of
1–11 in T , then it also does in T ∗. This is because acl is the same taken in T and
T ∗ and equality of T -types implies equality of T ∗-types.

We write M ≤L N if M is an L-substructure of N and M ≤D N is M is a
D-substructure of N . For A ⊆ M where M is an L-structure, we write ⟨A ⟨L for
the L-substructure generated by A inside M . By aclT we mean the model-theoretic
algebraic closure in the sense of T .

We say that ∆ is derivation-like (with respect to T and |0⌣) if the following
conditions hold:

(a) if M |= ∆ and M ≤L N |= T , then there is a D-structure on N extending the
one on M such that N |= ∆;

(b) if M |= T ∪ ∆ and A ≤D M ≤L U, then aclT (A) ≤D M and aclT (A) |= ∆;
moreover, this is the only D-structure on aclT (A) extending the one on A that
makes aclT (A) into a model of ∆;

(c) if M |= T ∪ ∆ with M ≤L U and A and B are two models of ∆ which are
D-substructures of M with a common aclT -closed D-substructure C such that
A |0⌣C B, then ⟨AB ⟨L ≤D M and ⟨AB ⟨L |= ∆; moreover, this is the only
D-structure on ⟨AB ⟨L extending the ones on A and B and making it into a
model of ∆; and

(d) if A and B are two models of ∆ which are L-substructures of U with a common
aclT -closed D-substructure C such that A |0⌣C B, then there is a D-structure
on ⟨AB ⟨L ≤L U extending the ones on A and B that makes ⟨AB ⟨L into a model
of ∆.

Remark 4.2.2. Suppose ∆ is derivation-like with respect to T . If T ∗ is the Morleyi-
sation of T , then ∆ is derivation-like with respect to T ∗.
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4.3 Transferring neostability properties

For the rest this section, we assume that ∆ is derivation-like with respect to T and
|0⌣ and that T ∪ ∆ has a model companion, T+. Using Fact 1.1.16, we may find a
D-structure C such that C is a monster model for T+ and C|L is a monster model for
T . In this section we will prove that many neostability properties transfer from T

to T+. Recall that aclT refers to model-theoretic algebraic closure in the sense of T ;
acl refers to algebraic closure in the sense of T+ and tp to types in the sense of T+.

Theorem 4.3.1. Suppose |0⌣ satisfies full existence. Let T ∗ be an expansion by
definitions of T to a language L∗. Let K |= T ∗∪T+ and A ≤L∗(D) K. If T ∗∪diagL∗(A)
is complete, then T ∗ ∪ T+ ∪ diagL∗(D)(A) is complete.

Proof. We first note that T ∗∪T+ is model complete. Given any extension of models,
it must be a D-elementary extension since both are models of T+, and hence a L∗(D)-
elementary extension since any symbol from L∗ can be defined with an L-formula.

Let K,L |= T ∗ ∪ T+ and let A be a common L∗(D)-substructure. Both K and
L are models of T ∗ and A is a common L∗-substructure. Since T ∗ ∪ diagL∗(A) is
complete, the bijection A → A is a partial L∗-elementary map from K to L. This
map then extends to a partial L∗-elementary bijection aclKT ∗(A) → aclLT ∗(A); see
Lemma 5.6.4 of [64]. This is an L∗-isomorphism. By property (b), aclKT ∗(A) and
aclLT ∗(A) are D-substructures of K and L, respectively, and are both models of ∆.
Pushing the first D-structure through the L∗-isomorphism, the moreover clause of
(b) tells us that it must also be a D-isomorphism. So we may assume that A is
relatively L∗-algebraically closed in K and L.

By completeness of T ∗ ∪ diagL∗(A), we may think of K and L both as L∗-
substructures of C|L. Now use full existence of |0⌣ to replace L by a copy with
K |0⌣A L inside C|L. Let M ⪯L C|L be some L-elementary substructure containing
both K and L. Since A is relatively algebraically closed in K and L, we can use (d)
to amalgamate the D-structures on K and L to one on ⟨KL ⟨L ≤L M making it a
model of ∆. Then use (a) to extend this to a D-structure on M so that M |= ∆.
Since T+ is the model companion of T ∪ ∆, extend M |= T ∪ ∆ to some N |= T+

which then uniquely expands to a model of T ∗∪T+. Since T ∗∪T+ is model complete,
K ⪯ N ⪰ L, and so K ≡A L. ■

As in Theorem 3.2.7, we collect some immediate consequences.
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Corollary 4.3.2. Suppose |0⌣ satisfies full existence. Let T ∗ be an expansion by
definitions of T which is the model companion of some inductive T ∗

0 in the language
L∗. Then

1. T ∗ ∪ T+ is the model companion of T ∗
0 ∪∆;

2. if T ∗ is the model completion of T ∗
0 , then T ∗ ∪ T+ is the model completion of

T ∗
0 ∪∆; and

3. if T ∗ has quantifier elimination, then T ∗ ∪ T+ has quantifier elimination.

Proof. First we show that T ∗ ∪ T+ and T ∗
0 ∪∆ have the same universal theory. Let

M |= T ∗
0 ∪ ∆. Since T ∗ is the model companion of T ∗

0 , there is some N |= T ∗

containing M as an L∗-substructure. By (a), N expands to a model of ∆, and since
T+ is the model companion, there is some N ′ |= T+ extending N . Now N ′ |= T as
well and hence uniquely expands to a model of T ∗. Since N ≤L N

′ are models of
the model complete theory T , this extension is L-elementary, and hence must be an
L∗-extension. So every model of T ∗

0 ∪∆ embeds in a model of T ∗∪T+. The converse
is similar.

Now the statements follow immediately from Theorem 4.3.1. ■

Proposition 4.3.3. Suppose |0⌣ is invariant and satisfies full existence, monotonic-
ity, and strictness. For any A ⊆ C, we have acl(A) = aclT (⟨A ⟨D).

Proof. Let F = aclT (⟨A ⟨D). By (b), F is a D-substructure of C. Clearly F ⊆ acl(A).
For the converse, suppose x ̸∈ F . We will show that tp(x/F ) is not algebraic.

Suppose for a contradiction that tp(x/F ) has only finitely many realisations. Let
K be some small D-elementary substructure of C containing F and all the realisations
of tp(x/F ). Now use full existence of |0⌣ to find L ≡F K as L-structures with
L |0⌣F K inside C|L. Let M be some L-elementary substructure of C|L containing K
and L. The partial L-elementary map α : K → L fixing F is an L-isomorphism. Use
this L-isomorphism to define an isomorphic D-structure on L. Now F is aclT -closed,
and so use (d) to amalgamate the D-structures on K and L to one on ⟨KL ⟨L ≤L M

making it a model of ∆. By (a), M expands to a model of ∆. Since T+ is the
model companion of T ∪∆, there is some N |= T+ extending M . Now both N and
C|L are models of the complete L-theory T ∪ diagL(M) – completeness is by model
completeness of T . So we may embed N inside C|L over M , and thus, without loss
of generality, M ≤D N ≤L C|L.
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By model completeness of T+, there is a D-elementary embedding j : N → C

that fixes K. Now

tpC(x/F ) = tpK(x/F ) = tpL(α(x)/F ) = tpN(α(x)/F ) = tpC(jα(x)/F )

and hence jα(x) is a realisation of tp(x/F ). Since K contained all such realisations,
we have jα(x) ∈ K. We also have j(L) |0⌣F K by invariance. Then monotonicity
gives jα(x) |0⌣F jα(x), and strictness gives jα(x) ∈ aclT (F ) = F . But now j and α

both fixed F , so we must have had x ∈ F , a contradiction. ■

Theorem 4.3.4. Define the following relation on triples of small subsets of C:

A |+⌣
C
B ⇐⇒ acl(AC) |0⌣

acl(C)
acl(BC).

Then

(i) if |0⌣ is an abstract independence relation, so is |+⌣;

(ii) if |0⌣ is a strict independence relation, so is |+⌣;

(iii) for some parameter set M , if |0⌣ is an independence relation that satisfies the
independence theorem over M , so is |+⌣; and

(iv) for some parameter set M , if |0⌣ is an independence relation that satisfies
stationarity over some M , so is |+⌣.

Proof. For (i) and (ii), invariance, normality, monotonicity, transitivity, symmetry,
finite character, local character, and strictness are either by definition or follow from
the corresponding property of |0⌣. For base monotonicity, suppose A |+⌣C B and C ⊆
D ⊆ B. We may also assume that A ⊇ C by normality. Then acl(A) |0⌣acl(C) acl(B).
By monotonicity, we have acl(A) |0⌣acl(C) acl(D). By (c), ⟨acl(A) acl(D) ⟨L is a D-
substructure. So ⟨AD ⟨D ⊆ ⟨acl(A) acl(D) ⟨L, and so acl(AD) ⊆ aclT (acl(A) acl(D)).
By base monotonicity and normality for |0⌣, we get acl(A) acl(D) |0⌣acl(D) acl(B).
By full existence, we get aclT (acl(A) acl(D)) |0⌣acl(A) acl(D) acl(B), and by transitivity
and monotonicity, acl(AD) |0⌣acl(D) acl(B). That is, A |+⌣D B.

Full existence. Suppose a,A,B are given inside C. Let M be a small D-
elementary substructure of C containing these, and let C = acl(A). Use full existence
for |0⌣ to find M ′ |0⌣C M with M ′ ≡L

C M inside C|L. Let N be some L-elementary
substructure of C|L containing M and M ′. Use the L-isomorphism α : M →M ′ that
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fixes C to put a D-structure on M ′. Using (d), the D-structures on M and M ′ then
amalgamate to one on ⟨MM ′ ⟨L ≤L N which makes it into a model of ∆. Then by (a),
N expands to a model of ∆, which then embeds inside some N ′ |= T+. As T is model
complete, T ∪ diagL(N) is complete, and both N ′ and C|L are models of it. So we
may embed N ′ inside C|L over N and thus assume that N ≤D N

′ ⪯L C|L. And now
since N ′ |= T+, we may D-elementarily embed N ′ inside C over M via j : N ′ → C.
By invariance, we get j(M ′) |0⌣C M and by monotonicity acl(Ajα(a)) |0⌣C acl(AB),
that is, jα(a) |+⌣A B. In addition,

tpC(a/C) = tpM(a/C) = tpM ′(α(a)/C) = tpN ′(α(a)/C) = tpC(jα(a)/C).

Independence theorem. Let M |= T+, A1 |+⌣M A2, a1 |+⌣M A1, a2 |+⌣M A2, and
tp(a1/M) = tp(a2/M). We will show that there is a |+⌣M A1A2 realising tp(a1/A1)∪
tp(a2/A2). Let N |= T+ be some elementary substructure of C containing all of the
above subsets.

Claim 1. We may assume that A1, A2, a1, and a2 are all models of T+ containing
M .
Proof of claim. By Löwenheim–Skolem, find an elementary substructure Ā′

1 ≺ N

containing A1 and M . By full existence, find Ā1 ≡MA1 Ā
′
1 with Ā1 |+⌣MA1

A2. Then
find an elementary Ā′

2 ≺ N containing A2 and M , and by full existence Ā2 ≡MA2 Ā
′
2

with Ā2 |+⌣MA2
Ā1. Then

Ā1 |+⌣
MA1

A2 and A1 |+⌣
M
A2 =⇒ Ā1 |+⌣

M
A2 by transitivity

Ā1 |+⌣
M
A2 and Ā2 |+⌣

MA2

Ā1 =⇒ Ā1 |+⌣
M
Ā2

Do the same with a1 and a2. Löwenheim–Skolem constructs the models ā′i by
closing Mai under Skolem functions. The elementary map Ma1 7→ Ma2 extends to
the closures of Mai under Skolem functions, and so we will have ā′1 ≡M ā′2 and hence
ā1 ≡M ā2. So we may assume that A1, A2, a1, a2 are all models of T+ containing M .

Claim 2. There is some a ∈ C|L with a |0⌣M N with a |= tpL(a1/A1)∪tpL(a2/A2).
Proof of claim. By the independence theorem for |0⌣, there is a ∈ C|L with a |0⌣M

A1A2 and a |= tpL(a1/A1) ∪ tpL(a2/A2). Now by full existence for |0⌣, we can find
a′ ≡L

A1A2
a such that a′ |0⌣A1A2

N . Let α be the L-automorphism of N ′ sending
a 7→ a′ and fixing A1A2. By invariance, a′ |0⌣M A1A2, and by transitivity, a′ |0⌣M N .
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Renaming a′ to a, we have that a |0⌣M N .
Claim 3. Inside C|L, there are L-isomorphic copies of N , N1 and N2, both

containing a, with N1 |0⌣a N2 and N |0⌣A1A2
N1N2.

Proof of claim. For i = 1, 2, letN ′
i be the copy ofN coming from the L-automorphism

Aiai 7→ Aia. By full existence for |0⌣, let Ni ≡Aia N
′
i with N1 |0⌣A1a

N and N2 |0⌣A2a

NN1. Then N |0⌣A1
N1 and N |0⌣A2

N2 by transitivity. From a |0⌣M N we get a |0⌣A1

A2, and so A1a |0⌣A1
A2. Along with A1 |0⌣M A2, transitivity gives A1a |0⌣M A2,

so that A1a |0⌣a A2 by base monotonicity. This implies A1 |0⌣a A2 and N1 |0⌣a A2.
This last part implies N1 |0⌣a A2a and along with N2 |0⌣A2a

NN1 implies N1 |0⌣a N2.
Also, N |0⌣A1A2

N1 by base monotonicity since A1A2 ⊆ N . From NN1 |0⌣A2a
N2,

we get N |0⌣A2aN1
N2, and hence N |0⌣A2N1

N2 since a ∈ N1. Combining this with
N |0⌣A1A2

N1 gives N |0⌣A1A2
N1N2.

Claim 4. There is some model of T ∪∆ which is a D-extension of N , N1, and
N2.
Proof of claim. Define D-structures on N1 and N2 such that (Ni, Ai, a) is D-
isomorphic to (N,Ai, ai) under αi : N → Ni. So Ni |= T+ for i = 1, 2. Let P
be some L-elementary substructure of C|L containing N , N1, and N2. Note that
since ai is a D-substructure of N , a is also a D-substructure of Ni. Now N1 |0⌣a N2,
and a is aclT -closed – it is a model of the model complete theory T – so their D-
structures can be amalgamated to one on ⟨N1N2 ⟨≤L C|L making it into a model
of ∆ using (d). By (c) and the fact that A1 |0⌣M A2, we have that ⟨A1A2 ⟨L is a
D-substructure of C. And hence by (b), aclT (A1A2) is a D-substructure of C. Now
N |0⌣A1A2

N1N2, and so N |0⌣aclT (A1A2) ⟨N1N2 ⟨L by base monotonicity and full ex-
istence. Now amalgamate the D-structures on N and ⟨N1N2 ⟨L using (d) to one on
⟨NN1N2 ⟨L ≤L C|L making it into a model of ∆. By (a), P expands to a model of ∆
extending the D-structures on N , N1, and N2.

Now P extends to some S |= T+. Again since T ∪ diagL(P ) is complete, we may
assume that P ≤D S ⪯L C|L. Now let j : S → C be the D-elementary embedding of
S in C that fixes N . Then

tpC(a1/A1) = tpN(a1/A1) = tpN1(a/A1) = tpS(a/A1) = tpC(j(a)/A1)

and similarly we have j(a) ≡A2 a2. By construction of a, we had a |0⌣M N , and by
monotonicity and invariance, we get j(a) |0⌣M acl(A1A2), and so j(a) |+⌣M A1A2.

Stationarity. By Morleyising T and using Corollary 4.3.2, we may assume that
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T+ has quantifier elimination. Let M ≺ N ≺ C, a, b ∈ C such that tp(a/M) =
tp(b/M), and a |+⌣M N and b |+⌣M N . We need to show that tp(a/N) = tp(b/N).
Write Ka = acl(Ma) and Kb = acl(Mb). By definition of |+⌣, Ka |0⌣M N and
Kb |0⌣M N . By stationarity for |0⌣, tpL(Ka/N) = tpL(Kb/N), and hence there is
an L-isomorphism ⟨KaN ⟨L → ⟨KbN ⟨L that fixes N . Now by (c), both ⟨KaN ⟨L and
⟨KbN ⟨L are D-substructures of C which are models of ∆, and by its moreover clause,
this L-isomorphism must be a D-isomorphism. By quantifier elimination for T+, we
must have tp(a/N) = tp(b/N). ■

Remark 4.3.5. The moreover clauses of axioms (b) and (c) are only necessary to
prove stationarity transfers from |0⌣ to |+⌣.

4.4 Examples

In this section we will see some applications of the above framework, both to existing
proofs of simplicity and stability in the literature, and to new ones.

D-fields are derivation-like over ACFA0,t

Let D be a finite-dimensional k-algebra satisfying Assumption A: that each maximal
ideal of D has residue field k. Recall then that every D-field (K, ∂) has a sequence
σ1, . . . , σt of associated endomorphisms which are uniformly Lring(∂)-definable in
every D-field.

Example 4.4.1. Let T be the simple Lring(σ1, . . . , σt)-theory ACFA0,t, and let |0⌣ be
nonforking independence. Let D be the language Lring(∂1, . . . , ∂l) and ∆ the theory
of D-fields whose associated endomorphisms are σ1, . . . , σt. Then ∆ is derivation-like
with respect to T .

Axiom (a) is by Lemma 1.6.5. For axiom (b), let M be a D-field and A some
D-structure. Now the D-structure on A is a D-operator A→ M , which extends by
Lemma 1.6.5 to a D-operator aclT (A)→M . We also have a D-operator aclT (A)→
M given by restricting the D-field structure on M . Since aclT (A) = Aalg is 0-étale
over A, these must agree by Lemma 1.6.5. Axiom (c) comes from the multiplicative
rules for D-fields, and its moreover clause and (d) come from Lemma 5.1 of [53].
Note also that forking independence in ACFA0,t is precisely linear disjointness after
closing under acl.
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Then Theorem 4.3.4 gives a different, less algebraic proof of Theorem 5.9 of [53].

Very Lring(C)-slim fields

In order to show that axiom (d) held in the previous subsection, we needed a full
algebraic characterisation of nonforking independence. We can relax this requirement
using a modified notion of Junker and Koenigsmann – that of very slim fields [32].
In these fields, algebraic independence is an abstract independence relation, and thus
nonforking independence always implies algebraic independence.

Let L be some language expanding the language of rings and T some L-theory
of fields satisfying the following assumption.

Assumption 4.4.2. Suppose A and B are L-substructures of some K |= T . Then
the field compositum of A and B is also an L-substructure of K.

Example 4.4.3. The above is satisfied if L = Lring(C).

Definition 4.4.4. Let K be a field in the language L. We say that K is L-slim if for
every L-substructure F , we have aclKL (F ) = F alg. Equivalently, if for every subset
A, we have aclKL (A) = ⟨A ⟨algL . By F alg we always mean the relative, field-theoretic
algebraic closure of F in K.

We say that K is very L-slim if every L-structure elementarily equivalent to K
is L-slim.

Remark 4.4.5. 1. We recover the definition of (very) slim from [32] by setting
L = Lring and only considering fields in the language of rings. In other words,
a field with no extra structure is (very) slim exactly when it is (very) Lring-slim.

2. As mentioned in [32] for slim fields, to check whether K is very L-slim it is
enough to check whether a sufficiently saturated model of its theory is L-slim.

The authors of [32] then show that algebraic independence in very slim fields
is an abstract independence relation – in general, algebraic independence does not
satisfy full existence (called existence in [32]). Here we need to modify algebraic
independence slightly to account for the extra structure.

Definition 4.4.6. For a monster model of Th(K), define the following relation on
triples of subsets of K:

A |L⌣
D
B ⇐⇒ ⟨AD ⟨L |alg⌣

⟨D ⟨L
⟨BD ⟨L.
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We say that A and B are L-algebraically independent over D.

Theorem 2.1 of [32] says that a field is very slim if and only if algebraic indepen-
dence is an independence relation. The following result is the very L-slim analogue.

Lemma 4.4.7. K is very L-slim if and only if |L⌣ is a strict independence relation.

Proof. Invariance, normality, monotonicity, symmetry, transitivity, finite character,
local character, and strictness are either by definition or follow from the correspond-
ing property of |alg⌣ . Base monotonicity follows from Assumption 4.4.2.

We now follow the proof of Theorem 2.1 of [32] to show that K is very L-slim if
and only if |L⌣ satisfies existence. Let a, B, C be given, and consider tp(a/⟨C ⟨). If
it is algebraic, a ∈ acl(⟨C ⟨), and by very L-slimness, a ∈ ⟨C ⟨alg. Then a |alg⌣⟨C ⟨⟨B ⟨.
If it is not algebraic, then among the infinitely many realisations, there is one which
is transcendental over ⟨B ⟨by compactness. Thus we have shown that if a is a
tuple of length one, then there is some a′ |= tp(a/⟨C ⟨) with a′ |alg⌣⟨C ⟨ ⟨B ⟨. If a =
(a1, . . . , an), then find (a′1, . . . , a′n) ≡⟨C ⟨(a1, . . . , an) with a′1 |alg⌣⟨C ⟨⟨B ⟨. By induction,
find (a′′2, . . . , a′′n) ≡⟨C ⟨a′1 (a′2, . . . , a′n) with a′′2, . . . , a

′′
n |alg⌣⟨C ⟨a′1

⟨B ⟨. By transitivity,
(a′1, a′′2 . . . , a′′n) ≡⟨C ⟨ (a1, . . . , an) and a′1, a

′′
2 . . . , a

′′
n |alg⌣⟨C ⟨ ⟨B ⟨. So for all finite tuples

a, there is some a′ ≡⟨C ⟨a with a′ |alg⌣⟨C ⟨⟨B ⟨. By compactness this is true for infinite
a. Now apply it with ⟨Ca ⟨to get a′ |L⌣C B.

If K is not L-slim, then there is some L-substructure k and a ∈ acl(k) with a

transcendental over k. Let C consist of the finitely many conjugates of a over k.
Then there is no realisation of tp(a/k) which is algebraically independent from C

over k. But if we did have b |= tp(a/k) with b |L⌣k C, then we would also have
b |alg⌣k C by monotonicity, a contradiction. ■

Remark 4.4.8. Remark 1.20 of [1] says that nonforking independence (which is not
in general an independence relation) implies any independence relation. Indeed this
fact is implicit in the proof of the Kim–Pillay theorem, see Theorem 4.2 Claim I of
[35].

We now restrict to the case when L = Lring(C) for some set of constants C.
Remark 4.4.9. Let C be the field generated by the constants C inside K. Then by
Lemma 2.12 of [31], K is very Lring(C)-slim if and only if it is algebraically bounded
over C.

Lemma 4.4.10. Let K be an Lring(C)-structure which is a perfect field. Suppose K
is large and its Lring(C)-theory is model complete. Then K is very Lring(C)-slim.
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Proof. The same proof as in Theorem 5.4 of [32] works here. In part 2 of that
proof, when they take a subfield k, we instead take an L-substructure k, that is,
a subfield containing the constants C. Model completeness then implies that φ is
an existential Lring(C)-formula with parameters from k. But this is the same as an
existential Lring-formula with parameters from k since k contains C. The rest of the
proof is the same. ■

Example 4.4.11. Suppose T is the simple Lring(C)-theory of a very Lring(C)-slim
field of characteristic zero and |0⌣ is nonforking independence. Let D be some local
finite-dimensional k-algebra with residue field k, let D := Lring(C)∪{∂1, . . . , ∂l} and
let ∆ be one of the two following D-theories:

• the theory of D-fields; or

• the theory of D-fields where the operators pairwise commute.

Then ∆ is derivation-like with respect to T and |0⌣.

Proof. If ∆ is just the theory of D-fields, then axioms (a), (b), and (c) hold for the
same reason they do in Example 4.4.1. For axiom (d), since T is the theory of a very
Lring(C)-slim field, Remark 4.4.8 tells us that if A |0⌣C B where C is aclT -closed, then
A and B are algebraically independent over C, and hence they are linearly disjoint
over C. Now we amalgamate using Lemma 5.1 of [53].

If ∆ is the theory of D-fields where the operators pairwise commute, the only
things left to check are that in (a), the D-field extension N may be taken to have
commuting operators if M does, and that in (d), the D-field structure on AB may
also be taken to have commuting operators if A and B do.

For the first, let (M,∂) be a D-field with commuting operators, and let N be
some field extension. Let T be a transcendence basis for N/M . Define δ on M(T )
by setting δ(t) = t ⊗ 1 ∈ N ⊗k D. So δ is a D-operator along M(T ) ⊆ N whose
operators pairwise commute. This is equivalent to the following diagram commuting.

N ⊗k D N ⊗k D ⊗k D

M(T )

N ⊗k D N ⊗k D ⊗k D

δ⊗idD

idN⊗Γ

δ

δ

δ⊗idD
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where Γ: D ⊗k D → D ⊗k D is the map that swaps the two coordinates. Now δ

extends to a D-field structure on N by Lemma 1.6.5 since N/M(T ) is 0-smooth.
Then (δ ⊗ idD) ◦ δ and (idN ⊗ Γ) ◦ (δ ⊗ idD) ◦ δ are two D ⊗k D-structures on N

extending (δ⊗ idD)◦δ = (idM ⊗Γ)◦ (δ⊗ idD)◦δ on M(T ). Since N/M(T ) is 0-étale,
they must agree. So δ is a D-field structure on N with pairwise commuting operators.
Axiom (d) is a similar argument using the uniqueness guaranteed in Lemma 5.1 of
[53]. ■

Corollary 4.4.12. 1. If the model companion of PAC fields with a (pairwise com-
muting) D-field structure exists, then it is simple.

2. If the model companion of algebraically closed fields with a pairwise commuting
D-field structure exists, then it is stable.

Remark 4.4.13. In the next chapter, we will prove that the theory of PAC fields with
a D-field structure has a model companion and apply the results of this section.

Separably differentially closed fields of infinite differential de-
gree of imperfection

In [28], Ino and León Sánchez study the class of ordinary differential fields which
are existentially closed in every differential field extension which is separable as an
extension of fields. They show that this class is elementary, and they denote its
Lring(δ)-theory by SDCF: separably differentially closed fields. The theory of sepa-
rably differentially closed fields of some fixed characteristic p is denoted by SDCFp.
Note that SDCF0 is precisely DCF0.

Recall that, in the case of fields, SCFp is not a complete theory: one needs to
specify the degree of imperfection e ∈ N ∪ {∞}. Likewise, the authors define the
differential degree of imperfection of a differential field (K, δ) of characteristic p to
be ϵ ∈ N ∪ {∞} such that [CK : Kp] = pϵ.

Definition 4.4.14. A tuple ā ⊆ CK is called differentially p-independent if the p-
monomials over ā are linearly independent overKp. The tuple ā is called a differential
p-basis if the p-monomials form a basis for CK over Kp.

As the authors mention in Remark 5.3, (K, δ) has differential degree of imperfec-
tion ϵ if and only if it has a differential p-basis of size ϵ.

121



Derivation-like theories and neostability

Definition 4.4.15. 1. The Lring(δ)-theory of differential fields of characteristic p
and differential degree of imperfection ϵ is denoted DFp,ϵ.

2. The Lring(δ)-theory of separably differentially closed fields of characteristic p
and differential degree of imperfection ϵ is denoted SDCFp,ϵ.

Recall now the Lring-definable functions (λn,i : n ∈ ω, i ∈ pn) from Section 1.4.
Field extensions which preserve these functions are precisely the separable ones. In
Section 6.2 of [28], the authors define the differential λ-functions, (ℓn,i : n ∈ ω, i ∈
pn), and show that SDCFℓ

p,ϵ is the model companion of SCFℓ
p,∞ ∪DFℓ

p,ϵ. We require
the analogous result using the algebraic λ-functions. The argument is essentially the
same, but we will provide details anyway.

Fact 4.4.16. SDCFλ
p,∞ is the model companion of SCFλ

p,∞ ∪ {δ is a derivation}.

Proof. Firstly, every model of SDCFλ
p,∞ is also a model of SCFλ

p,∞∪{δ is a derivation}
by Lemma 4.5 of [28]. By Lemma 5.6 of [28], any model of SCFλ

p,∞∪{δ is a derivation}
has a separable extension with infinite differential degree of imperfection, and by
Proposition 5.10, this has a separable extension which is a model of SDCFp,∞. Since
all extensions are separable, they must preserve the λ-functions.

Now suppose (K, δ) ≤ (L, d) is an extension of models of SDCFλ
p,ϵ. Since this field

extension preserves the λ-functions, L/K is a separable field extension. Now expand
both K and L by the differential λ-functions. Since L/K is separable, the extension
K ≤ L will also preserve these differential λ-functions; see Lemma 6.5. Then by
model completeness for SDCFℓ

p,ϵ (Theorem 6.6), K ⪯ L as differential fields. Since
the λ-functions are Lring-definable, K ⪯ L as models of SDCFλ

p,ϵ. ■

In Theorem 6.8 of [28], Ino and León Sánchez prove that the Lring(δ)-theory
SDCFp,∞ is stable by counting types. They do not characterise forking. The re-
mainder of this subsection is devoted to showing that the theory of differential fields
is derivation-like with respect to SCFλ

p,∞ and hence that we may use the results of
this chapter to characterise forking in SDCFp,∞.

Let L be the language of rings expanded by the λ-functions λn,i. Let T =
SCFλ

p,∞. This theory has quantifier elimination and is stable. Let |0⌣ be nonforking
independence. Srour characterises this in [61]:

A |0⌣
C
B ⇐⇒ A and B are algebraically independent and p-disjoint over C.
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Proposition 4.4.17. The theory of differential fields is derivation-like with respect
to SCFλ

p,∞.

Proof. Axiom (a) holds since derivations can always be extended to separable exten-
sions; (b) holds since they extend uniquely to separably algebraic extensions. For
axiom (c), if A |0⌣C B, then by p-disjointness, AB is a separable subfield of M ; that
is ⟨AB ⟨L = AB. Now by the Leibniz rule for derivations, AB is closed under δ if
both A and B are. For axiom (d) and the moreover clause of (c), the same argu-
ment shows that ⟨MN ⟨L = MN . Also by Srour’s characterisation of |0⌣, M and N

are linearly disjoint over A. Then the field compositum MN is the quotient field
of M ⊗A N , and thus by Lemma 5.1 of [53] there is a unique derivation on MN

extending the ones on M and N . ■

Corollary 4.4.18. SDCFp,∞ is stable and in the language Lλ(δ) nonforking inde-
pendence is given by

A |+⌣
C
B ⇐⇒ acl(A) is linearly disjoint and p-disjoint from acl(B) over acl(C).
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Chapter 5

Pseudo D-closed fields

We now apply some of the results obtained in Chapters 3 and 4 to the study of
PAC substructures in the theory D-CF0. We again impose Assumption B – that D
is local. Recall that a field K is called pseudo algebraically closed (PAC) if every
absolutely irreducible variety over K has a K-rational point. PAC fields are large
– a K-irreducible variety with a smooth K-rational point is absolutely irreducible –
and a field is PAC if and only if it is existentially closed in every regular extension.

In [13], Chatzidakis and Pillay show that if TC is the Lring(λ)(C)-theory of a
bounded PAC field with λ interpreted by the λ-functions and the constants C nam-
ing coefficients of irreducible polynomials that encode all the finitely many Galois
extensions of a fixed degree, then TC is simple and that if it, in addition, has finite
degree of imperfection, then it eliminates imaginaries after naming constants for a
p-basis. Hoffman and León Sánchez in [26] then prove the analogous results for
bounded pseudo differentially closed fields of characteristic zero. Their result gives
an example of a differential field whose theory is simple and unstable. In this chapter
we will prove analogous results in the case of D-fields.

5.1 PAC substructures in D-CF0

PAC substructures of a given theory have been defined as generalisations of PAC
fields in various ways. We use the definition presented in [25].

Definition 5.1.1. Let T be an arbitrary complete L-theory, and C a monster
model. An extension of L-substructures A ≤ B of C is called L-regular if dcleq(B)∩

124



PAC substructures in D-CF0

acleq(A) = dcleq(A). An L-substructure A of C is called a PAC substructure if A is
existentially closed in every L-regular extension.

Consider now the Lring(∂)-theory D-CF0. This theory eliminates imaginaries (see
Theorem 5.12 of [53]), acl(A) is the (full) field-theoretic algebraic closure of the D-
field generated by A (Proposition 5.5 of [53]), and dcl(A) is the D-field generated by
A (this is not in [53] since there D-fields may have associated endomorphisms; in the
case when D is local, this fact is proved in the same way as for differential fields).
Then an extension of D-fields is Lring(∂)-regular exactly when the field extension
is field-theoretically, relatively algebraically closed (and so regular in the field sense
since we are in characteristic zero).

We now prove three conditions equivalent to being a PAC substructure in D-CF0.

Theorem 5.1.2. Let (K, ∂) be a D-field. The following are equivalent:

(1) (K, ∂) is a PAC substructure in the theory D-CF0;

(2) K is a PAC field and (K, ∂) |= UCD;

(3) if (V, s) is a D-variety over K and V is absolutely irreducible, then (V, s) has
a K-rational sharp point; and

(4) (K, ∂) is existentially closed in every D-field extension (L, δ) which is R-regular,
that is, where tpD-CF0(a/K) is stationary for every finite tuple a ∈ L.

Proof. (1) =⇒ (2). Let L be any regular field extension of K, and let δ be any D-
structure on L extending ∂. Then (K, ∂) is existentially closed in (L, δ) as D-fields,
and hence K is existentially closed in L as fields. So K is PAC. Now since K is
large, there is a D-field extension (F, γ) |= UCD of (K, ∂) such that K is elementary
in F as fields. In particular, K ⊆ F is regular. By (1), (K, ∂) is existentially closed
in (F, γ). Since UCD is inductive, (K, ∂) |= UCD.

(2) =⇒ (1). Let (L, δ) be an Lring(∂)-regular D-field extension of (K, ∂) so that
L/K is a regular field extension. Since K is PAC, K is existentially closed in L

as fields. By characterisation (5) of Theorem 3.3.5, (K, ∂) is existentially closed in
(L, δ) as D-fields.

(2) =⇒ (3). If V is absolutely irreducible, then K(V )/K is a regular extension.
V has a smooth K(V )-rational point, and since K is existentially closed in K(V ), V
has a smooth K-rational point. By characterisation (3) of UCD in Theorem 3.3.5,
(V, s) has a K-rational sharp point.
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(3) =⇒ (2). Let V be an absolutely irreducible variety defined over K. Extend
the D-field structure on K to one on K(V ) using Lemma 1.6.5. As in the proof of
Theorem 3.3.5 (3) =⇒ (1), there is an open affine subset U ⊆ V defined over K such
that this D-ring structure restricts to one on K[U ]. This gives a D-variety structure
s on U , making (U, s) an absolutely irreducible D-variety defined over (K, ∂). By
(3), (U, s) has a K-rational sharp point, and hence V has a K-rational point. So K
is a PAC field. We again use characterisation (3) of Theorem 3.3.5 and the fact that
a K-irreducible variety with a smooth K-rational point is absolutely irreducible to
get that (K, ∂) |= UCD.

(1) ⇐⇒ (4) is the content of Lemma 3.36 in [25]; R-regular extensions are the
same as Lring(∂)-regular extensions since D-CF0 is stable and eliminates imaginaries.

■

We say that a D-field is pseudo D-closed if any of the equivalent conditions of
Theorem 5.1.2 hold.

Remark 5.1.3. Apart from condition (3), this is just the D-field analogue of Theo-
rem 5.16 from [38]. There the authors need to consider differential varieties as they
work with several commuting derivations. In a single derivation, it is enough to
consider D-varieties; see Proposition 5.6 of [55] for instance.

5.2 The model theory of bounded pseudo D-closed
fields

Theorem 5.2 of [26] states that the theory of a bounded pseudo differentially closed
field (that is, a PAC substructure of DCF0,m) is simple and eliminates imaginaries.
We will now prove the D-field analogue. Let (K, ∂) be a bounded pseudo D-closed
field. For each n > 1, let N(n) be the degree over K of the Galois extension
composite of all Galois extensions of K of degree n. Let C = (cn,i)n>1,0≤i<N(n)

be the set of constant symbols in our language L = Lring(C), and consider the
set of L-sentences ΣC = {σn : n > 1} where σn says that the polynomial xN(n) +
cn,N(n)−1x

N(n)−1 + · · ·+cn,0 is irreducible and the extension this polynomial defines is
Galois and contains all Galois extensions of K of degree n. This is the same set-up
used by Chatzidakis and Pillay in Section 4 of [13] in their treatment of bounded
PAC fields. Let T+ = Th(K, ∂)∪ΣC . Note then that T+ ⊇ ThLring(K)∪ΣC ∪UCD.
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For the next two proofs, we will at times need to refer to notions both in the sense
of T+ and in the sense of D-CF0. In the second case, we will always include this
as a superscript; if no superscript is given, the notion should be understood in the
sense of whatever model of T+ we are working in. The full, field-theoretic algebraic
closure of A is denoted by Ã, and Aalg denotes the relative, field-theoretic algebraic
closure of A. If A ⊇ C, then Aalg is equal to aclL(A) since models of T+ are very
L-slim.

Lemma 5.2.1. Let (F, ∂, C) |= T+, and A ≤ B ≤ F with A acl-closed in the sense
of T+. Then

aclD-CF0(B) = acl(B) · aclD-CF0(A).

Proof. Since B is a D-field containing C and F is very L-slim, acl(B) = Balg, and
aclD-CF0(B) = B̃. So we need to show B̃ = Balg · Ã. The proof of Proposition 4.6(2)
of [13] shows that the restriction maps Gal(F )→ Gal(A) and Gal(F )→ Gal(acl(B))
are isomorphisms, and hence the restriction map Gal(acl(B))→ Gal(A) is an isomor-
phism. Therefore, any automorphism of B̃ that fixes Balg · Ã must also fix B̃. Since
we are in characteristic zero, B̃/Balg ·Ã is a Galois extension, and so B̃ = Balg ·Ã. ■

Remark 5.2.2. A similar result occurs in Lemma 3.8 of [57]. In [25], the author
requires this fact as an assumption to prove his analogue of the following theorem.

Theorem 5.2.3. Let (F, ∂, C) |= T+ and (E, ∂, C) ⊆ (F, ∂, C). Then

(1) acl(E) = Ealg;

(2) if E = acl(E), then T+ ∪ diag(E) is complete;

(3) T+ is model complete;

(4) the independence theorem holds for T+ over algebraically closed sets;

(5) T+ is simple and forking is given by forking independence in D-CF0;

(6) T+ has elimination of imaginaries.

Proof. (1). By Proposition 4.3.3 since (F,C) is very Lring(C)-slim (it is model com-
plete, large, and characteristic zero).

(2). By Proposition 4.6(2) of [13], ThLring(K) ∪ ΣC ∪ diag(E ↾L) is complete.
Then Theorem 3.2.6 tells us that ThLring(K) ∪ΣC ∪UCD ∪ diag(E) is complete. So
T+ ∪ diag(E) is complete.
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(3). By Theorem 3.2.7(i) since ThLring(K) ∪ ΣC is model complete (Proposi-
tion 4.6(1) of [13]).

(4). This follows from Theorem 4.3.4, Example 4.4.11, and the fact that the
independence theorem over algebraically closed sets holds for bounded PAC fields
(Theorem 4.7 of [13]).

(5). By Theorem 4.3.4, Example 4.4.11, and the corresponding result for bounded
PAC fields (Corollary 4.8 of [13]) we know that T+ is simple and forking independence
is given by linear disjointness after closing under acl – the relative algebraic closure of
the D-field it generates. We can then use general properties of linear disjointness of
regular extensions, along with Lemma 5.2.1, to show that, if A, B, and D are all acl-
closed, then A and B are linearly disjoint over D if and only if Ã is linearly disjoint
from B̃ over D̃. This is precisely forking independence in D-CF0 (see Theorem 5.9
of [53]).

(6). This proof is essentially a combination of Theorem 5.12 of [53], Theorem 4.36
of [25], and Theorem 5.6 of [26]. Nonetheless, some details will be provided. We will
assume that (F, ∂, C) is a monster model of (some completion of) T+, and that (D, ∂)
is a monster model of D-CF0 extending it. We write |⌣ for nonforking independence
in (F, ∂, C). If we omit a superscript from an operator, we mean in the sense of
(F, ∂, C).

We need the notion of dimension from Definition 5.10 of [53]. If K is a D-
field, then dimD(a/K) = (trdeg(∇r(a)/K) : r < ω) ∈ ωω, where ∇r(a) is the tuple
applying words of length at most r in the language {∂1, . . . , ∂l} to a. We order
dimensions with the lexicographic order on ωω. Note that dimD(a/K) = dimD(a/K̃).
Using Lemma 5.11 of [53], we then get that if L/k is a regular extension, dimD(a/k) =
dimD(a/L) if and only if aclD-CF0(ka) is linearly disjoint from L̃ over k̃ if and only if
a |⌣k L.

Let e ∈ (F, ∂, C)eq given by a 0-definable function f and a finite real tuple a ∈ F ,
that is, f(a) = e. Let E = acleq(e) ∩ F and let Q be the set of realisations of
tp(a/E). We now follow the proof in Theorem 5.12 of [53] to find some u ∈ Q such
that f(u) = e and u |⌣E a.

As in Theorem 5.12 of [53], Neumann’s lemma tells us that there is some b0 |=
tp(a/Ee) such that acleq(Ea)∩ acleq(Eb0)∩F = E. Then f(b0) = e and b0 ∈ Q. We
want b ∈ F such that

• b |= tp(a/Ee);
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• acleq(Ea) ∩ acleq(Eb) ∩ F = E;

• b has maximal dimD over acl(Ea).

By the same argument as in Theorem 5.12 of [53], we can in fact choose such a b.
Now let u |= tp(b/ acl(Ea)) with u |⌣Ea b. Then f(u) = e. It remains to

show u |⌣E a. Since u |⌣Ea b, we have that acleq(Eau) ∩ acleq(Eab) ⊆ acleq(Ea).
Then acleq(Eu)∩ acleq(Eb)∩F ⊆ acleq(Ea)∩ acleq(Eb)∩F = E. Let d be such that
tp(bu/Ee) = tp(ad/Ee). Then d |= tp(a/Ee) and acleq(Ea)∩acleq(Ed)∩F = E. By
maximality, dimD(d/ acl(Ea)) ≤ dimD(b/ acl(Ea)), and since dimD is automorphism
invariant, dimD(u/ acl(Eb)) ≤ dimD(b/ acl(Ea)). We also have that

dimD(u/ acl(Eb)) ≥ dimD(u/ acl(Eab)) = dimD(u/ acl(Ea)) = dimD(b/ acl(Ea)).

The first equality is true since u |⌣Ea b and the second since u and b have the same
type over acl(Ea). Hence all these dimensions are equal, and dimD(u/ acl(Eb)) =
dimD(u/ acl(Eab)), that is, u |⌣Eb a.

Let p = tpD-CF0(u/ acl(Eab)). Since acl(Eab) is regular in F and u ∈ F , p
is stationary (recall that R-regular and Lring(∂)-regular extensions are the same).
Then Cb(p) ⊆ dclD-CF0(acl(Eab)) = acl(Eab) ⊆ F . From u |⌣Ea b, we get Cb(p) ⊆
aclD-CF0(Ea), and from u |⌣Eb a, we get Cb(p) ⊆ aclD-CF0(Eb). So

Cb(p) ⊆ aclD-CF0(Ea) ∩ aclD-CF0(Eb) ∩ F
= acl(Ea) ∩ acl(Eb)
= E.

So p does not fork over Ẽ and u |⌣E ab. Then u |⌣E a. This completes the
claim. We now follow the rest of the argument in Theorem 5.6 of [26]. Let D =
{d ∈ Q : f(d) = e}. If D = Q, then e ∈ dcleq(E) and we get weak elimination of
imaginaries.

If D ⊊ Q, let d0 ∈ Q \ D and d ≡E d0 with d |⌣E D. If f(d) = e, then d ∈ D
and hence d ∈ acl(E) = E. So d ∈ acleq(e). Since f(d) = e, e ∈ dcleq(d), and we get
weak elimination of imaginaries.

So assume f(d) ̸= e. Now u ≡E d, u |⌣E a, and u |⌣E d. By the independence
theorem over algebraically closed sets, we get m |= tp(u/Ea)∪ tp(d/Eu) with m |⌣E

au. But this contradicts f(d) ̸= e. Finally, since we are in a theory of fields and we
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have weak elimination of imaginaries, we have elimination of imaginaries. ■
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théorie des corps ordonnés différentiellement clos. Bulletin of the Belgian Math-
ematical Society, 12(3):341–348, 2005.

[48] James S. Milne. On the arithmetic of abelian varieties. Inventiones Mathemat-
icae, 17(3):177–190, 1972.

134



Bibliography

[49] Shezad Mohamed. The uniform companion for fields with free operators in
characteristic zero. Preprint, arXiv:2311.01856, 2024.

[50] Shezad Mohamed. The Weil descent functor in the category of algebras with
free operators. Journal of Algebra, 640:216–252, 2024.

[51] Rahim Moosa and Thomas Scanlon. Jet and prolongation spaces. Journal of
the Institute of Mathematics of Jussieu, 9(2):391–430, 2010.

[52] Rahim Moosa and Thomas Scanlon. Generalized Hasse-Schmidt varieties and
their jet spaces. Proceedings of the London Mathematical Society, 103(2):197–
234, 2011.

[53] Rahim Moosa and Thomas Scanlon. Model theory of fields with free operators
in characteristic zero. Journal of Mathematical Logic, 14(2):1450009, 2014.

[54] David Pierce and Anand Pillay. A note on the axioms for differentially closed
fields of characteristic zero. Journal of Algebra, 204(1):108–115, 1998.

[55] Anand Pillay and Dominika Polkowska. On PAC and bounded substructures
of a stable structure. The Journal of Symbolic Logic, 71(2):460–472, 2006.

[56] Anand Pillay and Martin Ziegler. Jet spaces of varieties over differential and
difference fields. Selecta Mathematica, New Series, 9:579–599, 2003.

[57] O. P. Nicholas Marie Polkowska. On simplicity of bounded pseudoalgebraically
closed structures. Journal of Mathematical Logic, 07(02):173–193, 2007.

[58] Florian Pop. Embedding Problems Over Large Fields. Annals of Mathematics,
144(1):1–34, 1996.

[59] Alexander Prestel and Peter Roquette. Formally p-adic fields. Number 1050)
in Lecture notes in mathematics. Springer, 1984.

[60] Abraham Robinson. Complete Theories. Studies in logic and the foundations
of mathematics. North-Holland Publishing Company, 1956.

[61] G. Srour. The independence relation in separably closed fields. The Journal of
Symbolic Logic, 51(3):715–725, 1986.

135



Bibliography

[62] Moss Eisenberg Sweedler. When is the tensor product of algebras local? Pro-
ceedings of the American Mathematical Society, 48(1):8–10, 1975.

[63] Mitsuhiro Takeuchi. A Hopf algebraic approach to the Picard–Vessiot theory.
Journal of Algebra, 122:481–509, 1989.

[64] Katrin Tent and Martin Ziegler. A Course in Model Theory. Lecture Notes in
Logic. Cambridge University Press, 2012.

[65] Marcus Tressl. The uniform companion for large differential fields of character-
istic 0. Transactions of the American Mathematical Society, 357(10):3933–3951,
2005.

[66] L. van den Dries and K. Schmidt. Bounds in the theory of polynomial rings over
fields. a nonstandard approach. Inventiones Mathematicae, 76(1):77–91, 1984.
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