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This thesis makes a contribution to the model theory of fields with free operators,
as introduced by Moosa and Scanlon. The classical Weil restriction, a result of
algebraic geometry, establishes the existence of a left adjoint to base extension of
algebras. Generalising the corresponding differential result of Leén Sanchez and
Tressl, we extend this to the case of algebras equipped with free operators — given
an extension of rings with free operators whose underlying extension of rings is free
and of finite rank, and subject to a mild algebraic condition on the endomorphisms
definable in the free operator structure, we show that there is a unique sequence
of free operators on the classical Weil restriction that ensures the unit and counit
of the classical adjunction preserve the free operator structure. Thus base change
in the category of algebras with free operators has a left adjoint, which we call the
D-Weil restriction. Properties of the free operator structure preserved under the D-
WEeil restriction are investigated, including triviality of the associated endomorphisms
and commutativity of the operators, and a partial converse to the main adjunction
result is shown: the existence of a left adjoint to base change over a field implies the
associated endomorphisms must have the aforementioned algebraic condition.

The theory UCp in the language of rings with free operators is introduced as
a suitable weakening of the geometric axiom of Moosa and Scanlon’s theory of D-
closed fields D-CF,, the model companion of the theory of fields of characteristic
zero with free operators. We show that whenever T is a model complete theory of
difference large fields of characteristic zero — a notion of Cousins — 7"U UCp is the
model companion of the theory T'U“free operators”, establishing the existence of the
uniform companion for theories of difference large fields of characteristic zero with
free operators, following Tressl’s result in the differential context. We show that
quantifier elimination transfers from 7 to T'U UCp — from which it immediately
follows that stability and NIP do as well — and we use the D-Weil restriction to
show that the algebraic closure of a model of UCp is a model of D-CFy.

We provide an axiomatic framework for proving the transfer of various neosta-
bility properties from theories of fields to theories of fields with operators, show that
this unifies many proofs of stability and simplicity of theories of fields with operators
existing already in the literature, and use it to characterise forking in the theory of
separably differentially closed fields of infinite differential degree of imperfection, as
defined by Ino and Leén Sanchez.

Finally, we introduce the class of bounded pseudo D-closed fields in analogy to
the class of bounded pseudo-differentially closed fields as a case study for some of
the general results just described.
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Introduction

This thesis is primarily concerned with D-fields. These structures were introduced by
Rahim Moosa and Thomas Scanlon in their trilogy [51}, 52, [63] in order to provide
a common framework for fields equipped with operators. As noted by Gogolok
and Kowalski in [20], there have been several other attempts at formulating such
a framework: Bialynicki-Birula’s fields with operators [5]; Buium’s jet operators [8];
Hardouin’s iterative q-difference operators [23]; Takeuchi’s C-ferential operators [63];
and of course Gogolok and Kowalski’s B-operators [20]. All of these frameworks have
strengths suited to the tasks their authors’ introduced them for — differential Galois
theory seems to be a common theme. Moosa and Scanlon introduced theirs to unify
many model-theoretic properties common to the theories DCFy and ACFAy; their
series of papers culminated in proving the Zilber dichotomy for finite-dimensional
minimal types in D-CFy, adapting the jet space methods of Pillay and Ziegler [56]
(itself an adaptation of jet space arguments of Campana [9] and Fujiki [19] in the
setting of complex manifolds) to the setting of D-fields using their earlier construction
of D-jet spaces from [52]. This thesis will attempt to fill in some of the remaining

model theory surrounding D-fields of characteristic zero.

The uniform companion

Fix a base field k, a finite-dimensional k-algebra D, and a k-algebra homomorphism
m: D — k. A D-field is then a field K extending k equipped with a k-algebra
homomorphism 0: K — K ®; D which is a section to idx ® m. Thus ordinary

differential fields are an instance of this framework — a map §: K — K is a k-linear
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Introduction

derivation if and only if the map

K — Kle]/(€%)

a—a+d(a)e

is a k-algebra homomorphism, as are ordinary difference rings — a map o: K — K

is a k-linear endomorphism if and only if the map

K—->KxK

a— (a,0(a))

is a k-algebra homomorphism.

In [53], Moosa and Scanlon proved that, subject to the condition that every max-
imal ideal of D has residue field &, the theory of D-fields of characteristic zero, ax-
iomatisable in the language of rings together with unary function symbols 01, ..., 0,
(here I + 1 is the dimension of D as a k-vector space), admits a model companion
D-CFy, unifying the proofs establishing model companions for the theories of differ-
ential fields and difference fields of characteristic zero. A natural question to ask is
whether other theories of D-fields admit model companions.

In [65], Tressl constructs a theory of differential fields with m commuting deriva-
tions, UC,,, such that TUUC,, is the model companion of TU “differential fields with
m commuting derivations” whenever T is a model complete theory of large fields of
characteristic zero. This will be our blueprint.

There is a complication however. Every D-field has a sequence of definable endo-
morphisms, oy, ...,0;, called the associated endomorphisms[f| Thus if some theory
of D-fields has a model companion, so must the reduct to the language of differ-
ence fields. In [33], Kikyo and Shelah prove that if T' is model complete and has
the strict order property, then the theory 7'U “o is an automorphism” has no model
companion. This immediately implies that the theory of real closed fields equipped
with an endomorphism has no model companion, and hence the theory of real closed
fields equipped with a D-field structure has no model companion whenever there is
at least one nontrivial associated endomorphism. We resolve this dialectical tension

by proving the following: if T is a model complete theory of difference large fields of

I This is the case subject to the condition that every maximal ideal of D has residue field k, one
associated endomorphism for each maximal ideal except the one corresponding to .

10



Introduction

characteristic zero, then T'U UCp is the model companion of T'U “D-fields”.
Following Cousins [15], a difference field (K, 01, ...,0:) is called difference large

if for any pair of K-irreducible varieties V and W such that

(i) WCV XV x...x Vo,
(ii) the projections W — V% are dominant for alli=0,...,t, and

(iii) W has a smooth K -rational point,

W has a Zariski-dense set of K-rational points of the form (a,o1(a),...,o0¢(a)) for
a € V(K). Difference largeness is just a suitable weakening of the geometric axiom
of ACFA,; the only examples of difference large fields currently known to the author
are models of ACFA(;. However, in the case of fields (that is, when ¢t = 0), K is
difference large if and only if it is large: every K -irreducible variety with a smooth
K -rational point has a Zariski-dense set of K -rational points. There are plenty of
model complete large fields; Section details some of them.

Similarly, the axiom scheme UCp is a suitable weakening of the geometric axiom
scheme of D-CFy: for every pair of K-irreducible varieties V and W such that

(i) W TV,
(ii) the projections W — Vi are dominant for each i =0,...,t, and
(iii) W has a smooth K -rational point,
W has a Zariski-dense set of K -rational points of the form V(a) for a € V(K).

We establish the following two facts about the theory UCyp, analogously to Tressl’s
result for UC,, in [65]:

Theorem A. 1. Suppose M, N |= UCp contain a common D-subfield A. If the
associated difference fields of M and N have the same existential theory over
A as difference fields, then M and N have the same existential theory over A
as D-fields.

2. FEvery D-field whose associated difference field is difference large can be ex-
tended to a model of UCp, and the extension of their associated difference

fields is elementary.

The theorem establishing that UCp is indeed the uniform companion follows

immediately.
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Introduction

Theorem B. Let T be a model complete theory of difference large fields, and suppose

it is the model companion of some Ty. Then

(i) TUUCyp is the model companion of To U “D-fields”;

(ii) of T is the model completion of Ty, then T U UCp is the model completion of
To U “D-fields”; and

(iii) #f T has quantifier elimination in some expansion by definitions, then TUUCp

has quantifier elimination in the same expansion.

In the case D is local, there are no nontrivial associated endomorphisms: the
associated difference field is just the underlying field and difference largeness is just
largeness; our result in this case is precisely the D-field analogue of Tressl’s. This

yields the uniform companion in the following cases:

o several (not necessarily commuting) derivations;
e truncated, non-iterative higher derivations; and

e operators combining these two.

In particular, RCFUUCp is the model companion of RCFU“D-fields”, and Th(Q,)U
UCp is the model companion of Th(Q,) U “D-fields”.

Remark. Restricted to the setting of derivations, the above result coincides with
Tressl’s only for the case of a single derivation. For that of several derivations,
Tressl’s deals with the commuting case, ours with the noncommuting case. However,
the case of noncommuting derivations does appear in a recent paper of Fornasiero
and Terzo [I7] where they consider generic derivations on algebraically bounded
structures — a wider context than the large and model complete fields considered

here.

We then explore some equivalent characterisations in the local case: one in terms
of D-varieties, and one analagous to the notion of differential largeness from [38]. Like
Theorem 5.11 of that paper, we prove that algebraic extensions of models of UCp
whose underlying field is large are again models of UCp. This requires establishing
the appropriate Weil restriction functor in the category of D-algebras, and hence an

interlude into non-model-theoretic geometry.
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Introduction

The D-Weil descent

Suppose T' — S is a morphism of schemes. Given a scheme Y over T, we define

Wrs(Y') to be the scheme over S representing the functor

Schg — Set
U — Homp(U x5 T,Y),

if it exists. Wy g(Y) is uniquely determined, and we call it the Weil restriction of
Y with respect to ' — S; see Section 1.3 of [67] for the original statement by Weil
and [21] for Grothendieck’s generalisation.

We will only be interested in the case when S = Spec(A) for some commutative
ring A and T = Spec(B) where B is a finite and free A-algebra. Then Wr/g is

actually a functor on affine schemes
Wga: Affg — Affy

which is right adjoint to base change. Hence we will often work with its algebraic

dual, W: Algz — Alg 4, which is left adjoint to base change

F: Alg, — Algg
R— R®y B.

If T — S comes from a finite separable field extension, then Wr,5(Y’) is an abelian
variety if Y is. In [48], Milne uses this fact to show that the Birch-Swinnerton-Dyer
conjecture holds for Y if and only if it holds for Wr,s(Y"). Thus one can reduce the
full conjecture from its statement over number fields to one over QQ.

This classical Weil restriction is also fundamental to the construction of prolon-
gation spaces in the sense of Moosa and Scanlon [51], which we make extensive use
of in establishing the uniform companion. For example, if K is a field, the tangent
bundle of a K-variety V (a special case of their prolongation) can be seen as the
Weil restriction of V xx K[e]/(e?) over K — K|e]/(e?).

Furthermore, since Wr,s(U) represents the functor U — Homy (U xs T,Y), we
obtain a bijection between the T-points of U and the S-points of Wr,g(U). This
fact is used by Pop in [58] to show that algebraic extensions of large fields are large.

In [39] the case of differential algebras is considered. The authors show that the

13
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differential base change functor, F, has a left adjoint, which they call the differential
Weil descent functor, W°. More precisely, they show that if (A, d) is a differential
ring and (B, d) an (A, 0)-algebra, where B is finite and free as an A-module, then for
any (B, d)-algebra (D, d), there exists a unique derivation 6V on W (D) making the
unit of the classical adjunction into a differential ring homomorphism. The authors
then use this result in a similar way to Pop to show that algebraic extensions of
differentially large fields are again differentially large (see [38]).

It is natural, then, to explore whether the difference base change functor, F° —
here difference rings are rings equipped with a not necessarily injective endomorphism
— also has a left adjoint. In general, it does not. Let A be a commutative ring with
identity and consider the case when B = Ale]/(e®) for an indeterminate e. Let
7: B — B be given by 7(a + be) = a so that (A,ids) < (B,7). Let R = Bjz]
and let p: R — R be the unique endomorphism extending 7 and sending x — €. If
F7 =F} /A had a left adjoint W7, then the unit of this adjunction at R

ng: R — F°W°(R)
would be a difference ring homomorphism. In particular

nr(p(x)) = (0 © 7)(nZ(z)) (%)

where 6 is the endomorphism of W?(R). Let A\; and As be the coordinate projections
with respect to the A-basis {1,¢} of B. Then equation (x) translates to

[ A(p(@)) } _ [ M(7(1) Au(r(e)) ] [ 000 (13(@))) ]
Xalp@) | [ Xalr(1)) Xa(r(e))

See Lemma for details on this. Using the facts p(z) =€, 7(1) = 1, and 7(¢) = 0,

the above yields
[ 0 ] _ [ 10 ] [ 6(n(W5())) ]
L] Lo o] 60eWs@)) |
which is clearly inconsistent. Hence, equation (x) cannot hold, and the left adjoint
W? cannot exist. The issue here is that the 2 x 2 matrix on the right-hand side that
we associate to (B,7) is not invertible. In this case we say that 7 does not have

invertible matrix. We will see in the course of Section [2.4] that 7 having invertible
matrix is sufficient for a left adjoint to exist, and, in Section that in the case

14
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when A is a field, it is also necessary.

Theorem C. Let (A,0) be a difference ring and (B,T) a difference (A, 0)-algebra
where B is finitely generated and free as an A-module. Assume that T has invertible
matriz. If (C,p) is a difference (B, T)-algebra, then there is a unique endomorphism
P on the classical Weil restriction, W (C), making (W(C),p") into a difference
(A, 0)-algebra and the unit of the classical adjunction nc: C — W(C) ®4 B into
a difference ring homomorphism (C,p) — (W(C) ®4 B, p" ® 7). The assignment
(C,p) = (W(C), p") is the left adjoint to the difference base change functor.

One might initially think to define p" = W(p). However, while p is a ring
endomorphism, it is not in general a B-algebra homomorphism, and thus the functor
W cannot be applied to it. There is a natural way to make p into a B-algebra
homomorphism though: let C™ be the B-algebra which, as a ring, is just C', but whose
B-algebra structure is given by b — 7(b) € C; then p is a B-algebra homomorphism
considered as a map C — C7. Applying W gives an A-algebra homomorphism
W(p): W(C) — W(CT). However, this does not correspond to an endomorphism of
W(C). If we had an A-algebra homomorphism W (C™) — W(C)?, then composing
with W (p) gives an A-algebra homomorphism W(C) — W(C)?, which corresponds
to an endomorphism of W(C') extending o. In Section we will see that such a
map W(C™) — W(C)? exists if 7 has invertible matrix and in Section that it
yields the left adjoint.

As this is a thesis on D-rings, we prove the above theorem in this more general
setting. Let (A,e) be a D-ring and (B, f) an (A, e)-algebra where B is finite and
free as an A-module. Subject to the condition that every maximal ideal of D has
residue field k, the D-structure on B has associated endomorphisms and, as in the
difference case, if the associated endomorphisms of (B, f) do not have invertible
matrix, then the left adjoint to the D-base change functor (see Definition does
not generally exist. Nonetheless, our main result states that this is indeed the main
obstacle: if the associated endomorphisms of (B, f) have invertible matrix, then
the D-base change functor has a left adjoint, and if A is a field, this condition is
necessary. See Theorem and Corollary Section [2.5] contains results on
properties preserved under the D-Weil descent. For instance, we show that if the
D-operators of some (B, f)-algebra pairwise commute, then the same is true of its D-
WEeil restriction, and that if some associated endomorphism is an automorphism, then

the same is true of its D-Weil restriction. Thus our main result truly generalises the
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differential Weil descent of [39] and establishes the existence of Weil descent functors
in the categories of difference rings with several (commuting) endomorphisms and
difference rings with several (commuting) automorphisms. In addition we also prove
the partial converse to the main theorem alluded to above: that if A is a field and
the left adjoint exists, the associated endomorphisms must necessarily have invertible

matrix.

Derivation-like theories and neostability

In Chapter 4] we return to a model-theoretic analysis and examine what neostability
properties of models of UCp are determined by its underlying field. For instance, it
is immediate from the transfer of quantifier elimination in Theorem [B| that if T is
stable or NIP, then so is 7'U UCp. For simplicity, we must do more work. To apply
the Kim—Pillay theorem, we need to understand what nonforking independence looks
like in the underlying field — we use the notion of slimness from [32]. The authors
show that model complete, large fields are very slim in the language of rings, and
hence that, in such a field, algebraic independence is an independence relation (in
the sense of Adler [2]). From the proof of the Kim—Pillay theorem, we then get that
if two D-fields are independent in the sense of nonforking, they are algebraically
independent as fields. This fact will allow us to amalgamate independent (in the
sense of nonforking) D-fields, and thus prove that if the independence theorem holds
in T, it must also hold in 77U UCp.

In fact, the methods used are not reliant on the particular behaviour of D-fields:
they work for any suitable theory of fields with operators. Hence we formulate these
results using an axiomatic approach. Given a complete and model complete £-theory
T and a monster model U that has some relation |° on triples of small subsets, we
say that a D-theory A (for ® D £) is derivation-like (with respect to T and %) if

the following four conditions hold:

(a) if M = A and M <¢ N =T, then there is a ©-structure on N extending the
one on M such that N E A;

(b) if M ETUA and A <y M <¢ U, then acly(4) <o M and aclp(4) E A;
moreover, this is the only ©-structure on acly(A) extending the one on A that

makes acly(A) into a model of A;
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(c)if M ETUA with M <¢ U and A and B are two models of A which are
©D-substructures of M with a common aclp-closed D-substructure C' such that
A % B, then (AB), <o M and (AB), = A; moreover, this is the only
D-structure on (AB), extending the ones on A and B and making it into a
model of A; and

(d) if A and B are two models of A which are £-substructures of U with a common
aclp-closed D-substructure C such that A | B, then there is a D-structure
on (AB), <. U extending the ones on A and B that makes (AB), into a model
of A.

If T is the theory of a very L,ing(C)-slim field of characteristic zero (where C is
some set of constant symbols) and |° is algebraic independence, then the following

are examples of derivation-like theories:

1. differential fields with m noncommuting derivations;
2. differential fields with m commuting derivations;
3. D-fields (where D is a local k-algebra); and

4. D-fields (where D is a local k-algebra) with pairwise commuting operators.

Endomorphisms are not examples of derivation-like operators with respect to this
choice of T (or even with T' = ACF): they fail axiom (a). In the case of character-
istic p > 0, we can take T = SCF?

p,00?

the theory of separably closed fields of infinite
degree of imperfection in the language of rings expanded by the A-functions (see
Proposition 27 of [16]), with nonforking independence |°. Then the theory of differ-
ential fields is also derivation-like with respect to this choice of T'. If T' = ACFA,,
and |° is nonforking independence, then D-fields (where each maximal ideal of D
has residue field k) is derivation-like with respect to 7T

The main result of Chapter |4] is the following.

Theorem D. Suppose A is derivation-like with respect to T and that T U A has a
model companion T*. Let € be a monster model of (some completion of) T, and

define the following relation on triples of subsets of €:

A !B < acl(AC) [° acl(BO).
c acl(C)

Then

17



Introduction

(i) if [° is an abstract independence relation, so is |;
(ii) if |° is a strict independence relation, so is |;

(iii) for some parameter set M, if |° is an independence relation that satisfies the

independence theorem over M, so is |'; and

(iv) for some parameter set M, if |° is an independence relation that satisfies

stationarity over some M, so is |7

Thus simplicity and stability of T are transferred to 7". This unifies many of the
proofs of stability and simplicity of theories of fields with operators occurring in the
literature (the simplicity of D-CF, as proved in Theorem 5.9 of [53] for instance).
One novel result stemming from this axiomatic work is that we may characterise
nonforking independence in SDCF,, »,, the theory of separably differentially closed
fields of characteristic p > 0 and infinite differential degree of imperfection, defined
and analysed by Ino and Le6n Sénchez in [28], as p-disjointness plus algebraic inde-
pendence, analogously to the field-theoretic case of SCF,, », the theory of separably
closed fields of characteristic p > 0 and infinite degree of imperfection, characterised
by Srour in [61].

Pseudo D-closed fields

Finally, Chapter [5] functions as a case study for many of the general results stated
throughout the thesis. We study the PAC substructures in D-CF using the definition
from [25] of being existentially closed in every Lying(0)-regular extension (that is, an
extension of D-fields A < B where acl(A) N dcl(B) = dcl(A)), and we show that
they are characterised as those D-fields which are models of UCp and PAC as fields.
We use this in conjunction with Chapter [4| to prove simplicity and elimination of
imaginaries for the theory of a bounded D-field which is a PAC substructure in
D-CFy, extending the corresponding differential results from Section 5 of [26] to the
case of D-fields.

Conventions. All rings are commutative with identity. Ring homomorphisms pre-
serve the identity.

18



Chapter 1

Preliminaries

1.1 Model theory

While model theory appears throughout this thesis, it is not so thoroughly ingrained
that a non-model-theorist is incapable of reading it. I will give a brief exposition of
the model theory that makes an appearance; all of it can be found in [24], [43], and
[64].

Predicate logic

First we fix a language £. This language is a set of predicate symbols, function
symbols, and constant symbols. Each predicate symbol and function symbol comes
with a particular arity — some n € N. An L-structure M is defined by the following
data:

a nonempty set M — the universe of the L-structure;

for each predicate symbol P of arity n, a subset PM C M™;

for each function symbol f of arity n, a function f™: M™ — M; and

for each constant symbol ¢, an element cM € M.

These are the interpretations of the symbols of £ in M. We will also assume that
there is always a 2-ary predicate symbol = which is always interpreted as equality;
since every structure has such a predicate, we do not include it in the language L.
The language £ also contains an infinite set of variables x;.

The L-terms are defined as follows:

19



Preliminaries

e the variables z; are terms;

e the constant symbols are terms; and

o if ty,...,t, are terms and f is an n-ary function symbol, then f(t1,...,%,) is
a term.

The atomic L-formulas are defined as follows:

e if 5,t are terms, then s =t is an atomic formula; and
o ifty,...,t, are terms and P is an n-ary predicate symbol, then P(ty,...,t,) is
an atomic formula.

The L-formulas are defined as follows:

e the atomic formulas are formulas;

o if ¢ and ¢ are formulas, then ¢ A, ¢ Vo, =@, ¢ — 9, ¢ <> ¢ are formulas;
and

e if ¢ is a formula and z; is a variable, then dz;¢, and Vx;¢ are formulas.
We write ¢ € L to mean that ¢ is an L-formula.

If x; is a variable appearing in some formula ¢, then it is a bound variable if it only

ever occurs within the scope of some quantifier dz; or Vz;. It is a free variable oth-

erwise. A formula with no free variables is called a sentence. We write ¢(x1, ..., )
to stress that the free variables of ¢ are contained in the tuple (z1,...,z,).
If ¢(x1,...,z,) is an L-formula and (a4, ..., a,) is a tuple from M, then we write

M [ 4(a) if ¢(a) is true in M in the natural sensell| The formula ¢(z) defines a

subset of M™ in a natural way:
¢M) ={ae M": M = ¢(a)}.

If we partition the variables of ¢ as ¢(z,y), where z has length n and ¥ length m,
then for any b € M™ we can form the b-definable set

¢(M,b) ={a € M": M = ¢(a,b)}.

ITarski’s definition of truth: the symbols -, A, V, —, <> mean “not”, “and”, “or”, “implies”, “if
and only if” respectively.
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If T is a set of L-sentences, then we say that T is consistent if there is some
L-structure M such that M |= ¢ for each ¢ € T'. In this case, we write M = T and
say that M is a model of T'.

The Compactness Theorem. A set of L-sentences T is consistent if and only if

every finite subset of it is consistent.

A consistent set of L-sentences is also called an L-theory. If T is a set of L-
sentences and ¢ is an L-sentence, then we say that T logically implies ¢ if every
model of T is also a model of ¢, and we write T' = ¢.

The L-theory of an L-structure M is the set of all £L-sentences true in M.

Th(M) = {¢ € Sent(L): M = ¢}.

If two L-structures M and N have the same L-theory, then they are elementarily
equivalent and we write M = N. A maximally consistent set of L-sentences is
called a complete L-theory. A consistent theory is complete if and only if for any
two models M and N, we have M = N.

Many-sorted predicate logic

Everything defined in the previous section has been for one-sorted structures. How-
ever, we could have started with the notion of a many-sorted structure. A many-
sorted language also has a decomposition into predicate, function, and constant
symbols, but also has a set of sorts S. The arity of a predicate symbol is no longer
some n € N, but a tuple (s1,...,8,) € S™ The arity of a function symbol is
(S15---,8n,8) € S"™ and the arity of a constant symbol is s € S.

If £ is a many-sorted language, then an L-structure M consists of the following
data:

for each sort s € S, a nonempty set Mj;

for each predicate symbol P of arity (sy, .. ., s,), asubset PM C M, x---xM,,;

for each function symbol f of arity (sy, ..., ss,s), a function fM: M, x --- x
M, — Mg;

for each constant symbol c of arity s, an element cM™ € M,.

21



Preliminaries

For each sort we have an infinite set of variables (whose arity is that sort), and
terms and formulas are defined in the usual way but now with the extra condition
that all the sorts are compatible. Unless discussing elimination of imaginaries, all

our languages will be one-sorted.

Maps between structures

Suppose M and N are two L-structures and g: M — N is a map between their
underlying universes. We say that g is an £-embedding M — N when the following

conditions hold:
e (ay,...,a,) € PM <= (g(ay),...,g(an)) € PV for every predicate symbol
P (including equality);
e g(fM(ay,...,a,)) = N (g(ar),...,g(ay,)) for every function symbol f; and
e g(c™) = ¢V for every constant symbol c.

If M C N, then M is an L-substructure of N if inclusion is an £-embedding. In
this case we write M < N.

Remark 1.1.1. Suppose M is an L-structure and A is a subset of M. Then for A to
be an L-substructure of M we need each constant ¢™ to lie in A and each function

fM to restrict to a function on A™.

An L-isomorphism is a bijective £L-embedding. An L-embedding g: M — N is

called L-elementary if for any L£-formula ¢(z1,...,z,) and any (ay,...,a,) € M™,

M= ¢(a) <= N | é(9(a)).

If the inclusion map M < N is L-elementary, say that M is an elementary sub-
structure of A" and write M < N. If AC M and BC N and g: A — B is a map of
sets, we say ¢ is a partial L-elementary map if for any L-formula ¢(z4,...,z,) and
any (ay,...,a,) € A",

M ¢(a) <= N |- é(9(a)).

Note that if M < N and ¢ is an L-sentence, then

1. if ¢ is existential, we have

ME¢ = Nk ¢
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2. if ¢ is universal, we have

ME$ = NE¢.

Diagrams

Suppose M is an L-structure and A < M is an L-substructure. We can form the
language L(A) = LU {c,: a € A} by adding new constant symbols, and consider
M as an L(A)-structure M4 by interpreting each new constant symbol ¢, as a.
Then the (quantifier-free) diagram of A is the set of quantifier-free £(A)-sentences
true in M. The diagram of A does not depend on which M it is computed in.
We denote it by diag.(A) or diag(A) if no confusion arises. The key fact is that
N [ diag(A) if and only if there is some embedding A — A. One also defines the
complete or elementary diagram of A as the set of £(A)-sentences true in M 4. Then
N k= eldiag(A) if and only if there is an elementary embedding A — N

We will say that an £(A)-formula is an £-formula with parameters from A.

The Lowenheim—Skolem theorems

One aspect of first-order model theory is that it cannot distinguish between different

sizes of infinity. The following two theorems formalise this idea.

The Downward Lowenheim—Skolem Theorem. Suppose M is an L-structure,
A C M, and k an infinite cardinal with |L| + |A| < k < |M|. Then M has an

elementary substructure of cardinality k containing A.

The Upward Lowenheim—Skolem Theorem. Let M be an infinite L-structure
and k an infinite cardinal with k > |L|+ |M|. Then M has an elementary extension

of cardinality k.

Existentially closed models, model companions, and quanti-

fier elimination

If M < N is an extension of L-structures, then M is existentially closed in N if for

every existential L-formula ¢ with parameters from M we have

NE¢ = MEs.
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That is, for every quantifier-free £-formula ¢(Z,y) and every a € M,
N E3z¢(z,a) = M E Izé(Z,a).

If T, is some L-theory, then M = Tj is an existentially closed model of Ty if for
every N = T, with N/ > M, we have that M is existentially closed in N.

An L-theory T is called model complete if for any two models M < N, we have
M =X N. So T is model complete if and only if for any model M, we have that
the £(M)-theory T U diag(M) is completef| If T is model complete, then every
L-formula ¢(z) is T-equivalent to an existential L-formula 1(Z) and a universal
L-formula 6(Z):

T = V7(4(z) < ¥(Z));
= VZ(4(Z) +» 6(2)).

Suppose Ty and T are two L-theories. Then we say that T is a model companion

of Ty if the following conditions hold:

1. every model of Ty embeds in a model of T
2. every model of T' embeds in a model of Tp;

3. T is model complete.

Conditions (1) and (2) together are equivalent to the fact that T, and T have the
same universal theory.

If T is inductive (that is, axiomatised by V3-sentences), then T, has a model
companion if and only if the class of existentially closed models of T} is axiomatis-
able by some L-theory. In this case, its model companion is given by the L-theory

axiomatising its existentially closed models.

Remark 1.1.2. Suppose Ty is inductive and T is the model companion of Ty. Then

every model of T is a model of Ty.

T is a model completion of Tj if for any M = T, we have that T'U diag(M) is
complete. T has quantifier elimination if for any M | T and any L-substructure
A < M, we have that T'U diag(A) is complete. Fortunately, quantifier elimination

does correspond to being able to eliminate quantifiers: 7" has quantifier elimination

2This is how Robinson first defined model completeness [60] and is where the name comes from.

24



Model theory

if and only if for every L-formula ¢(Z), there is some quantifier-free £-formula ()
such that T' |= VZ(¢(Z) ¢ ¥(Z))
For use in Chapters [3| and [4] we summarise below.

Fact 1.1.3. Suppose Ty and T are two L-theories with the same universal L-theory.
Then

(i) T s the model companion of Ty if for every M =T, T Udiag(M) is complete;

(ii) T is the model completion of Ty if for every M |= Ty, T Udiag(M) is complete,
and

(iii) T has quantifier elimination if for every A < M = T, TUdiag(A) is complete.

Historical Remark. The notion of a model companion was first introduced by Robin-

son. It has seemed to be most useful in studying the model theory of fields —

conveniently the topic of this thesis.

Expansions by definitions and Morleyisation
Suppose £ C L* are two languages, T' is an L-theory, and 7 O T is an L*-theory.
Definition 1.1.4. T* is an expansion by definitions of T if

o for every new predicate symbol P of arity n in L£*, there is some L-formula
op(x1, ..., %),

o for every new function symbol f of arity m in L£*, there is some L-formula
¢f(x1,...,Tn,y) such that T |=Vz; ... 2,3y ¢s(z1,. .., 20, y)f]

o for every new constant symbol ¢ in £*, there is some L-formula ¢.(y) such that

T |3y ¢c(y),

and T™ is logically equivalent to

TU{VZy ...z, (P(21,...,2Z,) < ¢p(x1,...,2,)): P is a new predicate}
U{Vzy...2.y(f(21,...,2Zn) =y <> ¢s(T1,...,2Zn,y)): f is a new function}

U {¢.(c): cis a new constant}

3As long as Z is not the empty tuple (that is, ¢ is not a sentence), 1 can always be taken so
that its free variables also appear among z. If ¢ is a sentence, then 1 may need to contain a free
variable — if £ has no constant symbols, then there are no quantifier-free £-sentences.

4Here 3!y¢(Z,y) means “there exists a unique y such that ¢(Z,y) holds” and is just an abbrevi-
ation of Jy(o(Z,y) AVz(P(Z, 2) = 2z = y)).
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Remark 1.1.5. 1. Note that the defining £-formulas, ¢p, ¢, and ¢, are not al-

lowed to contain any parameters.

2. If T* is an expansion by definitions of 7' and M |= T, then M can be uniquely
expanded to an L£*-structure which is a model of T™.

Example 1.1.6. There is a natural example of an expansion by definitions for any
L-theory T. For every n € w and every L-formula ¢(x1,...,z,), let R; be a new
n-ary predicate symbol. Let £* = LU {R,: ¢(z1,...,x,) is an L-formula}, and let
T* be the L*-theory

T  =TU{Vz1...2,(Ry(z1...2,) > (21...20))}-

T* is called the Morleyisation of T', and it has quantifier elimination.

We can always Morleyise a theory, but it is often overkill; we may be able to find
a more reasonable language in which our theory eliminates quantifiers. This also

gives us a better understanding of the definable sets in our theory.

Example 1.1.7. Consider the L,i,g-theory of real closed fields, the model companion
of the theory of formally real fields. This theory is model complete, but it does not
have quantifier elimination: the set of non-negative elements, defined by 3y = = 32,
is not quantifier-free Lyn,-definable — any quantifier free L,i,e-formula in a single
variable defines a finite or cofinite set in a field.

Let £* := Lying U {<}, and let RCF* be the L*-theory RCF U {VaVy(z < y +
Jdz y — x = 2?). Then RCF* has quantifier elimination by the Tarski-Seidenberg
theorem; see Section 3.3 of [43] for instance.

So every set definable in a real closed field is a Boolean combination of solution

sets of polynomial equations and inequalities: a semialgebraic set.

Example 1.1.8. Consider the L-theory pCF of p-adically closed fields (of p-
rank 1), the model companion of the theory of formally p-adic fields (of p-rank 1).
Expanding by definitions to the language Liing(O, (Pn)nen) by defining O as the
valuation ring and each unary predicate P, as the set of nth powers, this theory has

quantifier elimination. See Theorem 5.6 of [59)].
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Types

Let M be an L-structure. For some parameter set A C M and tuple b € M, the
(complete) type of b over A is

tp(b/A) = {¢(z) € L(A): M £ ¢(b)}.

Here 7 is a fixed tuple of variables of the same length (possibly infinite) as b.

Remark 1.1.9. The definition above prima facie depends on M. But note that if
N = M, then the type of b € M over A C M is the same computed in either M or
N.

Now let p(z) be a set of L-formulas with parameters from A C M. We say that
p is a type over A if there is some N > M and b € N such that p = tp(b/A). If b can
be taken in M, then M realises p; otherwise it omits p. A set m(Z) of L-formulas
with parameters from A C M is called a partial type over A if it a subset of a type
over A. Note then that partial types over A are precisely those sets of L-formulas
with parameters from A which are finitely satisfiable in M and that types are the
partial types which are maximal (with respect to inclusion) among sets of £-formulas
which are finitely satisfiable in M.

Remark 1.1.10. If b and ¢ have the same type over A, we write b =4 ¢. The map

that fixes A and sends b to € is a partial elementary map.

We write S(A) for the set of all types over A.

The monster

Algebraic geometry used to be conducted inside some wuniversal domain: a large
algebraically closed field containing all the points of all the varieties geometers were
interested in. It has since progressed past this to the more sophisticated machinery
of schemes. Our version of the universal domain is the monster model. The power
of the monster model € lies in the fact that it contains all the objects we would ever
want: € will contain realisations of all types over small subsets, any small model
elementarily equivalent to ¢ will embed elementarily inside €, and any two tuples

with the same type over some small parameter set A will be conjugate by some
o € Aut(¢/A).
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This subsection follows the construction of Hodges in Section 10.4 of [24] and is
also one of the two approaches taken by Tent and Ziegler in [64]. It requires some

minor set theory, for which [29] is a good reference.

Definition 1.1.11. For a cardinal k, an L-structure M is called k-saturated if
whenever A C M with |A| < k and p is a type over A, then p is realised in M.

If M is of infinite cardinality x, then it is called special if it is the union of an
elementary chain U,., M, where each M, is pu*-saturated (here the elementary

chain is indexed over cardinals, not ordinals).
Definition 1.1.12. A cardinal & is a strong limit cardinal if ;4 < x implies 2* < k.

Example 1.1.13. Recall that the beth numbers are defined as follows.
e Jp= No;
e Jot1=2"; and
o ) = Uger Jo for limit ordinals A.

Let X\ be any limit ordinal. Then 3, is a strong limit: if 4 < J) = Uy<x Ja, then
p < 3 for some @ < A, and so 2% < 27« = 3,1 < J,.

Definition 1.1.14. For an ordinal «, its cofinality cf(«) is the least ordinal 5 such
that there is an unbounded function 8 — «a. A regular cardinal is one whose cofinality

is itself.

Theorem 10.4.2 of [24]. Let M be an infinite L-structure and k a strong limit
cardinal greater than |M| + |L|. Then M has a special elementary extension of

cardinality k.
We now examine the properties of special structures.

Definition 1.1.15. M is called strongly x-homogeneous if every partial elementary
map A — B with |A|,|B| < k extends to an automorphism of M.
M is called k-universal if every structure of cardinality strictly less than x which

is elementarily equivalent to M can be elementarily embedded in M.

Theorem 10.4.5 of [24]. If M is special of cardinality k and A is a set of elements

of size less than cf(k), then M4 is special as an L(A)-structure.

The following is clear from the definition. It will be important in Chapter
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Theorem 1.1.16. Every reduct of a special structure is special.

Fact 1.1.17. Special structures of cardinality k are k™ -universal, strongly cf(k)-

homogeneous, and cf(k)-saturated.

Proof. k*-universality is by Corollary 10.4.10 of [24]; strong cf(x)-homogeneity is by
Corollary 10.4.6; cf(k)-saturation is by Corollary 10.4.12(a). |

Remark 1.1.18. Suppose F' is a normal function (that is, a strictly increasing con-
tinuous class function on ordinals). Then cf(F(\)) = cf(A) for any limit ordinal .

The map « — 3, is such a function.

Now given a complete theory 7', fix a regular cardinal  larger than all the models

of T and parameter sets we wish to consider. Use Theorem 10.4.2 of [24] to construct

a special model € |= T of cardinality 3,. Then by Fact and Remark [1.1.18
¢ is y-universal, strongly v-homogeneous, and 7-saturated. This € is our monster

model for T'.

Algebraic closure and definable closure

Let € be the monster model. For a € € and A C €, a is said to be algebraic over A
if it is contained in some finite A-definable set. The algebraic closure of A is

acl(A) = {a € €: a is algebraic over A}.

An element a € € is definable over A if {a} is A-definable. The definable closure of
Ais
dcl(A) == {a € €: a is definable over A}.
A type p = tp(a/A) is algebraic if a is algebraic over A; equivalently if p has only

finitely many realisations in €.

Elimination of imaginaries

Suppose X is some definable set in €. We say that a finite tuple d is a canonical
parameter (or a code) for X if for every o € Aut(€), o fixes X setwise if and only if

it fixes d pointwise.

29



Preliminaries

Aut(€) acts on S(€) in a natural way:

- p(@) =17 (Z) = {$(Z,0(b)): $(Z,b) € p}.

A set B is the canonical base of p € S(€) if it is fixed pointwise by every automor-
phism that fixes p.

Definition 1.1.19. A theory T eliminates imaginaries if for any 0-definable equiv-

alence relation E, every equivalence class e/F has a canonical parameter.

It is often convenient to work in a theory that eliminates imaginaries, but not all
theories do. However, one can always pass to 7°? which will eliminate imaginaries.

Enumerate all 0-definable equivalence relations on € as (E;);c; where E; has arity
n;. We form the many-sorted structure €*4 = (&, €" /E; : ¢ € I) in the language of €
with extra function symbols 7;: € — €" /E; interpreted as the natural projections.
The elements of € are called real elements, and the elements of €™ /E; are called

imaginary elements. 7°? is the theory of €*%; €4 is its monster model.
Proposition 8.4.5 of [64]. T°% eliminates imaginaries.

Definition 1.1.20. T' eliminates finite imaginaries if every finite set of tuples has

a canonical parameter.

T has weak elimination of imaginaries if for every imaginary e there is a real c
such that e € dcl*d(c) and ¢ € acl(e).

Corollary 8.4.6 of [64]. T eliminates imaginaries if and only if in T every imag-

inary s interdefinable with a real.

Lemma 8.4.10 of [64]. T eliminates imaginaries if and only if it has weak and

finite elimination of imaginaries.
The following is very useful for us.
Lemma 1.1.21. If T is a theory of fields, then T eliminates finite imaginaries.

Proof. This is shown in the proof of Corollary 8.4.12 of [64]. |
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Simplicity
Let T be a complete theory with infinite models and monster model €.
Definition 1.1.22. We say that a formula ¢(z,b) k-divides over A C € if there is a
sequence (b;);e,, of realisations of tp(b/A) such that {¢(z,b;): ¢ € w} is k-inconsistent.
It divides over A if it k-divides for some k. A partial type m(x) divides over A if it
implies some formula which divides over A.

The partial type m(x) forks over A if it implies a finite disjunction of formulas
each of which divides over A.

We write A | o B and say A is (nonforking) independent from B over C if
tp(A/BC) does not fork over C.

T is simple if nonforking independence is symmetric:
Al B < B A
C c

In this thesis, we will follow Adler [2] in his treatment of abstract independence

relations.

Definition 1.1.23. A relation |* on triples of small subsets of ¢ is called an ab-
stract independence relation if it is invariant under automorphisms and satisfies the

following conditions.
1. normality: X |’y B = X [*, AB;
2. monotonicity: X |*4 B = X [*, B' for B' C B;
3. base monotonicity: X [*4 D = X [’z D for AC BC D;
4. transitivity: X *4 Band X [*; D = X [*, D for AC BC D;
5. symmetry: X ['y B < B ', X;
6

. full ezistence: for any X, A, B there is X’ =4 X such that X’ [*, B (recall
that X’ =4 X means that X’ and X have the same type over A);

7. finite character: if X, |*, B for all finite X, C X, then X [*, B;

8. local character: there is a cardinal k such that for all X and A, thereis A C A
with |Ap| < & such that X [, A.

There are three extra properties that an abstract independence relation |* might

satisfy that we are interested in:
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9. strictness: if b [*, b, then b € acl(A);

10. independence theorem over M: if Ay %), As, ay Xy A1, a2 %y, A2, and
a1 =) ag, then there is a = tp(a; /M A;) U tp(ay/M As) with a %), A1As;

11. stationarity over M: whenever A O M, a,b € ¢ with a =), b, a [*;; A and
b 'y A, then a =4 b.

For 10 and 11, M is usually an acl-closed set or a model.

These axioms also appear in various forms throughout the literature — often with
normality, monotonicity, base monotonicity, and transitivity combined into a single
axiom, and sometimes with extension instead of full existence — see Theorem 7.3.13
of [64] and Definition 4.1 of [35].

One of the results that sparked widespread interest in the study of simple theories
was the Kim—Pillay theorem [35]. This gave a semantic way of proving a theory was

simple and characterising the behaviour of nonforking independence.

The Kim—Pillay Theorem. Suppose |* is an abstract independence relation on
T which satisfies the independence theorem over models. Then T is simple and |*

coincides with nonforking independence | .

Remark 1.1.24. In any theory T', nonforking independence satisfies normality, mono-
tonicity, base monotonicity, finite character, and strictness. If nonforking indepen-

dence satisfies transitivity, symmetry, or local character, then T is simple.

Stability

Let T be a complete theory with infinite models, and € a monster model. Let k be
some infinite cardinal. We say that T is k-stable if for any parameter set A C € with
|A| < Kk, we have |S(A4)| < k. We say w-stable instead of Ry-stable.

T is stable if it is k-stable for some k. An equivalent characterisation is if no

formula has the order property.

Definition 1.1.25. Let ¢(z,y) be a formula whose free variables are partitioned
into two tuples x and y. We say that ¢(z,y) has the order property if there are

sequences of tuples (a;)icw and (b;)sew from € such that
¢ |= ¢(a'i7bj) = 1<
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T is stable if no formula has the order property.

We will be more interested in a third characterisation, one in terms of nonforking
independence, similar to the Kim—Pillay theorem. Indeed, simple theories initially
received interested because it was observed that much of the desirable behaviour of

nonforking independence in stable theories also held in simple theories.

Fact 2.1.4 of [34]. Suppose [* is an abstract independence relation on € which
satisfies stationarity over models. Then T is stable and |* coincides with nonforking

independence.

The independence property

As before, let T be a complete theory and ¢ a monster model. We say that a formula
¢(z,y) has the independence property (IP) if there are (a;);e,, and (br)rc,, in € such
that

¢ = é(a;,by) <— i€l

T is NIP if no formula has the independence property.

Remark 1.1.26. As is usually the case with combinatorial neostability properties, it
does not matter whether we allow the formula ¢(z,y) to contain parameters from ¢

or not.

1.2 Algebraic geometry

In this section we will briefly explain the geometric perspective we will take through-
out this thesis. Analysing the model theory of fields lends itself to the classical view-
point of algebraic geometry: that of affine varieties being solution sets of polynomials.
However, the construction of the prolongation of a variety is more naturally done
in the language of schemes. Hence we will lay out the classical viewpoint first, and
then briefly explain how to translate concepts into the scheme-theoretic viewpoint.
This final aspect is taken from Section 10.8 of [1§].

The classical viewpoint

Let U be an algebraically closed field which is k-saturated, strongly xk-homogeneous,

and k-universal for some large enough cardinal k. This is our universal domain.

33



Preliminaries

Affine n-space, A", is the set of all n-tuples of elements of U. Let K be a small
subfield of U and X = (Xj,...,X,) a tuple of variables. For each subset a C K[X],
we define the K-algebraic (or K-closed) set

V(a) ={z € A": f(z) =0 for all f € a}.

Then the K-algebraic sets form the closed sets of a topology on A™. This is the
K-Zariski topology on A”™.
Now for any A C A™, define the following ideal of K|[X]

Ix(A) ={f € K[X]: f(z) =0 for all x € A}.

Then V and Ik define an inclusion-reversing correspondence between K-closed sub-
sets of A" and radical ideals of K[X].

A K-closed set V is called K-reducible if it can be written as the union of
two proper K-closed sets. It is K-irreducible otherwise. A K-closed set V is K-
irreducible if and only if Ix (V) is a prime ideal in K[X]. In this case, the coordinate
ring of V is K[V] = K[X]/Ix(V), and the function field of V is the quotient field of
its coordinate ring, denoted by K (V).

Suppose fi,...frm € K[X] so that V = V(fi,..., fm) is a K-closed set. Then
for any L > K, f; € L[X], and hence V is also an L-closed set. However, if V is
K-irreducible, it might not be L-irreducible. We say that V is absolutely irreducible
if it is L-irreducible for every L > K, or equivalently, if it is K-irreducible (here K
is the algebraic closure of K).

If V is K-irreducible, then K[V] = K|[X]/Ix(V) embeds in U. Let x be the
image of X + Ix(V) under this embedding. The point € V is called a K-generic
point of V. Now given any point x € A", there is a K-irreducible K-variety V such
that z is a K-generic point of V; take V = V(Ix(x)). We write V = loc(z/K).

For a field extension L > K, a point x € V is L-rational if its entries are in L.

The L-rational points of V' correspond to K-algebra homomorphisms K[V]| — L.
We write the set of L-rational points of V' as V(L). Thus V(U) = V.

Given a K-variety V =V (fi1,..., fm) and a homomorphism of fields 0: K — L,

we can form the conjugation of V by o:

VO=V(fT,- o ),
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where f7 € L[X] is the polynomial formed from f; by applying o to its coefficients.
Since U is strongly k-homogeneous, ¢ extends to an automorphism of U and induces

a map

V(U) - V7(U)

(1, xn) = (0(21),...,0(xn)).

Translating to the language of schemes

Now for each K-closed set V, there is an associated reduced affine scheme of finite
type over K. Since V = V(a) for some radical ideal a C K[X], let R = K[X]/a;
this ring is reduced and finitely generated over K. The associated scheme over K is
V' = Spec R — Spec K. Now each z € V corresponds to a K-algebra homomorphism
R — U. The kernel of this homomorphism defines a prime ideal of R, and hence a
point of V’. So K-isomorphism classes of points of V' correspond to points of V'.

For L > K, V is also an L-closed set, but V' is not a scheme over L. Hence we
consider the base change of V' to L, given by V' xx L (formally V' Xgpec k Spec L).
An L-rational point of V' is a K-morphism Spec L — V’. This corresponds to a
K-algebra homomorphism R — L, and hence a point in V(L). Note that a K-
morphism Spec L — V' corresponds to an L-morphism Spec L — V'’ x g L. Hence
V(L) = (V' xg L)(L).

1.3 The Welil restriction

In this section we briefly go over the details of the construction of the classical Weil
descent. We will not give proofs, but the reader can consult Section 7.6 of [6] and
Section 2 of [51] for further details. Our approach is modelled after [39], so the reader
can also consult there for a more in-depth explanation.

Let A be a ring, and B an A-algebra. For any A-algebra R we can form the
base changd’| of R to B, namely R ® 4 B, where the B-algebra structure is given by
b+— 1®b. This base change naturally extends to a functor F': Alg, — Algz where
we set F(¢) = ¢ ® idp. If we let G: Alggz — Alg, be the scalar restriction functor,
where G(C) is the A-algebra given by composing A — B — C, then G is right

5This is just the dual of the geometric base change given in the previous section.
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adjoint to F'. More importantly, if B is free and of finite rank as an A-module, then
F has a left adjoint: Weil restriction W: Algy — Alg,.

We state the following useful fact about adjunctions from Theorem 2 and Corol-
laries 1 and 2 of [41].

Theorem 1.3.1. Let F': X — Y be a functor, and suppose that for each C € Y,
there is some W(C) € X and nc: C — F(W(C)) in Y such that the assignment
g — F(g) onc is a bijection Homy (W (C), R) — Homy(C, F(R)). Then W extends
to a functor Y — X which is left adjoint to F'. The unit of this adjunction is given
by e

In particular, for a morphism C ENYo Y, W(f) is defined to be the unique
morphism W(C) & W (C") such that F(g) onc =nc: o f.

This fact will allow us to construct the left adjoint using only the data of its
object map and unit. This fact is also the method of proof for the differential Weil
descent in [39)].

We now explain the situation in the classical setup. Let b,...,b. be an A-basis
of B. Foreachi =1,...,r, let \;: B — A be the A-module homomorphism with
i (E;T:l ajbj> = q;. If R is an A-algebra, we consider the base change of \; to R —
the R-module homomorphism idg ® A\;: R ®4 B — R. Note that idg ® A; simply
picks out the coefficient of the basis element 1 ® b;. We will write \; for idg ® \;
throughout, but it will be clear from context which we mean.

Now let T be a set of indeterminates, and define
W(B[T]) = A[T|*" = A[T] ®4--- ®4 A[T]

Foreachiandt € T, let t(i) =1®---®1®t®1®--- ® 1, where the ¢ occurs in
the ith position. We also let np[r) be the B-algebra homomorphism

npir): B[T] = F(W(B[T]))

t— > (i) ®b;
=1

These choices make the following map 7(B[T], R) a bijection for each A-algebra
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HomA|gA (A[T](XW, R) — HOIIIA|gB (B[T], R ®Xa B)
¢ F(¢)o NB[T)

where the compositional inverse is defined as follows. For a B-algebra homomorphism
¢¥: B[T] - R®a B, let ¢ be the unique A-algebra homomorphism with ¢(¢(:)) =
Ai(%(2))-

Now let C be a B-algebra, and take a surjective B-algebra homomorphism
7o B[T] — C for some set of indeterminates 7. Let Ic be the ideal of W (B[T])
generated by all the A;(npir(f)) where f ranges over ker mc. Now define W(C) =
W (B[T))/Ic and W (n¢): W(B[T]) — W(C) as the residue map.

Then we induce a map 7(C, R): Homag, (W(C), R) = Homayg, (C, F(R)) which

makes the following diagram commute:

Homag, (W(C), R) —— S, Hompy, (C, F(R))

BOW(WC') koﬂ'o

Homag, (W (BIT]), B) —"" Homay, (BIT], F(R))
Let ne = 7(C,W(C))(idw(c)), and note that
nore(t) = 3 Wire)1(0) @ b
From this we see that 7(C, R)(¢) = F(¢) o nc and that 7(C, R) is a bijection,

satisfying the conditions of Theorem Then W is a functor which is left adjoint
to F' with unit n¢. This W is the classical Weil descent functor.

1.4 Some field theory

We will not need much field theory, but we record some notions and facts that will

be important later.
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Linear and algebraic disjointness

Let U be a special algebraically closed field containing small subfields F' < L, and
F < K. The compositum of L and K inside U is the smallest subfield of U containing
both L and K.

We say that L and K are linearly disjoint over F' if every finite subset of L
which is linearly independent over F' remains linearly independent over K. This is
equivalent to saying that the multiplication map

L®r K - LK
a®b— ab

is an injection. Note then that linear disjointness is symmetric in L and K.
We say that L and K are algebraically independent, or algebraically disjoint,
or free, over F' if every finite subset of L that is algebraically independent over F’

remains algebraically independent over K. If this is the case, we write L Jflpg K.

Fact 1.4.1. If L and K are linearly disjoint over F, then they are algebraically
independent. The converse holds if at least one of the extensions F < L or F < K

is a reqular extension, that is, relatively algebraically closed and separable.

Large fields

For Chapter |3| we will need the notion of a large field. These were first introduced
by Pop [58] as fields over which regular inverse Galois problems could be solved.
Model-theoretically, most “tame” fields are large. We recall the definition, equivalent

characterisations, and some examples.

Definition 1.4.2. A field K is called large if every K-irreducible variety with a
smooth K-rational point has a Zariski-dense set of K-rational points.

Proposition 1.1 of [58]. The following are equivalent.

1. K is large;

2. if a curve over K has a smooth K -rational point, then it has infinitely many

K -rational points; and

3. K is existentially closed in the Laurent series field K((t)).
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Example 1.4.3. 1. Algebraically closed fields, real closed fields, and fields that
admit a nontrivial Henselian valuation are all large. Pseudo-algebraically closed

fields, pseudo-real closed fields, and pseudo-p-adically closed fields are large.

2. By Falting’s theorem, number fields are not large.

Large fields play an important role in Tressl’s uniform companion [65]. They will
play a similar role in the results of Chapter 3| once we generalise to the notion to

difference largeness.

Fields of positive characteristic

We now explain some of the algebra and model theory of separably closed fields of
characteristic p > 0. This part is heavily based on [14], [16], and [46].

Definition 1.4.4. Let K be a field of characteristic p > 0. For n € N, let p™ be the

set of n-tuples with entries from {0,...,p — 1}.

a) For a finite set @ = (a1,...,a,) C K, the p-monomials over a are the elements
m;(a) == ai(l) cal™ e K forie p". The finite set a is p-independent in K if
the set of p-monomials over a is linearly independent over K?. An infinite set

is p-independent if each finite subset is.

b) The set a is p-independent in K over F' C K if it is linearly independent over
FKP.

c) A p-basis of K is a maximal p-independent subset of K. The cardinality of a
p-basis is called the degree of imperfection.

d) A field extension F' C K is separable if each p-independent set in F' re-
mains p-independent in K, equivalently if there is some p-basis of F' that is
p-independent in K, equivalently if F' and K? are linearly disjoint over F”.

e) K is separably closed if it has no proper separable algebraic extension.

The theory of separably closed fields of characteristic p and degree of imperfection
e € NU{oo} is denoted SCF, .. In Proposition 27 of [16], Delon finds a language in
which SCF, . has quantifier elimination.

If e is finite, define the language
L= {+,—, -,0,1}U{)\: i €p}
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where each )\; is an (e + 1)-ary function symbol. We let SCF]’},e be the expansion
by definitions of SCF,. to £* given by defining the functions ); as follows. If § is
p-dependent, then \;(z,y) = 0 for each i € p°. Otherwise,

z = Xi(z, )" mi().

1EPe
If e is infinite, we let £* be the language
L= {+,—,-,0,1}U{\;: n €Ew,i €p"}

where A, ; is an (n + 1)-ary function symbol. We let SCF;;oo be the expansion by
definitions of SCF, ,, to £L* given by defining the functions \,; as follows. If § is
p-dependent or (z,¥) is p-independent, then A, ;(z,y) = 0 for each n € w and ¢ € p™.
Otherwise,

z = i@, 5" mi(y)-

1EP
The key fact about the A functions is that £ -extensions are precisely the sepa-
rable extensions. See Lemma 1.9 of [11].

Fact 1.4.5. Let K be a field of characteristic p and degree of imperfection e in the
language L. Let F be a subfield of K. Then F' is an L-substructure if and only if
K/F is a separable field extension.

Definition 1.4.6. Suppose that ' < K,L < U are all separable extensions. We
say that K and L are p-disjoint over F' (inside U) if every subset of K which is
p-independent over F' in U remains p-independent over L in U.

Equivalently, there are p-bases Br, Bk, and By, of F', K and L, respectively,
with Br C Bk, By, such that Bx U By, is p-independent in U.

This notion guarantees that composita of separable subfields remain separable.

Fact 1.4.7. Suppose K and L are p-disjoint over F inside U. Then KL C U is

separable.

Proof. Bx U By is a p-basis of K L. By p-disjointness, Bx U By, is p-independent in
U. |

The following fact characterises nonforking independence in SCF,, .. See Theo-

rem 13 of [61] and the paragraph after its proof.
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Fact 1.4.8. Suppose U |= SCF, « is a monster model and that F < K,L < U are
all separable extensions. Then K and L are nonforking independent over F if and

only if they are algebraically independent and p-disjoint over F'.

1.5 Differential fields and difference fields

Differential fields and difference fields are the main motivating examples for this

thesis’s work on fields with operators.

Differential fields

Definition 1.5.1. (K,d,...,d,) is a differential field if K is a field and each J; is

a derivation:

di(a+b) = d;(a) + 6;(b)
d;(ab) = ad;(b) + ;(a)b

It is an ordinary differential field if m = 1. We can axiomatise the theory of differ-

ential fields with m derivations in the language
‘Cring((s) = {+7 — aOa 17 517 cee a(sm}
where each J; is a unary function symbol.

The theory of differential fields of characteristic zero with m commuting deriva-
tions has a model completion, DCFy ,,. This theory has quantifier elimination, elim-
ination of imaginaries and is w-stable [45].

The theory DCFy; can be axiomatised in a geometric fashion; see [54]. Our
axioms for the uniform companion will also be geometric, so it is useful to see the

simplest case of ordinary differential fields. But first, we need a preliminary notion.

Definition 1.5.2. Let (K,6) be an ordinary differential field. Let V' C A™ be an
affine K-variety. The d-prolongation of V is the affine K-variety defined as

naf

) 81132

sV = {(w,y) € A™: x €V and f’(z) + (xz)y; =0 for each f € IK(V)} :
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Here f°(z) is the polynomial obtained by applying d to the coefficients of f. There is a

natural algebraic morphism 75V — V given by projecting onto the first n coordinates.
A differential field (K,0) = DCFy, if and only if:

1. K is algebraically closed; and

2. for every affine K-irreducible variety V', and every affine K-irreducible W C
75V such that W — V is dominant, W has a Zariski dense set of K-rational
points of the form (a,d(a)) € W(K).

Remark 1.5.3. In [37], Leén Sanchez gives a geometric characterisation of DCFy ,.
The commutativity of the derivations means the axiomatisation is more complex
than ours will be in Chapter

Difference fields

Definition 1.5.4. (K, 01,...,0,,) is a difference field if K is a field and each o; is a

field endomorphism. The endomorphisms do not need to commute.

The theory of difference fields has a model companion, ACFA ,,; see [27]. It has
elimination of imaginaries and is simple.
(K,01,...,0m) |E ACFAq,, if and only if

1. K is algebraically closed; and

2. for every affine K-irreducible variety V, and every affine K-irreducible W C
V x Vo x ... x Vo such that each W — V' is dominant, W has a Zariski
dense set of K-rational points of the form (a,01(a),...,omn(a)) € W(K).

The two geometric axioms described above are very similar; this is part of the
reason Moosa and Scanlon developed their theory of prolongations in [51] and their

theory of fields with free operators in [53].

1.6 Fields with free operators

Fix a base field k. Let D be a finite-dimensional k-algebra, and let €, ..., be a
k-basis of D. We require that there exists a k-algebra homomorphism 7: D — k that
sends eg— land g; —» 0 fori=1,...,0. If R is a k-algebra, 1 ® £p,...,1 ®¢; is an
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R-basis of R®;, D. Write 7%: R®, D — R for the k-algebra homomorphism idz ® 7.
Recall that rings and algebras are commutative and unital and that homomorphisms

preserve the unit.

Definition 1.6.1. Let R be a k-algebra and 0;: R — R a sequence of unary functions
on Rfori=1,...,l. Wesay that (R, 0y,...,0) is a D-ring if the map 0: R — R®;D
given by

r=r®e+o(r)®e+ -+ 0(r) e

is a k-algebra homomorphism. Equivalently, we will say that (R,J) is a D-ring if
0: R — R®; D is a k-algebra homomorphism such that 77 o = idp.

If R is a k-algebra and S is an R-algebra given by a: R — S, we say that
0: R — S ®; D is a D-operator along a: R — S if it is a k-algebra homomorphism
and 7° 0 @ = a. Then (R, d) is a D-ring if and only if 9 is a D-operator along idx.

The ring structure of D determines the additive and multiplicative rules of the
functions 0;. Indeed, let a;jx,b; € k be the elements defined by ¢;e; = 2220 QijkEk
and 1p = Zé:o b;e;. Then k-linearity of 0 corresponds to k-linearity of each 0;.
Multiplicativity of 0 corresponds to the following “product rule” being satisfied for
each k: Ok(rs) = Eé,j:g a;;10;()0;(s). That O preserves the unit corresponds to the
equation 0;(1g) = b;.

Note that being a D-ring imposes no additional relations between the functions
0;. For example, commutativity of the operators is not imposed by being a D-ring
(though a particular D-ring may indeed have 0,0; = 0,0;).

We can axiomatise the theory of D-rings in the language

Ering(a) = {+7 —y a07 1) (Ca)a€k7 ala oo )al}a

where ¢, is a constant symbol for the element a € k.

Example 1.6.2. 1. Take D to be the algebra of dual numbers, k[e]/(¢?), with
the standard k-algebra structure, basis {1,¢}, and #: D — k the map that
quotients by €. Then (R, 0,) is a D-ring precisely when R is a k-algebra and
0; is a k-linear derivation of R.

2. Let D =kley,...,e]/(e1,.-.,e)? with basis {1,¢y,...,&} and 7 the map that
quotients by (e1,...,&). Then (R,01,...,0,) is a D-ring if R is a k-algebra
and each 0; is a k-linear derivation of R. As explained before, these derivations

will in general be noncommuting.
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3. Take D = k'*! with the product k-algebra structure, the standard basis, and

7 the projection to the first coordinate. Then (R, 04,...,0,) is a D-ring if and
only if R is a k-algebra and each 0; is a k-linear endomorphism of R. These

endomorphisms will in general be noncommuting.

. We can combine the above examples. Let D = k[e]/(e?) x k with basis

{(1,0), (,0),(0,1)} and 7 the map which projects to the first coordinate and
then quotients by €. Then a D-ring (R, 01, 0) is a k-algebra with a derivation

0: and an endomorphism 0,.

. Let D = kle]/(e"*?) with basis {1,¢,...,€'} and 7 the map that quotients by

€. Then D-rings are k-algebras with non-iterative, truncated higher deriva-

tions (04, ...,0;). That is, they satisfy the following higher-order Leibniz rule:
0i(zY) = X ys=i O (7)0s(y)-

The reader is referred to [53] for more examples.

Since D is a finite-dimensional k-algebra, it is artinian and can be written as a

finite product of local finite-dimensional k-algebras D = []i_, B;. For each i let m;

be the unique maximal ideal of B;. Then the residue field is a finite field extension of
k: B;/m; = k[z]/(P;) for some k-irreducible polynomial P,. We define the k-algebra
homomorphism 7;: D — k[z]/(P;) by the composition D — B; — k[z]/(F;), and
we let 77 = idg ® m; be the k-algebra homomorphism R ®; D — R[z]/(P;) for any
k-algebra R. Note that the k-algebra homomorphism 7: D — k gives a maximal

ideal of D with residue field k. So m must correspond to one of the 7;. By renaming

if necessary, say m corresponds to 7y, and hence By has residue field k.

Definition 1.6.3. Suppose 0: R — S ®; D is a D-operator along a: R — S.

Composing & and the map 75 gives the following k-algebra homomorphism:

s
R -2 S, D —— S[z]/(P).

This is called the ith associated homomorphism, o;, of 0.

Now, 0 = 75 00 = m° 0 = a and the associated homomorphism corresponding

to By is always a.

Suppose now that (R,0) is a D-ring. If @ € R is a root of P;, we have a map

R[z]/(P;) — R. The composition of o; with this map gives an endomorphism of R,

0ia: R — R. This endomorphism is uniformly quantifier-free a-definable in L,,4(0).
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In [53], the authors impose the following condition on the k-algebra D.

Assumption A. Foreachi=0,1,...,t, the field B;/m;, which is necessarily a finite

extension of k, is k itself.

As a consequence of this assumption, all the associated homomorphisms of a D-
ring (R, 0) are now endomorphisms R — R. In this thesis, we will often impose this
assumption, or the stronger assumption that D is a local ring. In the latter case,
there are no nontrivial associated endomorphisms.

For the construction of the uniform companion, we will need to understand how
to extend D-structures. We will follow the proof of Lemma 2.7 of [4], which is based

on the notions of being 0-smooth and 0-étale; see Section 25 of [44].

Definition 1.6.4. Let a: R — S be an R-algebra. We say that S is 0-smooth
over R if it has the following property: for any R-algebra C, any nilpotent ideal
N of C, and any R-algebra homomorphism u: S — C/N, there is some lifting of

u to an R-algebra homomorphism v: § — C. That is, given a diagram of ring

homomorphisms
S —— C/N
R——C
there is some v such that
S —— C/N

S is 0-unramified over R if there is at most one such v, and it is 0-étale if there

is exactly one such v.

Lemma 1.6.5. Suppose R is a k-algebra, S is an R-algebra given by a: R — S, T
is an S-algebra given by b: S — T and 0: R — T ®; D is a D-operator along ba
(that is, 77 0 0 = ba). Let g;: R — T|x]/(P;) be the associated homomorphisms of
9, 7l 0d. Let 7;: S — T[x]/(P;) be k-algebra homomorphisms extending o;. If S is
0-smooth over R, there is an extension of 0 to a D-operator &': S — T Qi D along
b with associated homomorphisms 7;. If S is 0-étale over R, there is a unique such

extension.
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Proof. We have a diagram
S —— T[z]/(P)

7

where the composition anticlockwise is o;. Note that the vertical map on the right
is surjective with nilpotent kernel T' ®; m;. Since R — S is 0-smooth (0-étale),
there is a (unique) homomorphism S — T ® B; fitting into this diagram. Let &'
be the product of these. This gives a (unique) map S — T ®; D whose associated
homomorphisms are 7;. The commutativity of the lower triangle implies that &
extends 0. |

Remark 1.6.6. 1. Separable extensions are 0-smooth (Theorem 26.9). Separable
algebraic extensions are 0-étale (Theorem 25.3). If a field extension shares
a p-basis, then it is 0-étale (Theorem 26.7). Localisations are 0-étale. All

references are to [44].
2. When D is local, this lemma appears as Lemma 2.7 in [4].

3. In Chapter |3 we will only need this result in the case T'= S and b = idg. The
extra generality will be necessary in Chapter

1.7 The prolongation of an affine variety

In Section we saw that the axiomatisations of DCF(; and ACFA,; required
the geometric objects 75V and V x V9 x --- x V9. These objects are sometimes
called prolongations. In [51], the authors develop a generalisation of these objects to
the case of D-fields; they then apply them in their model-theoretic analysis in [53].
These prolongations will also play a key role in the uniform companion developed in
this thesis.

Let (K,0) be a D-field, and V an affine K-variety. Since 0: K — K ®; D is a
k-algebra homomorphism, it is also a K-algebra homomorphism considered as a map
0: K — D?(K), where D?(K) is the K-algebra whose underlying ring is K ®; D
and whose K-algebra structure map is 0. Thus we may consider the base change
of V from K to D?(K); denote this V xx D?(K). This object is a scheme over
D(K) = K ®;, D given by projecting onto the second coordinate. Since D(K) is a

finite-dimensional K-algebra, we can take the Weil restriction of this scheme from
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D(K) to K.
TV = WD(K)/K <V XK Da(K)> .

The functor V — 7V can also be seen as the right adjoint to the functor which is

defined (algebraically) as:

Alg;, — Algy
R~ D°(R).

Here D?(R) is the ring R ®;, D with K-algebra structure given by K % K®LD—
R ®;, D. See the discussion after Remark 2.10 of [4].

We can construct 7V more explicitly. For a polynomial g € K[X], where X =
(X1,...,Xn), g° means the polynomial in D(K)[X] given by applying 0 to the
coefficients of g. Now compute the polynomials ¢@,...,¢g® € K[X© . . X®]
which make the following true in D(K)[X©,..., XY)].

l l
g° (Z X(z)€i> = Zg(l)(X(O), o ,X(l))Ei-
=0 =0

If V = Spec(K|[y]/I), then 7V = Spec(K[y©,...,y®]/I') where I’ is the ideal
generated by the ¢, ... ¢ as g ranges over I.

Suppose Assumption [A] holds. Then each associated endomorphism o;: K — K
fori=0,...,t induces an algebraic morphism #;: 7V — V; see Section 4.1 of [51].

We summarise the crucial facts in the following.

Fact 1.7.1. Suppose (K, 0) is a D-field, V is a scheme over K, and TV its prolon-
gation. Then

1. if V is affine, so is TV ;

2. if V is of finite type, so is TV ;

3. if L > K is a field extension, there is an identification 7V (L) <> V(D?(L));

and

4. if (L,8) > (K, 0) is a D-field extension, there is a (nonalgebraic) map
V: V(L) — 7V (L);
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with respect to the above coordinates, it is given as
V(a’) = (a’a 61(0’)7 cee 75l(a’))'

Proof. 1 and 2 are clear by the construction above. 3 is by Lemma 4.5 of [51]. See
the discussion after Proposition 4.6 of [51] for 4. |

1.8 The theory D-CF

Suppose Assumption [A] holds. By axiomatising the existentially closed models,
Moosa and Scanlon prove that the theory of D-fields of characteristic zero has a

model companion, D-CF,.
Theorem 4.6 of [53]. (K, 0) = D-CF if and only if

e K |: ACFo,'

e the associated endomorphisms o1, ...,0:: K — K are all automorphisms; and

e for any K -irreducible varieties V. and W with W C 7V such that each projec-
tion #t;: W — V9 is dominant, there is some a € V(K) such that Va € W(K).

They then prove that D-CF, eliminates imaginaries and that every completion
of D-CF, is simple, where A and B are nonforking independent over C' exactly when
acl(AC) is linearly disjoint from acl(BC') over acl(C).

Remark 1.8.1. The appendix to [53] gives an axiomatisation of the existentially closed
D-fields in the absence of Assumption [A]

Theorem 4.6 of [53] can be seen as a proof that ACFA, ;U “D-fields” has a model
companion under Assumption[A] In Chapter [3| we will see that a similar result holds

when replacing ACFA,; by any model complete theory of difference large fields.
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Chapter 2

The Welil descent functor in the
category of algebras with free

operators

In this chapter we explore the existence of the Weil descent functor in the appropriate
categories of D-rings. In Sections[2.1]and[2.2] we establish the objects and morphisms
in the category of D-algebras, as well as define the appropriate notion of D-base
change. Following on from the example in the Introduction that shows the difference
base change functor cannot always have a left adjoint, in Section we associate to
every finite and free extension of D-rings a matrix whose invertibility corresponds to
the invertibility of a certain natural transformation. Section [2.4] contains the main
theorem of this chapter: we construct the D-Weil restriction using the classical Weil
restriction together with the functorial nature of D-ring structures. In Section [2.5
we show that several properties of a D-ring such as commutativity of its individual
operators and triviality of its associated endomorphisms are preserved under the D-
Weil descent as well as a partial converse to the main theorem. Section details
an explicit construction of the D-Weil descent and explicates any algebraic notions
necessary for it. The content of this chapter appears in the author’s published paper
[50].
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The D-Weil descent

2.1 Some more D-algebra

Let k be a field of arbitrary characteristic, and let D be a finite-dimensional k-algebra.
Recall Assumption [A} Since D is a finite-dimensional k-algebra, we may decompose
it as a finite product of local finite-dimensional k-algebras, say D = B; X --- X B;.
We assume that the residue field of each B; is actually k.

For any k-algebra R, we define D(R) = R ®;, D to be the base change of D to
R. Note that D(R) remains free and finite as an R-module. We will often identify a
k-basis of D with the corresponding R-basis of D(R). By a slight abuse of notation,
we think of D also as a functor Alg, — Alg,, where for a k-algebra homomorphism
¢: R— S, D(¢p) =¢Qidp.

For this chapter only, a D-ring is a k-algebra R equipped with a k-algebra ho-
momorphism e: R — D(R). That is, we do not require that e is a section to the
k-algebra homomorphism 7%: D(R) — R. Relaxing this definition changes the be-
haviour of some of our examples. In Section [2.5, we will see that our results also

work with the original definition of a D-ring.

Example 2.1.1. 1. Take D to be the algebra of dual numbers, k[e]/(¢?), with
the standard k-algebra structure. If (R,e) is a D-ring, let ¢ and J be such
that e(r) = o(r) + §(r)e. Then o is a k-linear endomorphism of R, and § is
a k-linear derivation on R which is twisted by o. Indeed, the k-linearity of e

implies k-linearity of o and §, and multiplicativity implies that
o(rs) +6(rs)e = a(r)o(s) + (a(r)d(s) + d(r)o(s))e

Note that if a D-ring has 0 = idg (that is, it satisfies our original definition of

a D-ring), then it is a differential k-algebra.

2. Take D = k' with the product k-algebra structure. If (R,e) is a D-ring, let
e(r) = X, 04(r)e; where ¢; is the standard basis of D. Then D-rings are precisely

rings with [ (not necessarily commuting) k-linear endomorphisms oy, ..., 0.

3. We can combine the above two examples. Let D = k[e]/(¢?) x k. Then D-rings
can be viewed as rings with two endomorphisms ¢; and o3, and a derivation
0 twisted by the first endomorphism o;. A D-ring with o; = id is then a ring
with an endomorphism and a derivation which do not necessarily commute.

4. Let D = k[e]/(¢'). Coordinatising the D-structure of a D-ring (R,e) as
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The tensor product of D-structures

e(r) = o(r) + 61(r)e + ... + §_1(r)e'™*, we see that D-rings are rings with
non-iterative, truncated Hasse-Schmidt derivations (44, . .., d_1) twisted by the

endomorphism o:

Or(zy) = 0(z)o(y) + o(@)de(y) + 3. 0:(x)d;(y)-
i
We now specify the morphisms of the categories we are working in. These were
defined in Section 3.1 of [52].

Definition 2.1.2. If (R,e) and (S, f) are two D-rings, then ¢: (R,e) — (S, f) is
a D-homomorphism if it is a k-algebra homomorphism and the following diagram

commutes:

D(R) 29, D(3)

T
R—— §

If S is an R-algebra, then we will call (S, f) an (R, e)-algebra if the structure
map R — S is a D-homomorphism. If (S, f) and (T, g) are both (R,e)-algebras
and ¢: S — T is a map between them, then we say that ¢ is a (R,e)-algebra

homomorphism if it is an R-algebra homomorphism and a D-homomorphism.

Remark 2.1.3. Note that in the context of Example[2.1.1(1) above, under our original
definition of a D-ring where ¢ is the identity map, a map being a D-homomorphism
is equivalent to it being a differential ring homomorphism. In the context of Ex-
ample (2), being a D-homomorphism is equivalent to being a difference ring

homomorphism for each endomorphism.

From now on the category of (R, e)-algebras with (R, e)-algebra homomorphisms

is denoted by Algg).

2.2 The tensor product of D-structures

We now need the correct notion of base change in the context of D-algebras. That
is, given a D-ring (R, e) and an (R, e)-algebra (T} g), for any (R, e)-algebra (5, f) we
need a D-ring structure on S ®g T that makes S ®g T into a (T, g)-algebra. In [4],
it is proved that there exists a unique D-structure, f ® g (called ( f, g) in [4]), on
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The D-Weil descent

S ®gr T which makes the natural maps ¢s: S -+ S®rT and ¢r: T — S ®x T into
D-homomorphisms. We recall the definition of this structure:

DS ®rT)
f®g
D(S) D(T)
D(us) S®rT D(ur)
f g
s 'D(R) T
S T
Ls Z
R

Explicitly,
(f®g)(s®t) = (D(¢s) o f(s)) - (D(¢r) © 9(t))
where - is the product in D(S ®g T'). The existence and uniqueness of this map
f ® g follow from the fact that S @z 7" is the pushout in the category of k-algebras.

Remark 2.2.1. A short computation shows that this agrees with the correct notions
of derivations on tensor products: (0 ® d)(s ®t) = 6(s) ® t + s ® d(t) (see page 21
of [7]), and endomorphisms on tensor products: (o ® 7)(s ® t) = a(s) ® 7(¢).

Definition 2.2.2. Let (R,e) be a D-ring and let (T, g) be an (R, e)-algebra. The
D-base change functor from (R, e) to (T, g) is defined as follows.

FP. Alg g o — Algr )
(S, )= (S®rT,f®g)
(S&U) I—)(S®RT0®ﬂ)U®RT)

Proposition 2.2.3. The map F? is a functor.
Proof. If 0: (S, f) — (U, h) is an (R, e)-algebra homomorphism, then 0 ® idr is a

92
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T-algebra homomorphism. It remains to show it is also a D-homomorphism, that is,

that the following square commutes.

D(S ®@r T) 2 DU 0, T)

f ®9T Th®g

S®nT OQidr UenT

Now consider the following diagram of k-algebra homomorphisms.

We should also include the R-algebra structure maps and squares expressing that
they are D-homomorphisms, but they have been omitted to declutter.

Every square except the dashed one commutes since 6 is an (R, e)-algebra homo-
morphism or by the result above. Now consider a path S — D(U ®g T') and a path
T — D(U ®r T) both avoiding the dashed square. These two paths agree on R,
and hence there is a unique map S ® g T' — D(U ®g T') through which they factor.
But these paths also factor through both directions along the dashed square. By
uniqueness, both directions must be equal, and 0 ® idr is a D-homomorphism. W

We finish this section with the following lemma which will be used in Section

It describes the associated endomorphisms of the D-structure on a tensor prod-
uct. Recall that since Assumption [A] is in force, we have k-algebra homomor-
phisms 7;: D — B; — k for each ¢ = 1,...,t given by quotienting D by each of
its finitely many maximal ideals. We can lift these to k-algebra homomorphisms
;v = idg ®k m: D(R) — R for any k-algebra R. Then if (R,e) is a D-ring, each
R

composition 7;* o e is a k-linear endomorphism of R. These are the associated endo-

morphisms o1, . .., 0, of the D-ring (R, e).
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The D-Weil descent

Lemma 2.2.4. Let (R,e) be a D-ring and (S, f), (T, g) € Algg,)- If the ith asso-
ciated endomorphism of (S, f) is o; and that of (T,g) is T;, then the ith associated
endomorphism of (S®grT, f ®g) is 0;  T;.

Proof. Using the notation above, we have

8 o (f @ g)(s ® t) = m R (D(¢s) 0 f(s)) - m; =7 (D(¢pr) © g(t))
= (1o f(s)®1)- (1@ og(t))
= 0;(s) @ Ti(t)

2.3 The matrix associated to a free and finite D-
ring

In this section we establish some technical results that will be needed to construct
a left adjoint to FP in Section We carry forward the notation from the pre-
vious section. In particular, k is a field, D is a finite-dimensional k-algebra, and
Assumption [A] still holds.

Recall from the example in the introduction that, in general, the difference base
change functor had no left adjoint. There, the nonexistence of the left adjoint is due

to the fact that the matrix associated to the endomorphism,

[ M(FM) () ] _ [ 10 ]
Mo(F(1) Aa(f(2) 00|
is not invertible.

We will show in Section that if the associated matrix is invertible, then we
can construct a left adjoint to FP. The next subsection investigates conditions under

which the associated matrix is invertible.

The matrix associated to an endomorphism

As before, let A be a ring and B an A-algebra which is finite and free as an A-module.
We fix a ring endomorphism o: B — B with o(A) C A.

o4



The matriz associated to a free and finite D-ring

Definition 2.3.1. For an A-basis b = (by,...,b,) of B, let M{ be the following
matrix associated to o

M(o(b1) Mi(o(b2)) -+ Ai(o(br))
Mg = )\2(0.(51)) Az(U.(bz)) )\2(0.(1%))
| A(0(b1)) Ae(o(B2) -+ An(o(br)) |

where ); is the ¢th coordinate projection B — A with respect to the basis b. Note
that the maps \; are dependent on the basis by, ...,b, and hence will change if the

basis changes.

We will say that o has invertible matrix with respect to the basis b = (b4, ..., b;)
if M¢ is invertible in Mat, . (A).

Proposition 2.3.2. The following are equivalent:

(i) o has invertible matriz with respect to some A-basis of B;
(ii) o has invertible matriz with respect to every A-basis of B

(iii) f by,...,b. is an A-basis of B, then o(b1),...,0(b.) is also an A-basis of B;

and
(iv) spany(o(B)) = B.

Proof. (ii) = (i) and (iii) = (iv) are clear.

For (ii) < (iii), note that M is just the change of basis matrix between the two
tuples by,...,b, and o(by),...,0(b,).

For (i) = (ii), say o has invertible matrix with respect to by,...,b,, and let
B1,- .., B be some other basis. Let X be the change of basis matrix from the b to
the 3, that is, 8; = >, ;:b;, let Y = X1, and let p; be the A-module homomorphism
with p;(3; a;8;) = a;. Then

o(B;) = Z (zji)o (b))
= ZZU(% )\k b ))bk
- ZZZ m]z )‘k(a ))ynkﬂn
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The D-Weil descent

and so pn(0(B:)) = X; Xk 0(x5i) Me(0(b;))ynk, that is, Mg = Y My o (X). Now since
X is invertible, o(X) is invertible in Mat,x,(A). So M, § is invertible.

For (iv) = (iii), assume by,...,b, is an A-basis of B. Any b € B has b =
> ia;0(B;) for some B; € B. Also, §; = >; @i;b; since the b; are a basis, and so
b=13;>;a,0(ci;)o(b;). Then o(b),...,0(b,) spans B over A. Now write X for the
matrix where o(b;) = 3, z;:b;, and Y for the matrix where b; = 3=, y;;0(b;). Then,

since by, ..., b, is a basis, we have that XY = I, and so by taking determinants, we
see that X and Y are invertible in Mat,,.(A). Then o(by),...,0(b.) is an A-basis
of B. |

Definition 2.3.3. As a result of this proposition, having invertible matrix is inde-
pendent of the choice of A-basis of B. We will say that ¢ has invertible matrix if
any of the above conditions hold.

The following results explain the connection between the endomorphism ¢ having

invertible matrix and being an automorphism.

Lemma 2.3.4. If o|a: A — A is an automorphism, then o is an automorphism on

B if and only if o has invertible matriz.

Proof. Define B° to be the A-algebra with underlying ring B, but A-algebra structure
map a +— o(a). Since 0|4 is an automorphism, B is a finite and free A-algebra of
the same rank as B; in fact, if by,..., b, is a basis of B, then it is also a basis of B°.
Now the map f: B — B given by f(b) = o(b) is actually A-linear, with

F(0:) =>_ Ao (b:))b;
j
= Y o(oli A (0B )b,
j
and so the matrix of the A-linear map f is o|;*(M¢). Then f is an isomorphism if
and only if o| ;' (MY) is invertible, if and only if o has invertible matrix. |

Lemma 2.3.5. If o is an automorphism on B, then o|4 is an automorphism on A.

Proof. Tt is enough to show that o|4 is surjective onto A. Note that since o is
surjective onto B, the A-linear span of {o(b),...,0(b.)} is B, and by a similar
argument to the proof of (iv) => (iii) in Proposition [2.3.2, it must be an A-basis.
Now, let a € A. Then thereis a b € B such that ac(b) = o(b). Writing b = >7_; a;b;
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The matriz associated to a free and finite D-ring

for some a; € A, we get ao(b1) = Y1, 0(a;)o(b;). Since {o(b1),...,0(b.)} is an A-
basis, we get that a = o(a1), and hence o4 is surjective onto A. |

As a result, we see that if o is an automorphism of B, then it has invertible matrix.

It turns out the converse is not true, as we point out in the following example.

Example 2.3.6. Let A = R(z1,zy,...), B = C(z1,%s,...), with basis by = 1,by = 1,
o|c = idc, and o(z;) = x;41. Note that A and B are fields and that ¢ and o|4 are

not surjective. However, the associated matrix is

M — [ M) M(o(b) ] ) [ 1 0]

)\2(0’(()1)) )\2(0’(()2)) 01
which is invertible.

On the other hand, one can have an injective endomorphism ¢ that does not have

invertible matrix.

Example 2.3.7. Let K be a field, A = K|[z] and B = Ale]/(¢?) with o(p(z) +
q(z)e) = p(z) + zq(x)e. Then with respect to the basis b = {1,¢}, we have

M =

M(o(®)) M(o(b)) } _ [1 0}
Aa(a(B1)) Aol (b)) 0 z

which is not invertible in Matoyo(K[z]).

The matrix associated to a D-ring

We now extend the ideas of the previous subsection to the more general case of D-
rings. Just as we can associate a matrix to an endormophism of B, we can associate
a matrix to a D-ring structure on B which, when invertible, will allow us to construct
a left adjoint to F'P in Section Here, we analyse this matrix and the conditions
on its invertibility.

Let (A,e) be a D-ring and let (B, f) be an (A, e)-algebra, where B is a finite
and free A-algebra. For any k-basis €1,...,&; of D and any A-basis by,...,b. of B,
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The D-Weil descent

consider the following 7l x rl matrix with entries in A:

My My - My
M My My -+ My, |
| My Mg - My |

where M,,; is the r x r matrix given by

(Mmj)m' = kzlajkm)‘n(fk(bi))’

Recall that \,: B — A is the coordinate b,-projection. The elements a;x, € k are
defined by €, = Eﬁnzl QjkmEm, and fi: B — B is the coordinate of f with respect
to & given by f(r) = Sk_; fu(r)er. We call M the matriz associated to (B, f).

We will now briefly explain where this matrix comes from and why we need to
consider its invertibility. Define the functor D¢: Alg, — Alg, by setting D¢(R) to
be the ring D(R) but with A-algebra structure given by the composition of e: A —
D(A) with the natural map D(A) — D(R); we defined this A-algebra structure in
Section On morphisms, D*(a) = D(a). We define D’ : Algy — Algy similarly.
Suppose u: R — D(R) is a D-ring structure on the A-algebra R. Then (R, u) is an
(A, e)-algebra if and only if u is an A-algebra homomorphism R — D¢(R).

We now define a natural transformation p: FD* — D F in the following way: for
any A-algebra R, we have a natural A-algebra homomorphism D¢(R) — D/ (R®4 B)
and an A-algebra homomorphism B — D/(R ® 4 B) coming from the composition
of f with the natural map. Since D¢(R) ®4 B is the coproduct of A-algebras, we
get an A-algebra homomorphism pgr: D*(R) ®4 B — D?(R ®4 B), which is also a

B-algebra homomorphism. It is clear from its construction that y is natural in R.

Lemma 2.3.8. The component of i at R, ur: D¢(R) ®4 B — Df(R®4 B), is an
R-linear map of free R-modules with the natural R-module structure. With respect
to the R-bases {€, @b,,} of D°(R) ®4 B and {1 ®bue,n} of DI (R®4 B), the matriz
representation of ugr is M, the matriz associated to (B, f). In particular, p is a

natural isomorphism if and only if M is invertible.
Proof. That pg is R-linear is clear from construction. The explicit formula for ug is
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The matriz associated to a free and finite D-ring

given by

MN

T (er@) ®bi — ZT: (

=1 =1 \J
r

i

1j=1k

l
Tij ®1 6j) : <Z 1® fk(bz)gk)
k=1

MN£

> ajrmri; @ fu(bi) €

.
I
I
—
3
—

r

l
Z Z ]km )TU ® b Em

Il
Mﬂ
MN

)
I
3

which immediately shows that M is the matrix of ug with respect to the aforemen-

tioned bases. [ |

From the lemma, we see that if M is invertible, we have a natural transformation
WD/ — WDIFW — WFDW — D*W coming from the composition of p~!
with the unit and counit of the classical Weil restriction adjunction W -+ F. If
g: C — D’(C) is a B-algebra homomorphism, then composing the above natural
transformation with the morphism W(g): W(C) — WD/(C) gives an A-algebra
homomorphism g% : W(C) — D°W(C). In the next section, we will see that this D-
structure on W (C) yields the left adjoint of FP. For now, we study the invertibility
of M.

Note that M depends on the choice of the k-basis of D and the A-basis of B.
The following result shows us that invertibility of M is actually independent of the
k-basis of D. After the proof of Theorem we will see that invertibility of M
is also independent of the A-basis of B.

Proposition 2.3.9. Suppose we have two basese = {e1,...,&} andw = {ws,...,w}
of D, with X the change of basis matriz from the € to the w; that is, w; = 22:1 Zji€j.
Let X be the rlxrl matriz obtained from X by replacing each entry = by the r xr block
xI, where I is the r X r identity matriz. Write M*® for the matriz M corresponding

to the basis € and similarly for M. Then
MY =X"'MX.

Proof. Let a;j; be the product coefficients of the ¢ and «;;, for the w. Also, write f;
for the ith operator with respect to the basis € and similarly for f;”. We can obtain a
relation between these by noting that the homomorphism f: B — D(B) they induce
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must be the same; that is

l l
S fib) ei =) f(b) w; for all b € B.
i=1 =1

To ease notation, let Y = X~1. Let N = Y M<X. Then the mj block of N is

ZZY ME
:Zzymp paTas
P 4

Then the ni element of N,,; is

Nonj)ni = Z Zymz?wqj(M
= Z Z Z YmpTqjaqkpn(fr (bi))
P 4 k

= T S sttt (TS0
= Zp: Zq: Zk: Zr: ThrYmpTajQakpAn(f; (b:))

-x (zzzxym) A2,

We now claim that ajrm = 3, ¢ & ThrYmpTqjagrp- Indeed, we have

s () (o)

= Z LqjLkrAqkpEp
a,k;p

= Z Lqj Lhr AqkpYupWu -
q,k,p,u

Then the claim follows.
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Now
ni = Zajrmkn(f:}(bi))
- Z ajkm fk: b ))
= (My‘;)m)nu
and hence M = Y M¢X. [ |

This proposition tells us that invertibility of M is independent of which k-basis of
D we choose. We now construct a particular basis of D that allows us to characterise
invertibility of M in Theorem below. This basis is constructed as follows.
Write D = B; X --- X B; where each B; is a local finite-dimensional k-algebra
with residue field k£ (see Assumption [A). Let m; be the unique maximal ideal of
B;. Nakayama’s Lemma tells us that m; is nilpotent: say d; is minimal such that
m&*! = 0. Tt then follows that for each B; we can find a k-basis B; = U?;O B! where
B! /mi*! is a k-basis of m/ /m/*!. Note that since the residue field of B; is k, we may
choose B? = {1}. Embed these bases inside D in the usual way, that is, if z € B;,
send z to the element of D with x in the ith position and zeros elsewhere. Then the
union of these forms a basis B of D. Order B = |Ji_, U?:o Bf lexicographically on ¢
and j. The ordering of each B does not matter. We will write the elements of B as
€1,...,& according to this order. Let a;xn, be the product coefficients of B; that is,
i€k = Shuri QjkmEm.-

By the construction of the basis, we know that €,e; = 0 whenever ¢, and ¢; come
from different B;. If they come from the same B;, then ;¢ can be expressed as a
linear combination of B;, and so if €, does not come from B;, it will not appear in
this linear combination. So we see that a;x, = 0 unless ¢;, €k, and €, all come from
the same B;.

Furthermore, if €; € B} and ¢, € B, then ;e € span(Uq_n +pBY). Hence, if
em € B} for ¢ < n+p, ajrm = 0. From these facts we can deduce the values of @k,

in specific cases:

1. m<jandp>0: ajpm =0.
Since m < j, ¢ < n, and hence ¢ < n + p. By the above, aji, = 0.

2. m<jand p=0: ajrm =0.
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Since p = 0, € is the 1 in B;. Then €6, = € # €m.
3. m=jandp>0: ajpm = 0.

Again, asm =j,¢=mnand so ¢ <n+p.
4. m=jand p=0: ajpm = 1.

€€k = €j = Em. S0 Qjgm = 1.

Now, recall the definition of the matrix M:

[ My My o My
M= My My, -+ My, ,
My My oo My |
where z
(Mj)ni = kz_:lajkm)‘n(fk(bi))'
With respect to the chosen basis, B = {¢1,...,€;}, we now investigate the shape

of each block M,,; for m < j. Consider first the case when m < j. As pointed out
above, if ¢; and €, belong to different B;, then a;,, = 0 for all k. Otherwise, we are

in cases (1) or (2) above, and hence a;x, = 0 for all k. Hence, the block M,,; is 0.

Now consider the case m = j, that is, the block M;;. Again, if ¢; and ¢, belong
to different B;, then aj;; = 0 for all k. If they belong to the same B;, then case (3)
tells us that a;x; = 0 when p > 0, and (4) tells us that ajx; = 1 when p = 0. In
conclusion, (Mj;)n; = An(fr(b;)) where k is such that e, € BY and ¢; € B,.

From Definition [1.6.3| we see that the ith projection map ; is just the map
that projects onto the coefficient of &5 where e, € B?. Hence, the ith associated
endomorphism of (B, f), denoted o, is just fx. Note that o; has this form because
of the chosen basis of D.

So in all, M is a block lower triangular matrix whose diagonal r x r blocks M;;
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are of the form

[ i(03(b1)) M(oi(b2)) - M(ou(br)
M = >\2(Uz;(b1)) Az(az;(bz)) Az(ai(br))
| M(@) A@®) o Aa®)

where 3 is determined by ¢; € B,.
Note that M, is the matrix associated to the endomorphism o; as in the previous

subsection. Hence, we have proved the following important result:

Theorem 2.3.10. M is invertible if and only if each associated endomorphism of

(B, f) has invertible matriz (in the sense of the previous subsection).

Remark 2.3.11. Combining this theorem with Propositions [2.3.2] and [2.3.9], we see
that invertibility of M is independent of the choice of bases of D and B.

2.4 Welil descent for D-algebras

In this section we prove the main theorem: Theorem below. As before, we let
(A,e) be a D-ring, (B, f) an (A, e)-algebra where B is a finite and free A-algebra.
The proofs in this section make use of the natural transformation p: FD® — DI F
defined in the previous section whose invertibility is equivalent to the invertibility of
the matrix M — the matrix associated to (B, f) — by Lemma Furthermore,
recall that in Theorem we proved that M is invertible if and only if the
associated endomorphisms of (B, f) have invertible matrix. For the remainder of

this section, in addition to Assumption [A] we make the following assumption:

Assumption 2.4.1. The associated endomorphisms of (B, f) all have invertible

matrix. Equivalently, p is a natural isomorphism.
The following is part of the content of our main theorem.

Theorem 2.4.2. The D-base change functor, FP, has a left adjoint WP. More
precisely, for a (B, f)-algebra (C, g), there exists a unique D-structure g on W (C)

that makes the unit of the classical adjunction, ng, into a D-homomorphism. WP

has the form WP (C,g) = (W(C), g").
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Before proving this result, we fix some notation. Since W - F', we have the nat-
ural transformations given by the unit, n: idag, — F'W, and the counit, e: WF —
idag,. We do not need to refer to the k-basis of D in this section, so we will
use € to denote the counit. We will often identify a functor with the identity nat-
ural transformation on that functor. Recall the functors D°: Alg, — Alg, and
D’: Algg — Algg defined in the previous section where D¢(R) is the ring D(R)
but with A-algebra structure given by the composition of e: A — D(A) with the
natural map D(A) — D(R), and on morphisms, D¢(a) = D(«). Recall also that a
D-ring structure on R making it into an (A, e)-algebra is equivalent to an A-algebra
homomorphism R — D¢(R).

Remark 2.4.3. Suppose (R,u) is an (A, e)-algebra so that u: R — D¢(R) is an A-
algebra homomorphism. Then pug o F(u): F(R) — D F(R) is the D-ring structure
on F(R) corresponding to u ® f from the D-base change functor in Section

We now use the natural isomorphism y to define a suitable D-ring structure on
W (C). For ease of notation we first define the natural transformation

¢: WD! - DW
by the composition

wp! Y2 i pw VW W ppew 2W, pewy (o)

Now suppose (C, g) is a (B, f)-algebra, so that g corresponds to the B-algebra
homomorphism g: C — D/(C). Let g% := (c o W(g): W(C) — D*W(C). Then
(W(C),g") is an (A, e)-algebra. We define the functor WP as

WP(C,g) = (W(0),q");
WP(a) = W(a).
Since both W and ( are natural, it is clear that if o is a D-homomorphism, then

W (a) is a D-homomorphism, so that WP is actually a functor. We now need to

show that W7 is left adjoint to FP by showing that the natural bijection coming
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from the classical adjunction

HOIIIA|gA (W(C), R) — HOII1A|gB (C, F(R))
¢ — F(¢)onc
eroW(y) < ¢

restricts to a natural bijection

HomAIg(A,e) (WD (Ca 9)7 (R7 U)) - HomAIg(B,f) ((C, g)a FD(Ra u))
¢ = FP(¢) onc
eroWP(¥) ¢

We will do this by showing that both n¢ and € are D-homomorphisms with the
appropriate D-structures defined above. Consider the following diagram of natural

transformations.

FwD! TP pwpt FWTYEY pyw EDew F2W ppew AW, i FW

anT . anFWT nmewT /

pf 2" DIFW —> FDeW

The squares commute due to naturality of 7, and the equality is due to the
adjunction axiom: Fe onF = F. The composition along the top row is uW o F(.
By naturality of n, we get

Fw(c) 29 pwpi(0)

ncT Ipf (@T

c —>— DI(C)

and putting these together we get

pf(c) — 21", piFw (o)

QT TIJW(C)OF(QW)

C ae s FW(C)
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so that n¢ is a D-homomorphism by Remark

Suppose now that ¢’ is a D-ring structure W (C) — D*W(C) making 7 into a

D-homomorphism, so that the following diagram of B-algebras commutes.

pfc) — 2", pipw(c)

yT TNW(C) oF(g’)

C ne » FW(C)

Since p is an isomorphism, this is equivalent to the following diagram of B-
algebras commuting;:

-1
) “W(C)°Df

(nc)
Df(C' FDW(C)

gT TF(g’) (©)

C e s FW(C)

Consider now the diagram of A-algebras

W (i 00D (10) o
WD (C) 2O W FDeW (C) — 2O, pew(0)

W(Q)T TWF(Q') QIT

we) — 2% wEwe) — Y9 L w(o)

Note that the left square commutes by applying W to square (¢), and the right
square commutes by naturality of e. By the adjunction axiom eW o Wn = W, the
composition along the bottom is idy (), and the composition along the top is (¢ by
definition. So g% = ¢’, and we have proved the following.

Lemma 2.4.4. gV is the unique D-structure on W(C) making (W (C), g") into an

(A, e)-algebra and the unit, nc, into a D-homomorphism.

The adjunction axioms tell us that FeonF = F, so that D/ Fe o D/nF = D/F.
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Since p is natural, the following diagram commutes :

FDWF 2% ppe

luWF lu

DIFWF 2/Fe pip

Df nFT /

DIF

Now apply W and use naturality of the counit to get

DWF Dre s De
aDeWFA aDeT
WEFDWE —WEDe , yyEpe
WuWF lW,u.

2

WDIFWF —WD'Fe  ywpfp

WDInF /

WD/F

Note that the composition up the left is precisely (F'. So eD® = D o (F o W.
Naturality of € gives

wE(R) Y wrpe(r) —F@MUR | ey p(R)

lER l De(R)
D°(er)

R—" 5 D¥R)

and since the composition along the top row is (ug o F'(u))", the counit ey is a

D-homomorphism.

We have thus proved the following.

Theorem 2.4.5 (The D-Weil Descent). Suppose (A,e) is a D-ring and (B, f)
is an (A, e)-algebra, where B is a finite and free A-algebra. Suppose also that the
associated endomorphisms of (B, f) all have invertible matriz. Then the D-base
change functor, FP: Algiaey — Algp s has a left adjoint denoted WP called the
D-Weil descent. More precisely, WP(C,g) = (W(C),g") where gV is the D-ring
structure defined by (o o W(g) and (: WD! — D°W is the natural transformation
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defined in equation ().
In fact, the natural bijection 7(C, R) from the classical adjunction restricts to a

natural bijection:
TD((C’ 9); (R, u)): HomAIg(A,e) (WD(C’ 9); (R,u)) — HOInA'E(B,f) ((C,9), FD(R’ u))

Remark 2.4.6. If we apply this theorem to the case when D = k, we get what we call
the difference Weil descent and denote it W?. In this case, D-rings are rings with a

single (not necessarily injective) endomorphism.

2.5 Further remarks

In this section we investigate three further aspects. Firstly, we make some observa-
tions about properties of the associated endomorphisms that are transferred by the
D-Weil descent. In particular, we prove that if the ¢th associated endomorphism of
(C, g) is trivial, then the same is true of the D-Weil descent, (W (C), g""). Secondly,
we prove results about the composition of a D;-structure and a D,-structure and
their Weil descents. In particular, we will show that commutativity of these struc-
tures is preserved after taking the Weil descent. These two subsections imply that
the result of this paper is an actual generalisation of the case of several commuting
derivations from [39]. Thirdly, we explore the necessity of the condition that the
associated endomorphisms of (B, f) have invertible matrix for the existence of the
D-Weil descent.

Throughout this section, unless stated otherwise, (A,e) is a D-ring, (B, f) is
an (A, e)-algebra, where B is finite and free over A, and (C,g) is a (B, f)-algebra.

Assumption [A] is still in force.

Transferred properties of the associated endomorphisms

Recall from Definition the projection maps for D. If D = [[:_; B; where each B;
is a local k-algebra with residue field &k, then 7;: D — B; — k is the composition of
the projection onto the ith component of D with the residue map onto k. These 7; lift
to R-algebra homomorphisms 72: D(R) — R. Then the associated endomorphisms

of a D-ring (R, €) are defined by 7 oe for each i =1,...,t.
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Lemma 2.5.1. Let (C,g) be a (B, f)-algebra, and suppose that the associated en-
domorphisms of (B, f) have invertible matriz. Then the associated endomorphisms
of the D-Weil descent of (C,g) are the difference Weil descents of the associated
endomorphisms of (C,g). In particular, if an associated endomorphism of (C,g) is

trivial, then so is the corresponding one of WP(C, g).

Proof. Let (03), (1), (vi), and (p;) be the associated endomorphisms of (4, e), (B, f),
(C,g), and (W(C), g"), respectively. We need to show that p; = v}¥". Consider the
following diagrams for each i =1, ..., t:

¢ —— F(W(0))
¢ TW'F(W(C))

D(C) 2% D(F(W(C))

The compositions of the vertical maps on the left are v; by definition. On the
right they are p; ® 7; by Lemma Hence p; is a difference structure on W (C)
that makes (W(C), p;) into an (A4, 0;)-algebra and 7¢ into a (B, 7;)-algebra homo-
morphism. Since 7; has invertible matrix, Lemma tells us that such a difference
structure is unique, and so we must have p; = v}V".

For the in particular clause, since the following square commutes

c X5 F(W(C))
ide Tidw(c) ®Ridp

c 5 F(W(C))

we must have (id¢)" = idw (c) by the uniqueness of the difference structure on W (C)
making it an (A,id)-algebra and nc a (B, idp)-algebra homomorphism. Note here

that idp has invertible matrix. [ |

Remark 2.5.2. This lemma tells us that we may apply our D-Weil descent result
(Theorem in the context of [53], this thesis’s original definition of a D-ring.
Recall that, there and in Section a D-ring (R,e) must have e be a section to
7R, and hence the first associated endomorphism must be the identity. Thus, if

(A,e) and (B, f) have trivial first associated endomorphism, we may consider the
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category of (A, e)-algebras (R, u) where u has trivial first associated endomorphism,
and similarly for (B, f)-algebras. Denote these subcategories Alg(, ., and Alg(p .
One checks that F'P can now be considered as a functor Alg(s ) — Alg(p j), and the
previous lemma tells us that W7 restricts to a functor Alg(p ;) — Alg(4 ) which is
still left adjoint to FP. In particular, our result is an actual generalisation of the
single derivation case from [39], since the category of differential A-algebras is equal
to Algl, ) when we take D = k[e]/(£?).

We point out here that WP does not in general preserve injectivity of the associ-
ated endomorphisms. That is, if the ith associated endomorphism of g is injective,

the ith associated endomorphism of ¢g" may no longer be injective.

Example 2.5.3. Let D = k so that the associated endomorphism of a D-ring struc-
ture is just the D-ring structure itself. Let A = F5 be the field with two elements,
and let B = Fy[e]/(¢?). Let id4 and idp be the D-ring structures on A and B respec-
tively. Note then that if (C, p) is a (B, idpg)-algebra, p is a B-algebra endomorphism

of C' making the following diagram commute:

c X5 FW(0))
PT p" ®idp

c X FW(0))

Note also that since p is a B-algebra endomorphism, it is a morphism in Algp,
and so we may apply the classical Weil descent to it. Theorem tells us that
W(p) = p".

Let C' = BIt] and let p be the unique map extending idg on B and sending ¢ +— 2.
Then p is injective. Recall from Section [1.3| that W (B(t]) = A[t] ®4 At] and that
ne(t) =t(1) ® 1 +t(2) ® €. Then

where the last equality holds because €2 = 0 and we are in characteristic 2.
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Also

(W(p) ®idp)(no(t)) = W(p)(t(1)) © 1+ W(p)(¢(2)) @ €.

By the commutativity of the diagram, we have W (p)(t(1)) = ¢(1)? and W (p)(¢(2)) =
0. Hence W(p) is not injective.

Remark 2.5.4. 1. This example tells us that in general the difference Weil descent
functor does not restrict to the categories of algebras equipped with an injective
endomorphism. However, Corollary will tell us that the difference Weil
descent does preserve automorphisms, and hence will restrict to a functor in

the categories of inversive difference algebras (see [40]).

2. The example above uses in an essential way the fact that the characteristic is

positive. We are not currently aware of such an example in characteristic zero.

The composition of a D;-structure and a Ds-structure

Suppose we now have two finite-dimensional k-algebras D; = H§1:1 B; and Dy =
H?:l C; where each B; and each Cj is local with residue field k. Then D, ®; Dy =
e, H§'2=1 C; ®k B;. From [62] we know that C; ®; B; is local with residue field %,
and hence D, ®; D; satisfies Assumption [Al We may then consider the category of
Ds ®i D;-rings. We will write these as D, D,-rings since

(D2 ®x D1)(R) = R ®y, (D2 ®; D1) = (R ®, D2) ®; D1 = Di(D2(R))

for a k-algebra R.
If some k-algebra R has a D;-structure e; and a Ds-structure ey, we can form a

D, Dy-structure on R by the k-algebra homomorphism
Dl(eg) oe;: R— D1D2(R)

We now investigate the Weil descent of this composition of D;-structures and Ds-

structures. Suppose R, S, and T all have a D;-structure ey, fi, g1 and a Dy-structure
es, f2, 92 that make (S, fi) and (7, ¢;) into (R, e;)-algebras and (S, f2) and (7}, go)
into (R, e)-algebras. We can then define D, Dy-structures on each of them as above.
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Lemma 2.5.5. Assuming the notation of the paragraph above, we have

Di(f2® g2) o (f1 ® g1) = (D1(f2) © f1) ® (D1(g2) © 1)
as D1 Dy-structures on S Qr T

Proof. Consider the following diagram.

D1D2(S) > D1D2(S Rr T)
DD, (R) » D1D, (T) D1(f2®92)
~ D1(f2) A~
D1 (e2) Dl(S) > Dl(S Rr T)
/ 0 Di(g2) / 0
Dl (R) > Dl (T) f1®g1
N f1 ~
€1 S > S ®R T
/ g1 /
R > T

The horizontal maps are just the natural maps. The lower cube commutes due to
the definition of the tensor product of D;-algebras, and the upper cube commutes by
applying D; to the cube that commutes due to the definition of the tensor product
of Dy-algebras. This means that D;(fa®g2) o (f1 ®g1) is a D;Dy-structure on SQrT
that extends the ones on S and 7', and hence by uniqueness of the tensor product of

D;D,y-structures, we must have that

Di(f2® g2) © (f1 ® g1) = (D1(f2) © f1) ® (D1(g2) © 91)-

We now return to the case when B is a finite and free A-algebra.

Definition 2.5.6. For any B-algebra C, let D-Strg(C) be the collection of triples
(e, f, g) where e is a D-structure on A, f one on B, and g one on C such that (B, f) is
an (A, e)-algebra and (C, g) is a (B, f)-algebra, and the associated endomorphisms of
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(B, f) have invertible matrix. For any A-algebra R, let D-Str4(R) be the collection
of pairs (e,u) where e is a D-structure on A and u one on R such that (R, u) is an
(A, e)-algebra. The D-Weil descent then tells us that we have a map

()" D-Strp(C) = D-Stra(W(C))
(e, £,9) = (e,9"").

Unless we need to be precise, we will drop the tuple notation and just use g for
(e, f,9) and u for (e, u). We will also suppress the D notation in the map (-)"” and
just write (- )". In what follows, we will make use of these maps for D;, D,, and
D1Ds, but it will be clear from context which we mean: (-)WD1 will be applied only to

WP WwP1P2

D;-structures, ( -) only to Dy-structures, and ( -) only to D;Dy-structures.

Lemma 2.5.7. The following map is well-defined.

@BZ Dl—StI‘B(C) X Dg—StrB(C') — D1D2—St1‘B(C)
((e1, f1,91), (€2, f2, g2)) = (D1(ez2) o e1, Di(f2) © f1,D1(g2) © g1)-

Proof. Since (e1, f1,91) € D1-Strg(C), the following diagram commutes:

Di(A) —— Di(B) — Dy(C)

T ]
> C

A s B

Since (ez, fa, g2) € Do-Strg(C), we get a similar diagram. Apply D; to this second

diagram and compose the vertical maps to get the following commuting diagram:

D1D2(A) E— D1D2(B) — D1D2(C)
91(62)°€1T Dl(f2)°f1T Dl(gz)ogl)T
A > B > C

So these D;D,-structures make the algebra structure maps A — B and B — C into
D, Dy-homomorphisms.

Finally, we need to check that the associated endomorphisms of (B, D;(f2) o f1)
have invertible matrix. Recall that the associated endomorphisms are defined using
the projection maps Dy ®r D1 — k. For 1 <¢ <t; and 1 < 5 < iy, we will say that
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the (7, )th projection map for D, ®j, D, is the composition Dy ®; Dy — C; Q% B; — k.
Then we claim that the (¢, j)th associated endomorphism of (B, D;(f2) o f1) is o7
where 7; is the ith associated endomorphism of (B, f;) and o, is that of (B, f2). To

see this, consider the following commuting diagram:

DiDyB) — DB — ", B
P Da(oy) Z
D1 (B) il s B
fi .
B

where 7} is the ith projection map for D; and 7rj2- is the jth projection map for Ds.

The lower triangle commutes due to the definition of 7;. The triangle in the upper
left commutes by applying D; to the definition of o;. It remains to show that the
composition along the top row is the (¢, 7)th projection map for Dy ®; D;. But this

follows from the commutativity of the following diagram

Dy @Dy —— C; @Dy —— kE®r Dy

~ | |

C; ®, Bi —— k®y B;

|

k Qi k

where the composition along the top row is D; (7r]2-), the composition along the right

column is 7} and the diagonal composition is the (4, j)th projection map for D, ®;,D;.

Recall that Proposition [2.3.2] says that an endomorphism has invertible matrix if
and only if it sends any A-basis of B to another A-basis. Then, since 7; and o; both

have invertible matrix, o;7; must as well. n
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A similar proof also shows that we have a well-defined map

@AI Dl-StI'A(R) X Dz—StI‘A(R) — D1D2—StI'A(R)
((61,U1), (62, U2)) — (Dl(e2) o 61,D1(U2) o Ul)-

We also get maps
Dg-StrB(C) X Dl-StI'B(C) — DzDrStI'B(C)
and
DQ-StI'A(R) X Dl-StI'A(R) — Dng-StI'A(R)

by exchanging the roles of D; and D,. We will also denote these maps by ©p and
© 4, but it will be clear from context which one we mean.

Theorem 2.5.8. For g, € D;-Strg(C) and g2 € Do-Strg(C),

93(91,92)W = @A(ng,ggV).

Proof. Using the D;-Weil descent and the Dy-Weil descent, the following squares

commute:

Dy(C) 2 Dy (FWV(C))

ng 9V Rf1
C —X - FW(C)

Dy(C) 224 D, (F W (C))
92]\ 9V @ f2
c —X 5 FW(0)

Apply D; to the second square and compose the vertical maps so that the fol-

lowing square commutes:

DiDy(C) —222) Dy (FW(C))
Dl<g2)og1T Tvl (@ @F2)0(gl &11)
C e » FW(C)

By Lemma the right vertical map is equal to (D;(g5) o gl") ® (D1(f2) 0 f1)-
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And hence, by the uniqueness of the D;Do-structure on W (C) that makes it into an
(A, D1(e2) o eg)-algebra and n¢ into a (B, D;(fs2) o fi)-algebra homomorphism, we
must have

(Di(g2) 0 91)" =Di(g5) o g1 -

We now specialise this theorem to the difference case. Let D = D, = Dy =
k. Then D, ®; D; = k and ©4 and Op are just composition of endomorphisms.
D-Strg(C) is a monoid with composition O and identity (ida,idp,id¢). Similary,
D-Stra(R) is a monoid under © 4 and (id 4, idRg).

Corollary 2.5.9. In the notation of the above paragraph,
(-)W: D-Strp(C) — D-Str (W (C))
is a monoid homomorphism.

Proof. We have that ©5(g1,92)"" = (g1 0 g2)" and ©4(¢1",9Y) = g}V 0 gi¥. Then
Theorem tells us that (g; 0 g2)" = g/ 0 g¥¥. Lemma then tells us that

Remark 2.5.10. Corollary tells us that the difference Weil descent restricts
to the categories of inversive difference algebras, that is, algebras equipped with
an automorphism. Indeed, if (4,e), (B, f) and (C,g) are all inversive difference
algebras, applying (- )" to the equations go g~! = idc = g~ o g tells us that " is

also an automorphism on W(C).

We now further develop these results to study the commutativity of a D;-structure

and a Ds-structure. Let I' be the canonical isomorphism

[': Dy @ D1 — D1 @ Ds
Qs @ a1 — a1 Q Q.
For any k-algebra S, I lifts to I': S ®; Dy ® D1 — S ®4, D;1 ®i Do in the usual way.
Therefore, I induces maps D;D,y-Strg(C) — DyD;-Strg(C) and Dy Ds-Stry(R) —
DyD;-Str4(R) by applying the appropriate I' coordinate-wise. We will also denote

these maps I'. It should be clear from context which we mean.
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Definition 2.5.11. Let S be a k-algebra, equipped with a D;-structure e; and a
Ds-structure e;. We will say that e; commutes with e, if

FS (e} Dl(ez) oe = Dz(el) O €q.
For g; € D;-Strp(C) and g, € Dy-Strg(C), we will say that g; commutes with g,
if
I'o ©5(91,92) = OB(g2,91)-

Similarly, for u; € D;-Strs(R) and uy € Dy-Stra(R), we will say that u; commutes
with ug if I 0 © 4 (ug, ug) = O a(uz, uq).

Remark 2.5.12. If we choose bases of D; and D, and think of e; and e, as their

corresponding sequence of free operators, the condition
FS [©) Dl(ez) oce = Dg(el) O é9

says that every operator of e; commutes with every operator of e,.

We now prove a modification of Theorem that includes T'.

Lemma 2.5.13. For g; € D;-Strg(C) and g2 € Dy-Strg(C),

(T 0O5(g1,92))" =T o00O4(g), 9y ).

Proof. Firstly, suppose ey, f1,91 and eg, fa,go are D;- and Ds-structures on R, S,
and T making (S, fi) and (T, ¢1) into (R, e;)-algebras and (S, f2) and (7, g2) into
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(R, e2)-algebras. Consider the following diagram:

DyDy(S) > DoD1(S®rT)
D2D1(R)/ - » DoD1(T) [S®RT
N r N
TR D1Dy(S) - > D1D2(S®rT)
N r N
Dﬂ??(R)/ > Dli??(T)/
S > SQrT
R / > T /

where the horizontal maps are the usual ones and the vertical ones in the lower cube
are the compositions of the D;-structure and Ds-structure. By the uniqueness of the

DyD;-structure on S ®g T', we have that
T8 o Dy (fa ® g2) o (1 ® g1) = (FS o Dy(fa) 0 fl) ® (FT 0 Dy(g2) © 91) :
Now, returning to the original context, the following diagram also commutes:

D,D1(C) —— DyD1(F(W(C)))

FCT TI*F(W(C))

D1D,(C) —— DiDy(F(W(C)))
'Dl(g2)091]\ T(Dl(ggv)og]‘_’v)®(D1(f2)0f1)

c —X 5 F(W(C))

Hence, TW(©) o D, (g¥¥) o gV is a D,D;-structure on W(C) making it into an
(A,T40D; (eq)oe; )-algebra and n¢ into a (B, [BoD; (f,)o fi)-algebra homomorphism.
If the associated endomorphisms of I'Z o D;(f2) o f; all had invertible matrix, then
by the uniqueness of such a DyD;-structure, we must have that (I‘C oDi(ge)0 gl)W =
T oDy (gl¥) 0 gV, from which the result follows.

Now, note that the (i,)th projection map for D; ®; Dy = [, ;-1:1 B;®C;
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is D; ® D2 - B;j @, C; — k. Let W(Dif% denote the (i,7)th projection map for
D1 ®1 Dy, and let ngj?pl denote the (i, 7)th projection map for Do ®yD;: Do®i Dy —
C;®rB; = k. Then wg}j@;m? o' = W(l;i.‘?pl. Thus, the (4, j)th associated endomorphism
of I'B o D;(f2) o f1 is the (j,4)th associated endomorphism of D;(f2) o f1, ;7;, which

has invertible matrix. [ |

Corollary 2.5.14. Let g; € D;-Strg(C) and g2 € Do-Strg(C). If g1 commutes with

go, then giV commutes with gy .

Proof. If g; commutes with go, then I" 0 ©5(g1, 92) = O(92,91).- Applying (- )"V to

this equation and using Theorem and Lemma [2.5.13] we get [0 ©4(g;",95) =
©4(g¥,glV). Hence, g}V commutes with gJ". |

For a k-algebra S, we will say that a D-structure e on S commutes if ['oD(e)oe =
D(e) o e. Note that this is equivalent to saying that, with respect to a fixed basis of
D, the free operators corresponding to e pairwise commute. For g € D-Strg(C), we
will say g commutes if I' 0 ©5(g,9) = ©5(g,9g), and similarly for u € D-Strs(R), u
commutes if ['0© 4(u,u) = ©4(u,u). An immediate consequence of Corollary
is the following.

Corollary 2.5.15. Let g € D-Strg(C). If g commutes, then g commutes.

These results allow us to deduce that commutativity is preserved by the D-Weil
descent in several cases. We give details for the case of m endomorphisms and n

derivations.

Example 2.5.16. Suppose D = k[zy,...,T,]/(z1,...,%,)% X k™ and that for every
D-structure, the first associated endomorphism is trivial (unless n = 0, in which
case we do not impose that any associated endomorphism is trivial). Then a D-
structure is a collection of n derivations and m endomorphisms. Suppose also that
for a given A, B, C, all of the derivations and endomorphisms pairwise commute.
Then, by Corollary we have that the Weil descents of all the derivations and

endomorphisms pairwise commute.

Remark 2.5.17. The n = 0 case also follows from Corollary The m = 0 case
appears in [39).

Remark 2.5.18. It seems possible that Corollary [2.5.15| could be extended to a more
general context where commutativity is replaced by an iterativity condition as in
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Section 2.2 of [52]. We leave this for future work as it goes beyond the scope of this
thesis.

On the necessity of having invertible matrix

It is a natural question to ask whether a converse to our main theorem holds.

Question 2.5.19. If FP has a left adjoint, must every associated endomorphism of
(B, f) have invertible matrix?

We do not yet know the answer in general, but we do have the following partial
converse which imposes some mild conditions on such a left adjoint. We use the
following notation. For each z € D(B), let g*: B[t] — D(B]t]) be the D-structure
on B[t] that extends f on B and sends ¢ — z.

Theorem 2.5.20. Suppose FP has a left adjoint, WP, and that for each z € D(B)
the underlying A-algebra of WP (BIt],g%) is a faithfully flat A-module. Then the

associated endomorphisms of (B, f) all have invertible matriz.

Proof. Note that by Section 1.9 of [66], for any R-algebra S, S is a faithfully flat
R-module if and only if S is a flat R-module and every linear system of equations
defined over R which has a solution in S already has a solution in R.

For z € D(B), consider the unit of the adjunction n: (B[t], g°) — FPWP(B]t], ¢°).

That this is a D-homomorphism at ¢ means that

Z Z >‘ gm(t ® by em = (*)

T l

222 D ammAn(fu(b:) B (Ni(n(2))) ® by Em

i=1 j=1k=1n=1m=1

T

where h* is the D-structure on WP (Blt],g?). Write 2 = ¥, Bmém and B, =
>on Gnmbn. Then A, (n(92,(t))) = An(M(Bm)) = An(Bm) = @nm since n is a B-algebra
homomorphism.

Let a be the vector in A™ of the elements a,,,. Then equation (*) tells us that
we have a solution in WP (B[t], g°) to the linear system @ = MZ. Since WP (B]t], g*)
is faithfully flat, we have a solution in A, and hence M is onto as a linear map
At — A", Then M is invertible. |
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If A is a field, then WP (B]t], g°) is a free A-module — hence faithfully flat — and
so Theorems [2.4.5| and [2.5.20] yield the following:

Corollary 2.5.21. Suppose A is a field. Then FP has a left adjoint if and only if

the associated endomorphisms of (B, f) all have invertible matriz.
This result specialises to the difference case:

Corollary 2.5.22. Suppose (K,o0) < (L, ) is an extension of difference fields where
L/K is finite and o is an automorphism. Then the difference base change functor
has a left adjoint (the difference Weil descent).

Proof. Note that by Lemma [2.3.4] 7 is an automorphism if and only if it has invertible
matrix. Since o is an automorphism, L/K is a finite-dimensional K-vector space,

and 7 is injective, 7 must also be an automorphism. [ |

2.6 An explicit construction of the D-Weil descent

While the construction of the D-ring structure g" given in Section [2.4]is very natural,
it does not yield an explicit or computational construction. In this appendix we will
sketch a construction that parallels the classical one. Let €1, ...,¢; be a k-basis of D
and by, ...,b. an A-basis of B. We continue to impose Assumption [A]

Recall the following notation. If (R,e) is a D-ring, e;: R — R denotes the -
th coordinate map of e with respect to the basis . That is, the maps e; are the
additive operators of R such that e(r) = Y!_, e;(r)e; for all r € R. We also have
that A\,: B — A is the A-module homomorphism given by b = Y"7_, \;(b)b;.

The matrix M is defined as follows.

My My, My,
M My My, M,,
| My Mg My |

where

(Mmj)ni = I;ajkm)\n(fk(bz))
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We need some notation and a technical result relating the matrix M to whether

an algebra homomorphism is also a D-homomorphism.

Notation. For a collection of elements {z;;: 1 <3 < r,1 < j <[} in some A-algebra,
we write (z;;) for the ri-vector ordered reverse lexicographically on the indices ¢ and
j. We write M - (z;;) to denote the standard matrix multiplication of an rl x rl

matrix with an rl-vector resulting in an rl-vector.

Lemma 2.6.1. Let (C,g) be a (B, f)-algebra, (R,u) an (A, e)-algebra, and ¢: C —
F(R) = R®4 B a B-algebra homomorphism. Then ¢ is a (B, f)-algebra homomor-
phism if and only if the following equation holds for every c € C':

(Aigg;(c)) = M - (u;Aig(c)) (%)
As a result, when M is invertible, the values uj\;¢(c) are uniquely determined.

Proof. ¢ is a (B, f)-algebra homomorphism if and only if it is a D-homomorphism,

if and only if the following diagram commutes:

p(C) 29 D(F(R))

g Tu@f

c—2* F(R)
Now expand both compositions and equate coefficients of the b,c,,. |

Remark 2.6.2. If some S C C' generates C' as a B-algebra, then it is enough to ask
for equality (%) to hold for every s € S.

Our explicit construction of the D-Weil descent parallels the classical construc-
tion. So we need the algebraic notions of D-ideals, D-quotients, and D-polynomial

rings.

Definition 2.6.3. Let (R,e) be a D-ring, and let I be an ideal of R. We define
D(I) to be the k-submodule of D(R) given by D(I) := I ®; D. We say that I is a
D-ideal if e(I) C D(I). Note that D(I) is an ideal of D(R): if IR C I, then

D(I)-D(R) = (I ®: D) - (R®) D) C I & D.
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Remark 2.6.4. In the context of Example [2.1.1(1) where o is trivial, I is a D-ideal
if and only if it is a differential ideal, that is, if 6(I) C I. For Example [2.1.1(2),
D-ideals are ideals with o;(I) C I for each i.

Lemma 2.6.5. Let (R,e) and (S, f) be two D-rings and suppose ¢: R — S is a
D-homomorphism. Then ker ¢ is a D-ideal.

Proof. Since ¢ is a D-homomorphism, the following diagram commutes:

D(R) 22 D(s)

T
R——— §

For g € ker ¢, f o ¢(g9) = 0, and so D(¢) o e(g) = 0. Then e(g) € ker D(¢).

Consider the standard kernel-cokernel exact sequence for ¢:

0 —— ker¢ yR—25 8 > cokerp —— 0

D is a free (and hence flat) k-module, so tensoring is exact:

D(¢)

0 —— D(ker¢) —— D(R) D(S) —— D(coker¢p) —— 0

We also have the kernel-cokernel exact sequence for D(¢):

D(¢)

0 —— kerD(¢) —— D(R) D(S) —— cokerD(¢p) —— 0

Now D(ker ¢) C ker D(¢) and hence we get the following commuting diagram with

exact rows:

0 —— D(kerg) —— D(R) 22 D(S)

| Lo | |

0 —— kerD(¢) —— D(R) 22 D(S)

Then the four lemma tells us that the inclusion is onto, so ker D(¢) = D(ker ¢) and
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e(g) € D(ker ¢). |
Lemma 2.6.6. Let I be an ideal of R. Then D(R)/D(I) = D(R/I).

Proof. We have the following exact sequence:

0 > I > R » RII —— 0

Since D is a flat k-module, tensoring is exact:
0 — D(I) — D(R) —— D(R/I) —— 0

So D(R/I) = D(R)/D(I). n

Lemma 2.6.7. Let (R,e) be a D-ring, (S, f) an (R, e)-algebra, and I a D-ideal of

S. Then there exists a unique D-ring structure on the quotient S/I given by

f:8/I —D(S/I)
s+1I— f(s)+D()
which makes the quotient map q: S — S/I into an (R, e)-algebra homomorphism.

Proof. First, note that, by Lemma f is indeed a well-defined k-algebra homo-
morphism since [ is a D-ideal of S. Consider the following diagram:

D(R) —— D(S) 22 D(s/I)

(I d

R sy 8 — 21— §/I

The left square commutes since (5, f) is an (R, e)-algebra, and the right square
commutes because of Lemma Then ¢ is a D-homomorphism. Note that the
composition of the lower horizontal maps is the R-algebra structure on S/I, and
hence S/I is an (R, e)-algebra. This shows that ¢ is an (R, e)-algebra homomorphism.

|

We now need the natural notion of a D-polynomial ring. These have been defined
in Section 3.1 of [52] (implicitly) and in Remark 3.8 of [53]. We expand on the details

here.
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Definition 2.6.8. We denote by © the set of all finite words on the alphabet
{1,...,1}. For a D-ring (R, e) and § € O, we will write ey for the corresponding com-
position of coordinatised D-operators. For example, if § = 123, then ey = ezoeg0e;.

Note then that ey 9, = €, 0 €9, .

Definition 2.6.9. Let (R, e) be a D-ring and T = (t):er a collection of indetermi-
nates. The D-polynomial algebra in indeterminates T" over (R, e) with respect to €
is the ring

R{T};, =R[t’: t € T and 6 € O]

where (t?)icrco is a new family of indeterminates, equipped with D-ring structure
e': R{T}5 — D(R{T}5%)

t9 > 9%, + 1925 + - - -t

r— e(r)
This makes (R{T'}%,€') an (R, e)-algebra.

Suppose (S, f) is an (R, e)-algebra and X C S. We denote by R{X }p the D-ring
generated in S by X over (R, e). This is a well-defined notion since the intersection

of a collection of D-subrings is a D-subring,.

Lemma 2.6.10. Suppose that (S, f) is an (R,e)-algebra which is generated as a
D-ring by the (possibly infinite) tuple a = (a;)icr over (R,e), so that S = R{a}p.
Let t = (t;)icr be a tuple of indeterminates. Then there exists a unique surjective

(R, e)-algebra homomorphism evz: R{t}5 — S which maps t; — a; for each i € I.

Proof. Define ev;(t?) = fs(a;) (see Definition [2.6.8). Then evy is clearly a surjective
R-algebra homomorphism. To show it is a D-homomorphism, we need to show that

the following diagram commutes:

D(R{f};) 2% D(3)

T fT

R{t}Yp —— S
As both R{t}5 and S are (R, e)-algebras, it is sufficient to check commutativity
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of this diagram for each /. We have

!
D(evg) o e(t?) = D(eva)( Zt0’6] = Z foj(ai)e
Jj=1 Jj=1

and

l l
foeva(t]) = f(foas)) Z (folas))e; =Y foj(ai)e;
= j=1

For uniqueness, note that if ¢ is also an (R,e)-algebra homomorphism with
#(t;) = a;, then, since it is a D-homomorphism, ¢(t!) = fs(a;) for all § € ©. Then ¢
and ev; agree on the generators of the polynomial algebra and are both R-algebra

homomorphisms, so must be equal. |
This lemma yields the following.

Corollary 2.6.11. Suppose that € and w are two bases of D. Then R{T}5% and
R{T}% are isomorphic as (R, e)-algebras.
As a result of this corollary, we omit the superscript and just write R{T'}p.

Remark 2.6.12. Combining the above results, we see that any (R,e)-algebra is a
quotient of some D-polynomial algebra over (R,e) by a D-ideal.

We now return to the construction of the D-Weil restriction. As usual, (4, e) is a
D-ring, and (B, f) is an (A, e)-algebra where B is finite and free as an A-module with
basis by, ..., b.. Recall that the component of the unit of the classical adjunction at
the polynomial algebra B{T'}p is

My (1) = (0 @ b;
i=1

We first construct the D-Weil descent for a D-polynomial algebra over (B, f).

Lemma 2.6.13. Let T be a set of indeterminates. Then there exists a D-structure
s on W(B{T}p) making (W (B{T}p),s) into an (A,e)-algebra and npiry, into a

D-homomorphism.

Proof. As A-algebras, we have W(B{T}p) = A{T}%’, and applying Lemma [2.6.1]

with npgry, tells us that np(ry, is a D-homomorphism if and only if

(Ainsiryoh;(t°)) = M - (s;Ainsiryo (t°))
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for every t?. Here h is the D-structure on the D-polynomial ring B{T}p described
in Definition Now, (s;\inB(115 (%)) = s;(°(2)), and (Minsiryphi(t®)) = t%(3).
Since M is invertible we have s;(t?(i)) = M~ - (t%(i)). This gives an explicit
expression for s; on each generator of A{T'}3" and hence an explicit expression for
s. Since A{T}3’ is a polynomial algebra, this gives a D-ring structure on A{T}%"

making 7p(r}, into a D-homomorphism. |

Remark 2.6.14. Note that W (B{T'}p) is a polynomial algebra, but that, in general,
s is not the D-ring structure that makes (W (B{T'}p), s) a D-polynomial algebra as
in Definition — it is twisted by M~!. The same occurs in the differential case;
see the proof of Theorem 3.2 of [39)].

Now let (C,g) be a (B, f)-algebra. By Lemma [2.6.10 there is a set of indeter-
minates T and a surjective (B, f)-algebra homomorphism 7c: B{T}p — C, where
B{T}p has the standard D-structure h extending f with h(t®) = t%le; + - - + t%,.

The component of the unit of the classical adjunction at C, ¢, is given by

Nc (Wc(to)) = éW(Wc)(te(i)) ® b;.

Recall from Section [L.3| the definition of the ideal I. This ideal is generated by
the elements \;(nz{r}, (7)) as v ranges over ker ¢, and W (m¢) is the residue map
of this ideal.

Lemma 2.6.15. The ideal Ic of W(B{T'}p) is a D-ideal for the D-structure s given
in Lemma [2.6.13.

Proof. Let y € ker m¢. By definition of I, we need to show s(Ai(nBr1,(7))) € D(Ic)
for each 4, that is, that the vector (s; \ingiry, (7)) € Ic.

Since np(r}, is a D-homomorphism, we have

(AinB(yphi (7)) = M - (s;AinB(ryp (7))

Now ker 7¢ is a D-ideal for h: B{T'}p — D(B{T}p) — the standard D-polynomial
structure — and so h;(7y) € kermc. Then, by construction of Ic, (Ainp(ry,h;(7)) is
in Ic. Since M is invertible, (s; \inB{ry5(7)) € Ic- |

Lemma [2.6.7] and Lemma [2.6.15] together imply that the s from Lemma [2.6.13
induces a D-structure g on W(C) = W(B{T}p)/Ic which makes it an (A,e)-
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algebra and W (n¢) an (A, e)-algebra homomorphism. We now check it makes n¢
into a D-homomorphism by an argument similar to Theorem 3.2 of [39)].

Lemma 2.6.16. The D-structure gV on W(C) makes nc into a D-homomorphism.

Proof. Consider the following cube:

D(F(W(B{T}p))) » D(F(W(C)))
sQf T aVef
F(W(B{T}»)) ‘ W), pw(c))
nB{}p D(B{T}p) T » D(C)
B{T}D / . § /

The maps on the back face are just D(¢) for ¢ the corresponding map on the front
face.
We want to show that the right-hand face of the cube commutes.

1. The front face commutes due to the classical Weil descent.

2. The back face commutes since the front one does: it is just applying the functor
D to the front face.

3. The left face commutes due to choice of s.

4. The bottom face commutes because m¢ is a D-homomorphism.

5. Since W (mc) is an (A, e)-algebra homomorphism, FP(W(n¢)) is a (B, f)-
algebra homomorphism, and hence the top face commutes.

Since 7o is surjective, the right face of the cube also commutes. |

Remark 2.6.17. Note that g" is necessarily the unique D-structure on W(C) making
Nc into a D-homomorphism. This is a consequence of Lemma but it can also
be seen from the statement at the end of Lemma 2.6.11

Therefore, we have provided an explicit way to construct the D-Weil descent
WP(C,g) = (W(C),g").
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Chapter 3

The uniform companion for
theories of D-fields in

characteristic zero

In this chapter, we return to a model-theoretic analysis of D-fields. Recall from the
introduction that we aim to construct a L;ig(0)-theory, UCp, such that whenever
T is a model complete theory of difference large fields of characteristic zero, then
T UUCp is the model companion of T'U “D-fields”. Here “D-fields” is the Lying(0)-
theory of D-fields defined in Section [1.6] together with additional axioms saying that
the associated endomorphisms of such a D-field coincide with the endomorphisms of
T

We first take Cousins’s definition of difference largeness from [15] and extract
its geometric and model-theoretic content. In Section we define the axiom
scheme UCp and show that it has the properties from Theorem [A] from which
Theorem |B| immediately follows. In particular, we prove that various theories of D-
fields have model companions in Corollary In Section [3.3, we give alternative
characterisations of UCp in the case D is local, and we use the D-Weil descent of
the previous chapter to show that the algebraic closure of a model of UCp must be
a model of D-CFy. Finally, in Section [3.4, we examine what can be said about the

uniform companion in the absence of Assumption [A} theories of large D-fields can

'Recall from Definition that the associated endomorphisms are uniformly quantifier-free
Lying(0)-definable. This means that there is a set of elements (y;; € k: i =1,...,t,j =0,...,1)

such that in every D-field (K, d), the ith associated endomorphism is given by o; = Eé:o Vi,50;-

Then these additional axioms are just Vz o;(z) = Zé’:o 7v:,;0;(x) for every i =1,...,t.
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only be uniformly companionised when D is local.
This chapter forms part of the content of the author’s [49], currently submitted
for publication.

Conventions. For this chapter, all rings are of characteristic zero.

3.1 Difference largeness

Recall our setup: k is a field of characteristic zero, D is a finite-dimensional k-
algebra, there is some k-algebra homomorphism 7: D — k, the algebra D has a
decomposition as Hﬁzo B; where each B; is a local finite-dimensional k-algebra, and,
in contrast to the previous chapter, (K, d) is a D-ring only when 0: K — K ®; D
is a section to idg ® m. We also impose Assumption [A} the residue field of each B;,
which is necessarily a finite field extension of k, is k itself. Thus all the associated
homomorphisms are actually endomorphisms ¢;: K — K for ¢ = 0,...,¢t. Recall
also from Section that, since 0 must now be a section to idx ® 7, the associated
endomorphism corresponding to 7 is 0p = idg @ w0 0 = idg.

Since our uniform companion will be given “relative” to the associated difference

field, to simplify notation we will also work with £-operators where
E=kK"

so that £-fields are precisely fields with ¢ endomorphisms that do not necessarily
commute.

Recall also that we have k-algebra homomorphisms m;: D — k given by the
composition of the projection to B; and then the residue map to k. Let a: D — &
be the product of the maps 7;. Then if (K, 9) is a D-ring and (K, o) is its associated
difference ring thought of as an £-ring — so that o: K — K'*! is given by r —
(r,o1(r),...,04(r)) — then @ 0 @ = 0. By Section 4.1 of [51], @ induces a morphism
of varieties &: 7p X — 72X = X x X' x --- x X7 such that the following diagram
(of nonalgebraic maps) commutes:

X (K) & > TeX(K)
X(K)
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Note also that & is the product of the morphisms #;. As mentioned in Fact if
(L,0) is some E-field extension of (K, o), then V¢ is also a map X (L) — 7¢X(L).

Since such maps are compatible, we will not distinguish them.

Lemma 3.1.1. Let (K,0) be a D-field, and (K,o0) its associated difference field
thought of as an £-field. Suppose X andY C mpX are irreducible varieties over K.
Let b be a K-generic point of Y. Then the following are equivalent:

(1) Y has a Zariski-dense set of K-rational points whose projections to T X (K)
are in Ve(X(K));

(2) there is some difference field (L,o) containing the function field K (b) in which
&(b) is in Ve(X (L)) and which is a difference field elementary extension of
(K, o).

Proof. (1) = (2). Working with respect to the coordinates in Section saying
that &(b) is in the image of V¢ is equivalent to saying that o;(#¢(b)) = #;(b) for each
i=1,...,t.

Consider the following set of formulas with parameters from K in the language

of difference rings:

p(z) = aftp(b/K) U {oi(o(x)) = fie): i = 1,..., £},

Since b is K-generic in Y and Y has a Zariski-dense set of K-rational points ¢ with
oi(fo(c)) = #i(c), p(x) is finitely satisiable in (K, o), and hence is a partial type.
So there is some difference field (L,o) > (K, o) with a realisation of p(z). This is
precisely (2).

(2) = (1). Suppose (L, o) is the difference field given by (2). Let U C Y be any
nonempty Zariski-open subset of Y. It is enough to check for U basic and K-Zariski-
open. Now b is K-generic in Y and hence is in U. So U contains an L-rational point

whose projection under & is in the image of V¢. That is

(L,0) E 3z (x ceUA f\ oifo()) = m(x)> .

i=1

Since (K,0) = (L, o), this sentence is true in (K, o), and hence U contains a K-

rational point whose projection to 7 X is in the image of V. |
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Recall from the introduction that we cannot hope to uniformly find the model
companion for D-fields whose underlying field is large; we need to take into account

the associated difference field. The following definition facilitates this.

Definition 3.1.2. A difference field (K, 01, ...,0:) is difference large if for any pair
of K-irreducible varieties V and W such that

(i) WCV Vo x-..x Vo,

(ii) the projections W — V7 are dominant for all i =0,...,¢, and

(iii) W has a smooth K-rational point,

then W has a Zariski-dense set of K-rational points of the form (a,o01(a),...,o0:(a))
for a € V(K).

Remark 3.1.3. 1. If (K, o) is difference large, then K is large. If V' is K-irreducible
and has a smooth K-rational point, then V is absolutely irreducible, V x V1 x

-+« x V? is absolutely irreducible and has a smooth K-rational point.

2. If t = 0, that is, D is local, then difference largeness is precisely largeness. If
t > 0, then the only examples of difference large fields known to the author
are models of ACFA, ;; hence we will focus on the local case in Section and
Chapter

3. This notion first appeared (for ¢ = 1) in Cousins’s thesis [15].

3.2 The uniform companion

In this section we define the axiom scheme UCp and show it has the desired properties

from Theorem [A]in the Introduction. We continue to impose Assumption [A]

Definition 3.2.1. Let (K, 0) be a D-field. We say that (K, 9) is a model of UCp if
for every pair of K-irreducible varieties V and W such that

(i) WCrV,
(ii) the projections #;: W — V% are dominant for each i = 0,...,¢, and

(iii) W has a smooth K-rational point,

then W has a Zariski-dense set of K-rational points of the form V(a) for a € V(K).
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Remark 3.2.2. If (K,0) = UCp, then the associated difference field (K, o) is dif-
ference large. If X and ¥ C X x X% X ... x X are K-irreducible and Y has
a smooth K-rational point, then let Y/ C 7X be a K-irreducible component of
&~ 1(Y) that projects dominantly to Y under &. Since Y has a smooth K-rational
point and &: Y’ — Y is dominant, so does Y’'. Now apply the UCp axiom and
project the Zariski-dense set of K-rational points of Y’ to Y. This idea is similar to
Proposition 4.12 of [53].

This axiom scheme can be expressed in a first-order fashion in the language
L;ing(0). This is nowadays a standard argument, but we provide some details follow-
ing the argument used in [65]. We will make use of Theorem 4.2 from there, which

collects results about ideals of polynomials from [66].

Theorem 4.2 of [65]. Let n,d € N, £ = (z1,...,x,). Then there are bounds
B = B(n,d), C = C(n,d), and E = E(n,d) in N such that for each field K, each
ideal I of K[z] generated by polynomials of degree at most d, and all f1, ..., f, € K[z]

of degree at most d, the following are true.

(i) If I is generated by fi,..., fy, then for every g € I of degree at most d, there
are ci, ...,c, € K[z] of degree at most E such that g =c1fi + -+ cpfp-

(ii) I is prime if and only if 1 € I and for all f,g € K|x] of degree at most B, if
fg€l,then fel orgel.

(iii) For allm € {1,...,n}, the ideal I N K|[z1,...,Ty] is generated by at most C

polynomials of degree at most C.

Letn,d,m € N,z = (z1,...,%n), f1,---, fm € K[Z], 91, -, gm, h € K[2°, ..., 7],
all of degree at most d. The polynomials f; generate the ideal that defines X, Ix,
the polynomials g; generate the ideal that defines Y, Iy, and the nonvanishing of the
polynomial A will define the open subset U. Then also the polynomials f7,..., f%
generate the ideal that defines X?:. The fact that K-irreducibility of X and Y can
be expressed as first-order L,i,,-axioms comes from (i) and (ii). That Y C 7.X can
be checked by verifying that the polynomials that define 7.X are elements of Iy; that
this is a first-order condition follows from (i). Indeed the polynomials that define
7X can be computed in terms of the coefficients of the f; (see the discussion at the
end of Section 3 of [53]). That #y: Y — X is dominant says that Iy N K[z] = Ix.
By (iii) there is a bound, depending on n and d, on the number and degree of the

polynomials needed to generate Iy N K[z]. That this equality is first-order comes
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from (i). A similar argument shows that dominance of #;: Y — X is a first-order
condition. The existence of a smooth K-point for Y can be verified by the Jacobian
condition on the g;. Note also that the dimension of Y is the Krull dimension of
Iy, which is definable in terms of the coefficients of the g;. Finally, that there is a
point V(a) in the nonempty Zariski open set U is equivalent to the fact that that
the polynomial h either is an element of Iy, which is first-order by (i), or does not
vanish at some V(a).

The fact that the theory UCp is the desired uniform companion will follow from
the next two theorems (Theorem and Theorem [3.2.4). These form the D-field

analogue of Theorem 6.2 from [65], where the differential counterpart is stated.

Theorem 3.2.3. Let M,N |= UCp be D-fields and A a common D-subring. If M
and N have the same existential theory over A as difference fields, then they do as
D-fields.

Proof. Let F; and F5 be the quotient fields of A inside M and N, respectively. Since
the associated endomorphisms of A are injective, they extend uniquely to F; and F5.
By Lemma the D-structure on A extends uniquely to F; and F3, and so they
are isomorphic as D-fields. Then we may assume F' = F; = F; is contained in both
M and N. Let L; be the relative algebraic closure of F' in M and similarly for L,
in N. Then the associated endomorphisms of M and N restrict to endomorphisms
of L; and Ly respectively. Since M and N have the same existential theory over A
as difference fields, L, and L, must be isomorphic as difference fields. The D-field
structures on M and N restrict to ones on L; and L,, and by Remark they
must be isomorphic as D-fields; we may then assume L = L; = L, is contained in
both M and N.

Suppose that M |= 3z¢(z) where ¢(Z) is a quantifier-free L,ing(0)-formula with
parameters in A and T = (z1,...,Z,). As usual, we can assume that ¢ is of the form
N, fi(Z) = 0, where the f; are L,ing(0)-terms with coefficients in F'. Let ¢y be such
that M |= ¢(cp). Let E be the set of all finite words on {0, ...,0,}. For each r, let =,
be an enumeration of the words of length at most r such that =, is an initial segment
of 2,41, let n, = |Z,|, and let V,.: M — M™ be given by b — (£(b): £ € E,). Let r
be minimal such that ¢(M) = {b € M™: V,(b) € Z} where Z C M™ is a Zariski
closed set over F'. If r = 0, then ¢ is in fact an L,i,e-formula and since M and N
have the same existential theory over A as fields, we have a solution in N. So assume
r >0 and let ¢ = V,_1(co).
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Let X =loc(c/L), Y =loc(Ve/L). Note that Y C 7X and that #;(Y") is Zariski
dense in X%. Let ¢4,...,9s be polynomials that generate the vanishing ideal of Y
over L. By the primitive element theorem, let a € L be such that F(«) is a field of
definition for X and Y. After clearing denominators, we can rewrite the polynomials
g:(u) instead as G;(v,u) € F[v,u|, where G;(a,u) = g;(2). Let u(v) € F[v] be the
minimal polynomial of «.

We claim that (a, V) € M is a smooth solution to the system
/.L(’l)) =0, Gl(’U,’a) =0,...,Gs(’U7'ﬁ,) =0. (‘)

As Ve is L-generic in Y, it must be a smooth solution to the system g¢;(u) =
0,...,9s(2) = 0. Let J(Vc) be the Jacobian for g4,...,gs at Ve, and let d be its

rank. Since p(v) contains none of the u variables, the Jacobian of the system (4) at

(e, V) is of the form
@@ 0 )
*  J(Ve)

Since p is the minimal polynomial of «, Z—’;(a) # 0, and hence this matrix has
rank d + 1. Note also that the variety defined by (#) is a finite union of conjugates
of Y, and hence has the same dimension as Y. So (a, Vc) is a smooth point of (¢).

Consider the quantifier-free Lying(o1, ..., 01)-type of (o, Vc) € M over F. Since
M and N have the same existential theory over F' as difference fields, this partial type
is finitely satisfiable in V. We may also assume that N is sufficiently saturated. Then
there is a realisation (3,b) € N of this partial type. This induces a difference field
F-isomorphism 0: F(a)_ — F(B)_, where F(a), means the difference field generated
by F and « and likewise for 3. We also have that b is a smooth point of Y.

Both F(a), and F(f), are algebraic extensions of F, and hence by Remark[1.6.6]
the D-field structure on F' extends uniquely to D-field structures on F(a)_, and
F(B),. So 8 is a D-field isomorphism between D-subfields of M and N.

Since Y is L-irreducible, Y? is L-irreducible, and since L is relatively algebraically
closed in N, Y? is N-irreducible. Likewise, X¢ is N-irreducible. Proposition 4.8 of
[51] tells us that 7X% ~ 7X, and that this isomorphism respects points of the form
Vz. We also have that Y C 7X% and that #;(Y?) is Zariski dense in (X?). Since
0 fixes F' it also fixes Z.

Since N = UCp, there is a point a € X9(N) with Va € Y?(N). Let ay be the
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first m coordinates of a. We claim that a is a realisation of ¢, which will conclude
the proof. As in the proof of Theorem 4.5 of [53], we prove first that V,_;(ao) = a.
Write a = (a¢: € € =,_1). We prove by induction on the length of £ that £(ag) = a,.
For ¢ = id this is clear. Suppose now that £ = 9;¢’. Since V,_1(cp) = ¢, we have
that 0;ces = c.. This is an algebraic fact about Vc over F. Since Va satisfies all the
algebraic relations Vc does over F' (since 6 fixes F'), we also have J,as = a¢. By the
inductive hypothesis, 0;ae = 0;¢'(ao) = £(ao).

Since ¢y realises ¢, V,(co) € Z. This is an algebraic fact about Ve = VV,._;(cp)
over F. Since Va satisfies all the algebraic relations V¢ does over F', we have
V.(ag) € Z. So N = ¢(ap). |

Theorem 3.2.4. Fvery D-field whose associated difference field is difference large
has a D-field extension which is a model of UCp and an elementary extension at the
level of difference fields.

Proof. Let (F,0) be a D-field that is difference large as a difference field, and let X
and Y be F-irreducible varieties where Y C 7X, #;(Y) is Zariski dense in X% and
Y has a smooth F-rational point. Let U be a nonempty Zariski-open subset of Y
defined over F'.

Let b € Y(L) be an F-generic point in some field extension L of F. Since
#;(Y) is Zariski dense in X7, we get that #;(b) is F-generic in X%. Let &: 7X —
X X X% x---x X be the product of the morphisms 7;. Let Z be the Zariski-closure
of &(Y)in X x X x---x X°. Then &: Y — Z is dominant. Let V be the F-open
subset of smooth points of Z. By dominance, V' has a point in the image of & Then
&~1(V) is a nonempty F-open set. Since F' is large and Y has a smooth F-rational
point, & *(V) has an F-rational point. So V has an F-rational point — that is, Z
has an F-rational smooth point.

Let W C Y be some open subset of Y. Since Y is irreducible, W is dense in Y.
Then &(W) is dense in Z. As Z has a smooth F-rational point and F is difference
large, Z has a Zariski dense set of F-rational points of the form (a, 0;(a),. .., 0:(a)).
So Y has a Zariski-dense set of F-rational points whose projections under & have
the form (a,0:(a),...,o0:(a)).

So by Lemma there is some difference field (K, o) containing F'(b) which is
an elementary extension of (F, o) and in which o;(7(b)) = 7;(b). We will define a
D-field structure on K whose associated difference field is (K, o).

As mentioned in Fact there is an identification 7X (K) +> X (K ®; D). Let
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b’ be the tuple from K ®; D that corresponds to b € 7X (K) under this identification.
Note that m;(b') = 0;(mo(b)) in K because #;(b) = 0;(70(b)). Write a = #¢(b) for the
F-generic point of X.

As in the proof of Theorem 4.5 of [563], we can extend 0: F — F®; D C K ;D
to a k-algebra homomorphism 9: Fla] — K ®; D with d(a) =V'.

Indeed, since b € 7X(K), we have p?(b') = 0 for all p € I(X/F). Since a is
F-generic in X, I(X/F) = I(a/F). As p?(%/) = 0 for all p € I(a/F), 0 extends to
Fla] = F[z]/I(a/F) by setting 8(a) = . Since #y(b) = a, we have that (V') = a
so i 0d: F[a] — K is inclusion. We also have that m;09(a) = m;(t') = o;(mo (b)) =
oi(a). So m;00 = 0;. Now we can use Lemma to extend 0 to a D-field structure
on K extending the one on F' whose associated endomorphisms are precisely the o;.
In (K, 0) we will also have V(a) = b. Since b is F-generic in Y, we must have that
b=Va e U(K).

Then we can iterate this construction transfinitely to get an extension of F' that

is elementary as an extension of difference fields, which is also a model of UCp. H

Having established Theorems and the following result is proved in

precisely the same way as in Proposition 6.3 of [65].

Proposition 3.2.5. The L,ing(0)-theory UCp is inductive. IfU is an Lying(0)-theory
of difference large D-fields satisfying the properties in the previous two theorems
(Theorems |8.2.8 and |3.2.4)), then U contains UCp. If U is in addition inductive,

U = UCp U “difference large fields”, where containment and equality here are as

deductively closed sets of sentences.

Proof. 1t is clear that the union of an increasing chain of models of UCyp is also a
model of UCp, and likewise for difference large fields. Hence the theories UCp and
“difference large fields” are inductive.

Let U be another theory of difference large D-fields satisfying Theorems [3.2.3]
and Let M = U. Since the associated difference field of M is difference large,
by Theorem [3.2.4] it embeds as a D-field in some N = UCp such that the extension
of difference fields is elementary. By this last fact, N is also difference large, and
hence embeds in some M’ |= U, since U satisfies the property in Theorem In
addition, the associated difference field of M’ is an elementary extension of that of
N. Thus M < M’ are two models of U whose associated difference fields have the
same existential theory over M. By the property in Theorem for U, M and M’
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have the same existential theory over M as D-fields; that is, M is existentially closed
in M’, and hence in N. Since N = UCp and UCp is inductive, we have M = UCp.
SoUCp CU.

If U is also inductive, then repeat the above proof with U and UCpU“difference
large fields” exchanged to get U = UCp U “difference large fields”. |

The following theorem is also proved in like its differential counterpart: Theo-
rem 7.1 of [65].

Theorem 3.2.6. Let C be a set of new constant symbols and T a model complete
theory of difference large fields in the language Lying(C)(0). Let T* be an expansion
by definitions of T' to a language L* D L.ing(C)(0). In addition, let A be an L*(0)-
structure such that when A is viewed as an Ling(0)-structure it is a D-field.

If T* U diag(A|z+) is complete, then T* U UCp U diag(A) is complete.

Proof. We first prove a series of claims.

Claim 1. 7% U UCp U diag(A) is consistent.
Proof of claim. T* U diag(A|};) is consistent so A|} is a substructure of a model of
T™*. Since the model of T™ has a difference structure, use Lemma to extend the
D-field structure on A to one on the model of 7. Then by Theorem we get
the claim.

Claim 2. T* U UCp is model complete.
Proof of claim. By the previous claim, TUUCp is consistent. Consider any extension
M < N of models of TUUCyp. By model completeness of T', M is existentially closed
in N as difference fields. By Theorem M is existentially closed in N as D-
fields. So T'U UCp is model complete. As T™ is an expansion by definitions of T,
T* UUCp is model complete.

Claim 3. If T* has quantifier elimination, then so does 7™ U UCp.
Proof of claim. Let M |= T* UUCp and let A be an L*(9)-substructure. We will
show that T*UUCpUdiag(A) is complete. So let N = T*UUCp containing A as an
L*(0)-substructure. As T* has quantifier elimination, we know that M =4 N as L*-
structures, and so they have the same existential theory over A as difference fields.
As they are both models of UCp, Theorem tells us that they have the same
existential theory over A as D-fields. Now any L£*(0)-formula is equivalent modulo
T*UUCp to an Lying(C)(0)-formula, and to an existential Ling(C)(0)-formula since
T U UCp is model complete. Then M and N have the same L£*(0)-theory over A,
and T* U UCp U diag(A) is complete.
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Now we are able to prove the theorem. Let M and N be two models of T U
UCp U diag(A). We need to show that M and N are elementarily equivalent as
L*(0)(A)-structures, that is, that M =4 N.

Let LT be the language extending £* with new k-ary predicate symbols R for
each existential L*-formula ¢ in k free variables. Let Tt be T™* with the sentences
Vuy, ..., ux(Ry() <> ¢(w)). TT is an expansion by definitions of 7* and hence of T
As T is model complete, so is T. T proves that every formula is equivalent to an
existential one, and that every existential one is equivalent to a quantifier-free one.
So it has quantifier elimination. By the previous claim, 7" U UCp has quantifier
elimination.

Let M and N be the unique expansions of M and N to models of Tt U UCp.
Since T* U diag(A|.) is complete, M [;-=4 N |;-. By definition of T+, M and N
induce the same structure on A. By quantifier elimination of 7+ U UCp, M =4 N,
and so also M =4 N. [ |

In the next theorem we argue why Theorem justifies calling UCp the uniform
companion for theories of difference large D-fields. This is the precise formulation
of Theorem [B| from the introduction. Recall that “D-fields” is the Lying(0)-theory
consisting of the axioms for a D-field together with additional axioms saying that
the associated endomorphisms of such a D-field coincide with the endomorphisms of
the Lying(01, . .., 0t)-theory T.

Theorem 3.2.7. Let C' be a set of new constant symbols and T a model complete
theory of difference large fields in the language Lying(C)(0). Let T* be an L*-theory
which is an expansion by definitions of T'.

Assume T™ is a model companion of an L*-theory T§ which extends the theory of
difference fields. Then:
(i) T*UUCp is a model companion of the L*(0)-theory Ty U “D-fields”;
(ii) of T* is a model completion of T, then T* U UCp is a model completion of
T5 U “D-fields™;
(iii) of T* has quantifier elimination, then T* U UCp has quantifier elimination;

(iv) of T is complete and M is a D-field which is a model of T, then T* U UCp U
diag(C) is complete, where C is the Lying(C)(D)-substructure generated by @ in
M, that is, the D-subring of M generated by the elements (cM).cc-
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Proof. First note that 7" UUCp and Tjy U “D-fields” have the same universal theory
(equivalently, that a model of one can be embedded in a model of the other). Let
M E T*UUCp. Since T* and T have the same universal theory, there is an L£*-
structure N such that M [;«< N. By Lemma [1.6.5) we can extend the D-structure
on M to one on N, so that M < N as L£*(0)-structures. For the other direction,
let M | Tg U “D-fields”. Then there is some L*-structure N | T* such that
M [+< N. Use Lemma to extend the D-structure on M to one on N, so
that N | T* U “D-fields” and then use Theorem to embed this in a model of
T U UCp.

Now to show (i), it is enough to show that 7* U UCp is model complete, or
equivalently, that if M = T* U UCp, then T* U UCp U diag(M) is complete. Since
T* is model complete, T* U diag(M|.~) is complete. Then 7™ U UCp U diag(M) is
complete by Theorem (3.2.6

For (ii), let M be a model of T U “D-fields”. We need to show that 7* UUCp U
diag(M) is complete. But M = T§, and so T* U diag(M
a model completion of T;. Then apply Theorem [3.2.6

For (iii), let M = T*UUCp, and let A < M be an L*(0)-substructure. We need
to show that 7* U UCp U diag(A) is complete. By quantifier elimination for 7%, we
have that T* U diag(A|.~) is complete; the result follows by Theorem [3.2.6]

For (iv), since T is complete, T*Udiag(C|z+) C T™ is complete. By Theorem 3.2.6}
T* U UCp U diag(C) is complete. |

£+) is complete since T™* is

We can now collect the consequences of these theorems, similarly to the differen-

tial set-up in Section 8 of [65].

Corollary 3.2.8. (1) ACFA,;UUCp is D-CFy from [53].

(2) If D is local, then RCF U UCp is complete and is the model companion of the
theory of real closed D-fields. It admits quantifier elimination in Lying(<)(0).

(3) Suppose D is local. The theory pCF, of p-adically closed fields of fixed p-rank
d has quantifier elimination in the language Lying(O, c1, . . ., i, (Pn)nen), where
O is a predicate for the valuation ring, cy,...,c, are constants that form a
Z[p-basis for O/p, and P, is a predicate for the nth powers — see [42] for
d =1 and [59] for any finite d. Then pCF; U UCp is complete and is the
model companion of p-adically closed D-fields of fixed rank d. It has quantifier

elimination in Ling(O,c1,. .., ¢4, (Pp)nen)(0).
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(4) Suppose D is local. Let Psfy(C) be the Liing(C)-theory of pseudofinite fields of
characteristic zero with sentences saying that the polynomial £ + ¢, 2™ ' +
“+ 4 Cpp 18 irreducible for each n > 1. Then Psfy(C) is model complete —
this is Proposition 2.7 of [12]. We then get that Psfo(C) U UCp is the model
companion of Psfy(C) U “D-fields”.

3.3 Alternative characterisations of the uniform

companion

In this section we will describe some additional characterisations of UCp in the case
D is local. One in particular will use the notion of a D-variety, and will allow us to
show that an algebraic extension of a large field which is a model of UCp is also a
model of UCp. In particular, the algebraic closure of such a D-field will be a model
of D-CF, from [53]. For this section, we impose the following.

Assumption B. The k-algebra D is local.

Example 3.3.1. The algebras in (1), (2), and (5) from Example are local. We
can combine these algebras using fibred products and tensor products to form more

local examples. See Examples 3.4 and 3.5 of [53].

Since D is local, any D-ring R has only one associated homomorphism: the
identity idg; the associated difference ring is then just the underlying ring. Hence
for any affine K-variety X, there is only one induced morphism 7X — X, which
we call 7. With respect to the coordinates described in Section this is just the
morphism induced by the inclusion K[z]/I — K[z°,...,%!]/I' where z > z°.

Definition 3.3.2. Let (K,0) be a D-ring. A D-variety over (K,0) is a pair (V,s)
where V is a variety over K and s: V — 7V is an algebraic morphism over K
which is a section to the canonical projection #: 7V — V. We say that (V,s) is
K-irreducible if V is K-irreducible, affine if V' is affine, etc.

Given a D-field extension (L, ¢) of (K, 0), the (L, é)-rational sharp points of (V] s)
are defined as (V, s)*(L,6) = {a € V(L): Va = s(a)}.

As before, we will mainly be interested in affine D-varieties. If V is an affine
variety, a D-variety structure on V is equivalent to a D-ring structure on its coordi-

nate ring, K[V]. A K-rational sharp point is equivalent to a D-ring homomorphism
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K[V] — K. This is the natural D-field analogue of D-varieties as defined for differ-
ential rings; see for example [36].

We now establish some basic results about D-varieties. Recall that, if (R, 0) is a
D-ring and a is an ideal of R, a is called a D-ideal if 9(a) C a ® D, or equivalently,
if 0;(a) Caforeachi=1,...,1I.

Lemma 3.3.3. Let (R,0) be a D-ring, and a C R a radical D-ideal. Then the

manimal prime ideals above a are D-ideals.

Proof. Let p be a minimal prime ideal above a, and consider the localisation R,.
Since a is radical, so is aR, (see Proposition 3.11 of [3]). Suppose q C pR, is a prime
ideal of R, that also lies above aR,. Then by part iv) of the same proposition, we
must have ¢ = pR,, and hence pR, is a minimal prime above aR,. It is also the
unique maximal ideal of R,, and hence is the only prime ideal lying above aR,. Then
aR, = \/aiRp = pR, (the radical of an ideal is the intersection of the prime ideals
lying above it).

By Remark we know that 0 extends uniquely to a D-structure on R, with
9(%) = 9(a)d(b)~*. Since a is a D-ideal it is clear that aR, is also a D-ideal.

Then pR, is a D-ideal, and hence its contraction to R, p, is also a D-ideal. W

Lemma 3.3.4. Let (V,s) be an affine D-variety over (K,0). Then

a) any nonempty Zariski-open U C V' defined over K is a D-subvariety of (V,s);
b) any K-irreducible component of V is a D-subvariety of (V,s).

Proof. a) Let K[V] be the coordinate ring of V. Then s corresponds to 0;: K[V] —
K[V] ®, D. Let U be a basic open subset of V' given by the nonvanishing of some
f. By Remark we then get that d; extends uniquely to K[V]; — K[V]; ® D.
That is, s restricts to U — 7U. Now if U = U,y U; is a union of basic open subsets,
s restricts to U; — 7U; C 7U, and these restrictions agree on U; NU; since this is also
a basic open. Glueing the morphisms U; — 7U gives a morphism U — 7U which is
a restriction of s.

b) by Lemma 3.3.3 |

Theorem 3.3.5. Suppose (K, 0) is a D-field and K 1is large. Then the following are

equivalent:
(1) (K,9) = UCp;
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(2) whenever (V,s) is an affine, K-irreducible D-variety, if V has a smooth K-
rational point, then the set of K -rational sharp points of (V, s) is Zariski dense
mV;

(3) whenever (V,s) is an affine, K-irreducible D-variety, if V has a smooth K-

rational point, then (V,s) has a K-rational sharp point;

(4) whenever (V,s) is a smooth, affine, K-irreducible D-variety, if V has a K-

rational point, then (V,s) has a K-rational sharp point; and

(5) whenever (L,d) is a D-field extension of (K,0) such that K is existentially
closed in L as a field, then (K, 0) is existentially closed in (L,0) as a D-field.

Proof. (1) = (2): Suppose (K,0) = UCp and let (V,s) be a K-irreducible D-
variety with a smooth K-rational point. Let X = V and Y = s(V). Note that
X and Y are isomorphic. Then Y has a smooth K-rational point, ¥ C 7X, and
#: Y — X is an isomorphism. So, since K = UCp, Y has a Zariski dense set of K-
rational points of the form V(a) for a € X(K), and hence for each such a € X(K),
V(a) = s(a).

(2) = (3) is clear.

(3) = (1): Let X, Y, U be as in the statement of UCp. Let b € L > K
be a K-generic point of Y, so that a = #(b) € L is K-generic in X by dominance.
Since b € TX (K (b)), let ¥’ € K(b) ® D be the point corresponding to b under the
identification 7X (K (b)) +> X(K(b) ® D). Then P?(¥) = 0 for all P € I(X/K),
and so 0 extends to a homomorphism 0: K[a] — K(b) ®x D with 0(a) = ¥'. Extend
this to a D-ring structure 9: K(b) - K(b) ®x D using Lemma In this D-ring
structure, V(a) = b. Now each 9;(b;) € K(b) so 9;(b;) = g:’] ((:)) for some polynomials
P;,Qi; € Kz]. Let Q € K|x] be the product of all Q);;. Note that O restricts to
Kb = K[blge) ®« D. Again by Lemma we must have that 0 extends to
Kblowy = K[blgw) ® D. Let U’ be the open subset of Y corresponding to Q(z).
This extension of 0 gives a D-variety structure s: U’ — 7U’.

Since K is large and V has a smooth K-point, U N U’ has a smooth K-point.
By Lemma [3.3.4, (U N U, s|yrv) is a K-irreducible D-variety with a smooth K-
rational point. By (3) there is (¢, dy,...,d;) € (UNU')(K) with V(c,ds,...,d;) =
s(c,dy,...,d;). Then ¢ € X(K) with V(c) = (¢, dy,...,d;) € U(K).

(3) = (4) is clear.

(4) = (3): Let (V, s) be a D-variety over K with V' K-irreducible and a € V(K)
a smooth K-rational point. Let W C V be the smooth locus of V. Then W is a
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smooth, K-irreducible D-subvariety of V. The point a is a K-rational point of W
and so by (4), W has a K-rational sharp point. Then V has a K-rational sharp

point.

(1) = (5): Let (L,d) be a D-field extension of (K,0) = UCp such that K
is existentially closed in L as a field. Then there is a field extension L < M such
that M is an elementary extension of K as a field; note that M is then also a large
field. Extend the D-field structure on L to one on M, and use Theorem to
find a D-field extension (N,d) = UCp such that K < M < N as fields. This last
fact implies that K and N have the same existential theory as fields over K. So by
Theorem they have the same existential theory as D-fields over (K, J) — recall
that since D is local, the associated difference field is just the underlying field. Then
(K, 0) is existentially closed in (N, d), and hence in (L, 9).

(5) == (1): Assume (K,0) has property (5). By Theorem there is
(L,d) = UCp extending it such that K < L as fields. Then K is existentially closed
in L as fields, and so (K, 0) is existentially closed in (L, d) as D-fields by (5). Since
UCp is inductive, we must also have (K, 0) = UCp. |

We will now show that algebraic extensions of large models of UCp are again
large and models of UCp. Similar to the differential case (Theorem 5.11 of [38]), this
will rely on the D-Weil descent, established in Chapter

We recall only the necessary properties of the D-Weil descent in their geomet-
ric form. Let (L,d)/(K,0) be an extension of D-fields where L/K is a finite field
extension. Let (V) s) be an affine D-variety over (L, d); as mentioned above, this is
equivalent to a D-ring structure, 6°, on the coordinate ring, L[V], extending ¢ on
L. The classical Weil descent of V, VW is a K-variety such that there is a natural
bijection

V(L) & VYV (K).

Stated algebraically, this is equivalent to the natural bijection

Homy, (L[V], L) <» Homg (K[VY], K).

In the previous chapter we showed that there is a unique D-ring structure, 0°, on

K[VW] extending @ on K such that the above natural bijection restricts to a natural
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bijection
Homz,5)((L[V], %), (L, 8)) <> Homx5)((K[V"],8%), (K, 9)).

The D-ring structure §° corresponds to s": VW — 7(VW) and makes (VVW,s")
into a D-variety over (K, ). As mentioned above, a D-ring homomorphism L[V] —
L corresponds to an L-rational sharp point of (V,s). Geometrically then, we have

that the first natural bijection restricts to the natural bijection
(V,s)4(L,0) + (VV,s")¥(K,d).

Theorem 3.3.6. Let (L, 8)/(K, ) be an algebraic extension of D-fields where (K, 0)
is a model of UCp and K is a large field. Then (L,d) is a model of UCp and L is

large.

Proof. Consider first the case when L/K is a finite extension. We verify condition
(4) of Theorem Let (V,s) be a smooth, L-irreducible D-variety defined over
(L,6) with an L-rational point. Now apply the D-Weil descent to get a D-variety
(VW W) over (K, ). Since V is affine and smooth, V" is affine and smooth (see
Proposition 5 of Section 7.6 of [6]). By the bijection V(L) +» VW (K), VW has a
K-rational point. Let (U,t) be the irreducible component of (V% s") containing
the K-rational point. Since (K, 0) satisfies condition (4), (U,t) has a K-rational
sharp point, and hence (VW s") has a K-rational sharp point. By the bijection
(V,8)4(L,d) + (VW,s")(K,0), (V,s) has an L-rational sharp point.

If L/K is algebraic, let F' be an intermediate extension such that V, s, and
the L-rational point are all defined over F' and F/K is finite. Then by the above,
(V,8)4(F,6) # 0, and hence (V, s)*(L,d) # 0. u

3.4 The non-local case

Recall that throughout this chapter we assumed that either the k-algebra D was
a local ring or each component in its local decomposition had residue field k. In
this section we make some observations about the existence of model companions
of D-fields in the case when neither assumption holds. Without Assumption [A]
the associated homomorphisms of a D-field are not necessarily endomorphisms, and

hence it does not make sense to ask whether T'U “D-fields” has a model companion
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when 7' is a theory of difference fields. However, it does make sense to ask the
question as T varies over theories of fields. The main result of this section says that
when the base field k is finitely generated over Q, we get a full characterisation of
when the uniform companion for large D-fields exists: it exists if and only if D is
local.

We start with the general case: k is a field of characteristic zero, D is a finite-
dimensional k-algebra, and D = [['_, B; where each B; is a local finite-dimensional
k-algebra. We no longer impose Assumption [B] — that D is local — or even As-
sumption [A] — that the residue field of each B; is k. For i > 0, the residue field of
B; is k[x]/(P;) for some k-irreducible polynomial P;, and that of By is k. For an
L-theory T, the L£(0)-theory T U “D-fields” is denoted by Tp, and the L(o)-theory
T U “c is an endomorphism” is denoted by 7.

A result of Kikyo and Shelah [33] states that if a model complete theory has
the strict order property, then the theory obtained by adding an automorphism has
no model companion. In particular, if D = k x k, D-fields correspond to fields
with an endomorphism, and so RCFp = RCF, and Th(Q,)p = Th(Q,), have no
model companion. In fact, the Kikyo—Shelah theorem implies that Tp has no model
companion when D is not local and 7" has a model in which one of the polynomials P,
has a root. We first prove this for the case when D has at least one local component

with residue field k, and then reduce the more general statement to this case.

Proposition 3.4.1. Assume D is such that one of the local components B; has
residue field k for ¢ > 0. If Tp has a model companion, then T, has a model

coOmpanion.

Proof. Note that by a particular choice of the basis &y, ...,&;, we may assume that
the associated endomorphism o; corresponding to B; appears as one of the operators
0j. So L(0;) C L(0).

Write T for the model companion of Tp and T~ for its reduct to £(0;). We will
show that 7'~ is the model companion of T},; clearly their universal parts coincide,
so it suffices to prove T~ is model complete.

Let (K,0) = T—. We will show that T~ U diag,,, (K) is complete. Use
Lemma to equip K with a D-ring structure whose ith associated homomor-
phism is o; and whose jth associated homomorphism is inclusion K — K{z]/(P;) for
j # 1. Then K | Tp, and it embeds in some L = T*. Since Tt is model complete,
T U diagg(s) (L) is complete, and hence its reduct to L£(0:)(K), T~ U diag,,,)(K),
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is complete. [

We now weaken the assumption that the residue field of some B; is k to the
assumption that 7" has a model K in which one of the polynomials P, has a root. If
Tp has a model companion, then Tp U diag(K) has a model companion. Let £ be
the K-algebra D ®; K. As mentioned in the proof of Theorem 3.2 of [4], if L is an
&-field, then £-field extensions of L coincide with D-field extensions of L. Hence if
TpUdiag(K) has a model companion, so does T¢. But £ now satisfies the assumption
in Proposition So we have proved the following.

Corollary 3.4.2. If T is model complete and has a model with the strict order

property in which one of the P; has a root, then Tp has no model companion.

Real closed fields and @, have the strict order property, and so this result means
if any P; has a root in some real closed field or some p-adically closed field, there is
no uniform companion. In particular, if the base field k is a finitely generated field

extension of Q, we get a full converse to the main theorem.

Corollary 3.4.3. Suppose k is a finitely generated field extension of Q. Then there

s a uniform companion for theories of large D-fields if and only if D is a local ring.

Proof. If D is local, D-fields whose associated difference field is difference large cor-
respond precisely to D-fields whose underlying field is large. The uniform companion
then exists by Section |3.2

Suppose D is not local. Then the splitting field of the polynomial P; € k[z] is
a finitely generated extension of Q, and so by Theorem 1 of [10], embeds in some
Qp. Hence P; has a root in Q,. Then by Corollary Th(Qp)p has no model

companion. |

Remark 3.4.4. The base field k£ does have an impact on when the uniform companion
exists. If k is algebraically closed, then the only model complete theory of fields
containing k is ACFy, and hence the existence of a uniform companion for D-fields is
equivalent to the existence of the model companion of ACFy U “D-fields”; this exists
for all D by Theorem 7.6 of [53].

However, for other fields k£ the question is still open. For instance, suppose k£ = R.
No model of Th(Q,) can be an R-algebra, and so Th(Q,) U “D-fields” is inconsistent.
Hence the above method does not show that there is no uniform companion in the

case D = R x C, for instance.
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Chapter 4

Derivation-like theories and

neostability

4.1 Introduction

We saw in the previous chapter that if T' is a model complete theory of difference large
fields, then T'U “D-fields” has a model companion: T"UUCp. In this chapter we will
investigate model-theoretic properties transferred from the theory of difference fields
to the theory of D-fields. For instance it is immediate from the transfer of quantifier
elimination from an expanion by definitions 7™ to T* U UCp in Theorem that

NIP also transfers.

Corollary 4.1.1. Let C be a set of new constant symbols, and suppose that T is the
complete, model complete L.ing(C)(0)-theory of a difference large field of character-
istic zero. If T is NIP, so is (any completion of ) T U UCp.

Proof. Let T* be an expansion by definitions of 7" with quantifier elimination where
the L*-terms are the same as the L,n,(C)(0)-terms (for instance, if 7* is the Mor-
leyisation of T'). Let € be a monster model of 7% U UCp whose reduct to £* is a
monster model of T™.

Suppose ¢(z,y) is an L*(0)-formula with IP: so there are (a;)icw, (br)rcw in €
with € = ¢(a;,b;)) <= i € I. By Theorem T* U UCp has quantifier
elimination, and we may assume ¢(z,y) is quantifier-free. Now, since the L£*-terms
are the same as the L,g(C)-terms, the £*(0)-terms in the variables z,y are then

just polynomials in z, y, C, and any application of the operators to these. So there
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are 7 € N and a quantifier-free £*-formula ¢* such that ¢ = ¢(z,y) if and only if
¢ E ¢*(V,.(x),V,(y)). Then

C = ¢*(Volas), Vo (b)) <= € k= (as,br) < i€l

Therefore the sequences (V,(a;))ic, and (V,(br))rc, witness that ¢* has IP. |

Remark 4.1.2. 1. This result generalises the fact of Michaux and Riviére that
CODF is NIP from Theorem 2.2 of [47].

2. In Corollary 4.3 of [22], Guzy and Point show that NIP is transferred from a
topological field (possibly with extra structure) to the model companion of the
field with a derivation. The imposition of a topological structure allows them
to consider fields with genuine extra structure, as opposed to the definitional

expansions considered here.

A similar argument to Corollary shows that stability transfers via its char-
acterisation of no formula having the order property. But in the case when D is

local, stability yields something stronger.

Lemma 4.1.3. Suppose D is local and that T 1is the complete, model complete
Lying(C)-theory of a large field of characteristic zero. If T is stable, then T UUCp =
D-CF,.

Proof. A stable, large field of characteristic zero is algebraically closed by Theorem
D of [30]. The result then follows as ACF, U UCp = D-CF,. |

We now turn our sights to simplicity. Like NIP and stability, simplicity has a

combinatorial characterisation.

Definition 4.1.4. A formula ¢(z,y) has the tree property if there is a tree of pa-

rameters (as: s € w<) and some k > 2 such that
1. for every n € w<¥ the set {¢(z,a,;): ¢ € w} is k-inconsistent; and
2. for every o € w”, the set {¢(z,a,|,): n € w} is consistent.

A complete theory T is simple if no formula has the tree property.

However, it is not clear to the author whether the previous proof will adapt to
the tree property. Instead, we tackle the problem using the more semantic character-
isation of simplicity given in the preliminaries. Recall from Section [1.1] the following

definition.
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Definition [1.1.23| Let T be a complete theory and € a monster model. A relation
¥ on triples of small subsets of ¢ is called an abstract independence relation if it is

invariant under automorphisms and satisfies the following conditions.

1.
2. monotonicity: X |*4 B = X [*, B' for B' C B;

3. base monotonicity: X >4, D = X [*z D for AC B C D;
4.
)
6

=

normality: X >4 B = X [*, AB;

transitivity: X >4 Band X [’ D = X [*, Dfor AC BC D;

. symmetry: X [*4 B <= B [*, X;
. full existence: for any X, A, B there is X’ =4 X such that X’ [*, B (recall

X' =4 X means that X’ and X have the same type over A);
finite character: if Xy [*, B for all finite Xq C X, then X [*, B;

local character: there is a cardinal k such that for all X and A, thereis Ag C A
with |Ao| < & such that X [7, A.

There are three extra properties that an abstract independence relation |* might

satisfy that we are interested in:

9.
10.

11.

strictness: if b |*4 b, then b € acl(A);

independence theorem over M: if A1 [*), A2, a1 Xy A1, as '3y Ao, and
ay = ag, then there is a = tp(a; /M A;) U tp(ay/M Ay) with a ¥, A1 A,.

stationarity over M : whenever A D M, a,b € € with a =) b, a [*,; A and
b 'y A, then a =4 b.

T is simple if and only if there is an abstract independence relation on € satisfying

1-8 and the independence theorem over models. Thus, we will use this notion of

independence for T to define one for T'U UCp and show it has all the required

properties.
It will turn out that the transfer of these properties is not specific to the setting

of D-fields. Hence, we will work in more generality.

4.2 Derivation-like theories

Let £ C © be two languages, T a complete and model complete £-theory, and A an

inductive D-theory. Let U be a monster model for T, and let | be some relation on

triples of small subsets of U.
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Example. The reader should have in mind the following typical example.

the language of fields as £;

the language of differential fields as ©;

the theory of some large, model complete field as T
the theory of differential fields as A; and

algebraic independence or linear disjointness as |°.

Remark 4.2.1. Suppose T* is an expansion by definitions of T'. If |° satisfies any of

1-11 in T, then it also does in T™. This is because acl is the same taken in 7" and

T* and equality of T-types implies equality of T™*-types.

We write M <g N if M is an £-substructure of N and M <o N is M is a
D-substructure of N. For A C M where M is an L-structure, we write (A), for

the £-substructure generated by A inside M. By acly we mean the model-theoretic

algebraic closure in the sense of T'.
We say that A is derivation-like (with respect to T and |°) if the following

conditions hold:

(a)

(b)

(d)

if M = A and M <¢; N =T, then there is a D-structure on N extending the
one on M such that N = A,

if M ETUA and A <9 M <g U, then aclr(A) <o M and aclr(4) E A,
moreover, this is the only ©-structure on acly(A) extending the one on A that

makes acly(A) into a model of A;

if M ETUA with M <¢ U and A and B are two models of A which are
D-substructures of M with a common aclpy-closed D-substructure C such that
A % B, then (AB), <o M and (AB), = A; moreover, this is the only
D-structure on (AB), extending the ones on A and B and making it into a
model of A; and

if A and B are two models of A which are £-substructures of U with a common
acly-closed D-substructure C' such that A |, B, then there is a D-structure
on (AB), <¢ U extending the ones on A and B that makes (AB), into a model
of A.

Remark 4.2.2. Suppose A is derivation-like with respect to T'. If T™* is the Morleyi-

sation of T, then A is derivation-like with respect to 7.
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4.3 Transferring neostability properties

For the rest this section, we assume that A is derivation-like with respect to T and
J° and that T'U A has a model companion, T*. Using Fact we may find a
D-structure ¢ such that € is a monster model for T and €| is a monster model for
T. In this section we will prove that many neostability properties transfer from T
to T. Recall that acly refers to model-theoretic algebraic closure in the sense of T}

acl refers to algebraic closure in the sense of T+ and tp to types in the sense of T'*.

Theorem 4.3.1. Suppose |° satisfies full existence. Let T* be an expansion by
definitions of T' to a language £*. Let K |= T*UT™" and A <0y K. If T*Udiag,. (A)
is complete, then T* UT™ U diage.(o)(A) is complete.

Proof. We first note that T*UT'* is model complete. Given any extension of models,
it must be a D-elementary extension since both are models of 7", and hence a £*(D)-
elementary extension since any symbol from £* can be defined with an £-formula.

Let K,L =T*UT™ and let A be a common £*(®)-substructure. Both K and
L are models of T and A is a common £*-substructure. Since T™* U diage.(A) is
complete, the bijection A — A is a partial £*-elementary map from K to L. This
map then extends to a partial £*-elementary bijection aclk.(4) — aclk.(A); see
Lemma 5.6.4 of [64]. This is an £*-isomorphism. By property (b), aclh.(A) and
aclk. (A) are D-substructures of K and L, respectively, and are both models of A.
Pushing the first ®-structure through the £*-isomorphism, the moreover clause of
(b) tells us that it must also be a ®-isomorphism. So we may assume that A is
relatively £*-algebraically closed in K and L.

By completeness of T* U diagg.(A), we may think of K and L both as £*-
substructures of €|¢. Now use full existence of |° to replace L by a copy with
K [°, L inside €|¢. Let M =<¢ €| be some £-elementary substructure containing
both K and L. Since A is relatively algebraically closed in K and L, we can use (d)
to amalgamate the D-structures on K and L to one on (KL), <¢ M making it a
model of A. Then use (a) to extend this to a ©-structure on M so that M | A.
Since Tt is the model companion of T'U A, extend M = T U A to some N | T+
which then uniquely expands to a model of T*UT*. Since T*UT'* is model complete,
K<N*>L,andso K =4 L. [ |

As in Theorem we collect some immediate consequences.
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Corollary 4.3.2. Suppose |° satisfies full existence. Let T* be an expansion by
definitions of T which is the model companion of some inductive T in the language
£*. Then

1. T*UTT is the model companion of T§ U A;

2. if T* is the model completion of T§, then T* UT™ is the model completion of
Ts UA; and

3. if T* has quantifier elimination, then T* UT™ has quantifier elimination.

Proof. First we show that 7% UT* and T U A have the same universal theory. Let
M E Ty UA. Since T* is the model companion of Tf, there is some N = T*
containing M as an £*-substructure. By (a), N expands to a model of A, and since
T is the model companion, there is some N’ |= Tt extending N. Now N’ =T as
well and hence uniquely expands to a model of T*. Since N <¢ N’ are models of
the model complete theory 7', this extension is £-elementary, and hence must be an
£*-extension. So every model of Tif UA embeds in a model of 7*UT™*. The converse
is similar.

Now the statements follow immediately from Theorem [4.3.1 |

Proposition 4.3.3. Suppose |° is invariant and satisfies full existence, monotonic-
ity, and strictness. For any A C €, we have acl(A) = acly ((A4)).

Proof. Let F' = acly ((A)5). By (b), F is a ®-substructure of €. Clearly F' C acl(A).
For the converse, suppose x ¢ F. We will show that tp(z/F') is not algebraic.

Suppose for a contradiction that tp(z/F’) has only finitely many realisations. Let
K be some small ®-elementary substructure of € containing F' and all the realisations
of tp(z/F). Now use full existence of |° to find L =r K as £-structures with
L [°- K inside €|¢. Let M be some £-elementary substructure of ¢|¢ containing K
and L. The partial £-elementary map a: K — L fixing F' is an £-isomorphism. Use
this £-isomorphism to define an isomorphic D-structure on L. Now F' is aclp-closed,
and so use (d) to amalgamate the D-structures on K and L to one on (KL), <¢ M
making it a model of A. By (a), M expands to a model of A. Since T+ is the
model companion of T'U A, there is some N | T extending M. Now both N and
¢|e are models of the complete £-theory T'U diage(M) — completeness is by model
completeness of T'. So we may embed N inside €|¢ over M, and thus, without loss
of generality, M <g N <¢ €|g.
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By model completeness of T, there is a D-elementary embedding j: N — €
that fixes K. Now

tp°(2/F) = tp™ (z/F) = tp"(a(z)/F) = tp" () / F') = tp*(jeu()/ F)

and hence ja(z) is a realisation of tp(z/F'). Since K contained all such realisations,
we have ja(z) € K. We also have j(L) |° K by invariance. Then monotonicity
gives ja(z) |°» ja(z), and strictness gives ja(z) € acly(F) = F. But now j and «

both fixed F', so we must have had z € F, a contradiction. |

Theorem 4.3.4. Define the following relation on triples of small subsets of €:

A "B <= acl(AC) [° acl(BC).
c acl(C)

Then

(i) if ° is an abstract independence relation, so is |T;
(ii) if |° is a strict independence relation, so is |

(iii) for some parameter set M, if |° is an independence relation that satisfies the

independence theorem over M, so is |': and

(iv) for some parameter set M, if |° is an independence relation that satisfies

stationarity over some M, so is |7

Proof. For (i) and (ii), invariance, normality, monotonicity, transitivity, symmetry,
finite character, local character, and strictness are either by definition or follow from
the corresponding property of |°. For base monotonicity, suppose A s Band C C
D C B. We may also assume that A D C by normality. Then acl(A) \Bacl(c) acl(B).
By monotonicity, we have acl(A) ﬁael(c) acl(D). By (c), (acl(A)acl(D)), is a ©-
substructure. So (AD), C (acl(A)acl(D)),, and so acl(AD) C aclr(acl(A) acl(D)).
By base monotonicity and normality for |°, we get acl(A)acl(D) \Bacl(D) acl(B).
By full existence, we get aclr(acl(A) acl(D)) [%ya(a)ac(py acl(B), and by transitivity
and monotonicity, acl(AD) [%,.p) acl(B). That is, A [*, B.

Full existence. Suppose a,A, B are given inside €. Let M be a small -
elementary substructure of € containing these, and let C = acl(A). Use full existence
for |° to find M’ [°, M with M’ = M inside €|s. Let N be some £-elementary
substructure of €|¢ containing M and M’. Use the £-isomorphism a: M — M’ that
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fixes C to put a ®-structure on M’. Using (d), the D-structures on M and M’ then
amalgamate to one on (M M'), <¢ N which makes it into a model of A. Then by (a),
N expands to a model of A, which then embeds inside some N’ = T*. As T is model
complete, T'U diag.(NN) is complete, and both N’ and €|¢ are models of it. So we
may embed N’ inside €|¢ over N and thus assume that N <g N’ <¢ €|¢. And now
since N' = T, we may D-elementarily embed N’ inside € over M via j: N’ — €.
By invariance, we get j(M’) |°; M and by monotonicity acl(Aja(a)) % acl(AB),
that is, ja(a) |, B. In addition,

tp%(a/C) = tp™(a/C) = tp"" (a(a)/C) = t»" (a(a)/C) = tp*(jer(a) /C).

Independence theorem. Let M |= T+, Ay [F, As, a1 [hy A1, a2 17y, Az, and
tp(a;/M) = tp(az/M). We will show that there is a ', A; A, realising tp(a;/A;) U
tp(az/Asz). Let N = T" be some elementary substructure of ¢ containing all of the
above subsets.

Claim 1. We may assume that A;, A, a;, and a, are all models of T containing
M.
Proof of claim. By Léwenheim-Skolem, find an elementary substructure A' < N
containing A; and M. By full existence, find A; =), Ay f_l’l with A; |7, wma, A2. Then
find an elementary 14_1’2 < N containing As and M, and by full existence Ay =y Ay A’Q
with A, Lhia, A;. Then

Al J_j_ A2 and Al Jj_Az - Al J_j—AQ by transitivity
M M

MA;
Al J_j_AQ and /_12 \J_:I— Al - Al \J_:I—/_lg
M M Ay M

Do the same with a; and a;. Léwenheim—Skolem constructs the models a by
closing Ma; under Skolem functions. The elementary map Ma; — Mas extends to
the closures of Ma; under Skolem functions, and so we will have @} =), a}, and hence
a1 =7 Gz. So we may assume that A, Ay, a;, as are all models of T'F containing M.

Claim 2. Thereis some a € €|¢ with a |°;, N with a |= tpg(a;/A;)Utpg(az/As).
Proof of claim. By the independence theorem for |°, there is a € €|¢ with a |° M
A1 A, and a |= tpg(ai/A;) Utpe(as/Az). Now by full existence for |°, we can find
a’ =5 4, a such that @’ % 4, N. Let o be the L-automorphism of N’ sending
a + a' and fixing A; A,. By invariance, a’ |°,; A;As, and by transitivity, a’ [°,, N.
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Renaming a’ to a, we have that a |%,, N.

Claim 3. Inside €|, there are £-isomorphic copies of N, N; and N, both
containing a, with N; \Ba Ny and N JBA1A2 N1 Ns.
Proof of claim. For i = 1,2, let N/ be the copy of N coming from the £-automorphism
A;a; — A;a. By full existence for %, let N; =4,a N] with Ny fAla N and N, JBAW
NN;. Then N \|-(/)A1 N; and N \BAz N, by transitivity. From a %, N we get a JBAl
Ay, and so Aja [° 4, A2. Along with A, JBM Ay, transitivity gives Aja J?M A,
so that Aja JBa As by base monotonicity. This implies A; Jfa Ay and NV Jfa A,.
This last part implies N; \Ba Asa and along with N, \[? Arq VN1 implies Ny Jfa Ns.
Also, N JBAIAQ N; by base monotonicity since A;A; C N. From NN; JBAM Ns,
we get N JBANNI N,, and hence N JBA2N1 N, since a € N;. Combining this with
N %%, 4, N1 gives N [0, 4, NiNs.

Claim 4. There is some model of T"U A which is a D-extension of N, N;, and
No.
Proof of claim. Define ®-structures on N; and N, such that (N;, A;,a) is ©-
isomorphic to (N, A;,a;) under ;: N — N;. So N; = T* for ¢ = 1,2. Let P
be some £-elementary substructure of €|q containing N, Nj, and N,. Note that
since a; is a ®-substructure of N, a is also a ®-substructure of N;. Now N; Jfa No,
and a is aclp-closed — it is a model of the model complete theory T — so their ©-
structures can be amalgamated to one on (N;N;) <¢ €|¢ making it into a model
of A using (d). By (c) and the fact that A; [°, As, we have that (A;A,), is a
D-substructure of €. And hence by (b), aclr(A;A4z) is a D-substructure of €. Now
N 4,4, NiN;, and so N JBaCIT(AlAz) (N1N3), by base monotonicity and full ex-
istence. Now amalgamate the ®-structures on N and (N;N2), using (d) to one on
(NN1N3) <¢ €|¢ making it into a model of A. By (a), P expands to a model of A
extending the ®-structures on NV, N;, and Ns.

Now P extends to some S = T*. Again since T'U diag.(P) is complete, we may
assume that P <5 S <¢ €|¢. Now let j: S — € be the ©-elementary embedding of
S in ¢ that fixes N. Then

tp®(a1/A1) = tp" (a1 /A1) = tp™ (a/A1) = tp°(a/A1) = tp°(j(a) /A1)

and similarly we have j(a) =4, a;. By construction of a, we had a |%,, N, and by
monotonicity and invariance, we get j(a) |°;, acl(A;4z), and so j(a) %), A1A,.
Stationarity. By Morleyising T and using Corollary we may assume that
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T* has quantifier elimination. Let M < N < €, a,b € € such that tp(a/M) =
tp(b/M), and a [T, N and b |;, N. We need to show that tp(a/N) = tp(b/N).
Write K, = acl(Ma) and K, = acl(Mb). By definition of |*, K, |%, N and
Ky, [°,; N. By stationarity for |°, tpe(K,/N) = tps(Ky/N), and hence there is
an L-isomorphism (K,N), — (K,N), that fixes N. Now by (c), both (K,N), and
(KyN) o are D-substructures of € which are models of A, and by its moreover clause,

this £-isomorphism must be a D-isomorphism. By quantifier elimination for T, we
must have tp(a/N) = tp(b/N). |

Remark 4.3.5. The moreover clauses of axioms (b) and (c) are only necessary to

prove stationarity transfers from % to |*.

4.4 Examples

In this section we will see some applications of the above framework, both to existing

proofs of simplicity and stability in the literature, and to new ones.

D-fields are derivation-like over ACFA,

Let D be a finite-dimensional k-algebra satisfying Assumption [A} that each maximal
ideal of D has residue field k. Recall then that every D-field (K, 9) has a sequence
o1,...,0¢ of associated endomorphisms which are uniformly L,in.(0)-definable in
every D-field.

Example 4.4.1. Let T be the simple L;ing(01, . . ., 01)-theory ACFA,;, and let 1% be
nonforking independence. Let © be the language L;ing(01,...,0;) and A the theory
of D-fields whose associated endomorphisms are o4, ...,0;. Then A is derivation-like
with respect to T'.

Axiom (a) is by Lemma For axiom (b), let M be a D-field and A some
D-structure. Now the D-structure on A is a D-operator A — M, which extends by
Lemma to a D-operator acly(A) — M. We also have a D-operator aclr(A4) —
M given by restricting the D-field structure on M. Since acly(A) = A¥e is 0-étale
over A, these must agree by Lemma Axiom (c) comes from the multiplicative
rules for D-fields, and its moreover clause and (d) come from Lemma 5.1 of [53].
Note also that forking independence in ACFA; is precisely linear disjointness after

closing under acl.
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Then Theorem gives a different, less algebraic proof of Theorem 5.9 of [53].

Very L;ing(C)-slim fields

In order to show that axiom (d) held in the previous subsection, we needed a full
algebraic characterisation of nonforking independence. We can relax this requirement
using a modified notion of Junker and Koenigsmann — that of very slim fields [32].
In these fields, algebraic independence is an abstract independence relation, and thus
nonforking independence always implies algebraic independence.

Let £ be some language expanding the language of rings and T some £-theory

of fields satisfying the following assumption.

Assumption 4.4.2. Suppose A and B are £-substructures of some K = T. Then

the field compositum of A and B is also an £-substructure of K.
Example 4.4.3. The above is satisfied if £ = L,ng(C).
Definition 4.4.4. Let K be a field in the language £. We say that K is £-slim if for

every £-substructure F', we have aclf (F) = F®8, Equivalently, if for every subset
A, we have aclk (A) = (A)%8. By F?® we always mean the relative, field-theoretic
algebraic closure of F' in K.

We say that K is very £-slim if every £-structure elementarily equivalent to K

is £-slim.

Remark 4.4.5. 1. We recover the definition of (very) slim from [32] by setting
£ = L,ing and only considering fields in the language of rings. In other words,

a field with no extra structure is (very) slim exactly when it is (very) Lying-slim.

2. As mentioned in [32] for slim fields, to check whether K is very £-slim it is

enough to check whether a sufficiently saturated model of its theory is £-slim.

The authors of [32] then show that algebraic independence in very slim fields
is an abstract independence relation — in general, algebraic independence does not
satisfy full existence (called existence in [32]). Here we need to modify algebraic

independence slightly to account for the extra structure.

Definition 4.4.6. For a monster model of Th(K), define the following relation on
triples of subsets of K:

A !B < (AD), |**(BD).,.
D (D)
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We say that A and B are £-algebraically independent over D.

Theorem 2.1 of [32] says that a field is very slim if and only if algebraic indepen-

dence is an independence relation. The following result is the very £-slim analogue.
Lemma 4.4.7. K is very £-slim if and only if | is a strict independence relation.

Proof. Invariance, normality, monotonicity, symmetry, transitivity, finite character,
local character, and strictness are either by definition or follow from the correspond-
ing property of |*%. Base monotonicity follows from Assumption [{.4.2]

We now follow the proof of Theorem 2.1 of [32] to show that K is very £-slim if
and only if |° satisfies existence. Let a, B, C be given, and consider tp(a/(C)). If
it is algebraic, a € acl((C)), and by very £-slimness, a € (C)™. Then a L&, (B).
If it is not algebraic, then among the infinitely many realisations, there is one which
is transcendental over (B) by compactness. Thus we have shown that if a is a
tuple of length one, then there is some a' = tp(a/(C)) with o' Jjﬂ(gC) (B). Ifa =
(a1, ..., an), then find (a}, .. .,a,) =) (a1, ..., an) with af [, (B). By induction,

/

find (a3,...,a,) =) (ay,-..,a,) With aj,...,a; \Bl(gcm,l (B). By transitivity,

n ’ '
"

(a},a5...,a,) =) (a,...,a,) and af,a5...,a; a1<gc> (B). So for all finite tuples
a, there is some a’ =(¢y a with o’ Jfl<g0> (B). By compactness this is true for infinite
a. Now apply it with (Ca) to get o’ |5, B.

If K is not £-slim, then there is some £-substructure k£ and a € acl(k) with a
transcendental over k. Let C' consist of the finitely many conjugates of a over k.
Then there is no realisation of tp(a/k) which is algebraically independent from C
over k. But if we did have b |= tp(a/k) with b |%, C, then we would also have

b f}fC by monotonicity, a contradiction. |

Remark 4.4.8. Remark 1.20 of [I] says that nonforking independence (which is not
in general an independence relation) implies any independence relation. Indeed this
fact is implicit in the proof of the Kim—Pillay theorem, see Theorem 4.2 Claim I of
[35].

We now restrict to the case when £ = L,i,,(C) for some set of constants C.
Remark 4.4.9. Let C be the field generated by the constants C' inside K. Then by
Lemma 2.12 of [31], K is very Lying(C)-slim if and only if it is algebraically bounded

over C.

Lemma 4.4.10. Let K be an L,ing(C)-structure which is a perfect field. Suppose K
is large and its Lying(C)-theory is model complete. Then K is very Lyng(C)-slim.

119



Derivation-like theories and neostability

Proof. The same proof as in Theorem 5.4 of [32] works here. In part 2 of that
proof, when they take a subfield k, we instead take an £-substructure k, that is,
a subfield containing the constants C. Model completeness then implies that ¢ is
an existential L,ine(C)-formula with parameters from k. But this is the same as an
existential L,ing-formula with parameters from £ since k contains C. The rest of the

proof is the same. u

Example 4.4.11. Suppose T is the simple Lying(C)-theory of a very Lying(C)-slim
field of characteristic zero and |° is nonforking independence. Let D be some local
finite-dimensional k-algebra with residue field k&, let © = L, (C)U {01, ...,0,} and
let A be one of the two following ©-theories:

e the theory of D-fields; or

 the theory of D-fields where the operators pairwise commute.
Then A is derivation-like with respect to T and |°.

Proof. If A is just the theory of D-fields, then axioms (a), (b), and (c) hold for the
same reason they do in Example For axiom (d), since T is the theory of a very
L;ing(C)-slim field, Remark tells us that if A JBC B where C is aclp-closed, then
A and B are algebraically independent over C, and hence they are linearly disjoint
over C. Now we amalgamate using Lemma 5.1 of [53].

If A is the theory of D-fields where the operators pairwise commute, the only
things left to check are that in (a), the D-field extension N may be taken to have
commuting operators if M does, and that in (d), the D-field structure on AB may
also be taken to have commuting operators if A and B do.

For the first, let (M,0) be a D-field with commuting operators, and let N be
some field extension. Let T" be a transcendence basis for N/M. Define § on M (T)
by setting () =t ® 1 € N ®; D. So ¢ is a D-operator along M(T) C N whose
operators pairwise commute. This is equivalent to the following diagram commuting.

N ®, D e, N ®r D QD
/
M(T) idny @
X
N®,D —%" N, D®,D
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where I': D ®, D — D ®; D is the map that swaps the two coordinates. Now ¢
extends to a D-field structure on N by Lemma since N/M(T) is 0-smooth.
Then (§ ® idp) 0§ and (idy ® I') o (6 ® idp) o d are two D ®;, D-structures on N
extending (0 ®idp)od = (idyy ®T') o (§®idp)od on M(T). Since N/M(T) is 0-étale,
they must agree. So ¢ is a D-field structure on N with pairwise commuting operators.
Axiom (d) is a similar argument using the uniqueness guaranteed in Lemma 5.1 of
[53]. |

Corollary 4.4.12. 1. If the model companion of PAC fields with a (pairwise com-

muting) D-field structure exists, then it is simple.

2. If the model companion of algebraically closed fields with a pairwise commuting

D-field structure exists, then it is stable.

Remark 4.4.13. In the next chapter, we will prove that the theory of PAC fields with

a D-field structure has a model companion and apply the results of this section.

Separably differentially closed fields of infinite differential de-

gree of imperfection

In [28], Ino and Leén Sanchez study the class of ordinary differential fields which
are existentially closed in every differential field extension which is separable as an
extension of fields. They show that this class is elementary, and they denote its
Lying(0)-theory by SDCF: separably differentially closed fields. The theory of sepa-
rably differentially closed fields of some fixed characteristic p is denoted by SDCEF,,.
Note that SDCFj is precisely DCFy.

Recall that, in the case of fields, SCF, is not a complete theory: one needs to
specify the degree of imperfection e € N U {co}. Likewise, the authors define the
differential degree of imperfection of a differential field (K, d) of characteristic p to
be € € NU {00} such that [Ck: K?] = p°.

Definition 4.4.14. A tuple a C Ck is called differentially p-independent if the p-
monomials over a are linearly independent over K?. The tuple a is called a differential

p-basis if the p-monomials form a basis for Cx over KP?.

As the authors mention in Remark 5.3, (K, §) has differential degree of imperfec-

tion € if and only if it has a differential p-basis of size e.
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Definition 4.4.15. 1. The L,in(9)-theory of differential fields of characteristic p
and differential degree of imperfection € is denoted DF, .

2. The L;ing(0)-theory of separably differentially closed fields of characteristic p

and differential degree of imperfection € is denoted SDCF,, .

Recall now the L,in,-definable functions (A, ;: n € w,i € p™) from Section
Field extensions which preserve these functions are precisely the separable ones. In
Section 6.2 of [28], the authors define the differential A-functions, (¢,;: n € w,i €
p"), and show that SDCF;e is the model companion of SCFf,’oo U DFf,,E. We require
the analogous result using the algebraic A-functions. The argument is essentially the

same, but we will provide details anyway.
Fact 4.4.16. SDCF;,Oo is the model companion of SCFS,OO U {d is a derivation}.

Proof. Firstly, every model of SDCF;:OO is also a model of SCF;‘}OOU{é is a derivation}
by Lemma 4.5 of [28]. By Lemma 5.6 of [28], any model of SCFZ’}’OOU{J is a derivation}
has a separable extension with infinite differential degree of imperfection, and by
Proposition 5.10, this has a separable extension which is a model of SDCF,, . Since
all extensions are separable, they must preserve the A-functions.

Now suppose (K, d) < (L, d) is an extension of models of SDCFI’}’E. Since this field
extension preserves the A-functions, L/ K is a separable field extension. Now expand
both K and L by the differential A-functions. Since L/K is separable, the extension
K < L will also preserve these differential A-functions; see Lemma 6.5. Then by
model completeness for SDCFf,7e (Theorem 6.6), K < L as differential fields. Since
the A-functions are L,ing-definable, K =< L as models of SDCF;,‘,E. [ |

In Theorem 6.8 of [28], Ino and Leén Sanchez prove that the L,ng(d)-theory
SDCF, « is stable by counting types. They do not characterise forking. The re-
mainder of this subsection is devoted to showing that the theory of differential fields
is derivation-like with respect to SCF;,Oo and hence that we may use the results of
this chapter to characterise forking in SDCF, .

Let £ be the language of rings expanded by the A-functions A,;. Let T =
SCF;,‘,OO. This theory has quantifier elimination and is stable. Let |° be nonforking

independence. Srour characterises this in [61]:

A |°B < A and B are algebraically independent and p-disjoint over C.
c
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Proposition 4.4.17. The theory of differential fields is derivation-like with respect
to SCFIA,’OO.

Proof. Axiom (a) holds since derivations can always be extended to separable exten-
sions; (b) holds since they extend uniquely to separably algebraic extensions. For
axiom (c), if A JBC B, then by p-disjointness, AB is a separable subfield of M that
is (AB), = AB. Now by the Leibniz rule for derivations, AB is closed under ¢ if
both A and B are. For axiom (d) and the moreover clause of (c), the same argu-
ment shows that (M N), = MN. Also by Srour’s characterisation of 1%, M and N
are linearly disjoint over A. Then the field compositum M N is the quotient field
of M ®4 N, and thus by Lemma 5.1 of [53] there is a unique derivation on M N
extending the ones on M and N. [ |

Corollary 4.4.18. SDCF, ., is stable and in the language L£*(8) monforking inde-

pendence s given by

A [FB <= acl(A) is linearly disjoint and p-disjoint from acl(B) over acl(C).
e,
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Chapter 5

Pseudo D-closed fields

We now apply some of the results obtained in Chapters [3| and (] to the study of
PAC substructures in the theory D-CF,. We again impose Assumption [B|— that D
is local. Recall that a field K is called pseudo algebraically closed (PAC) if every
absolutely irreducible variety over K has a K-rational point. PAC fields are large
— a K-irreducible variety with a smooth K-rational point is absolutely irreducible —
and a field is PAC if and only if it is existentially closed in every regular extension.

In [13], Chatzidakis and Pillay show that if T¢ is the Lyng(A)(C)-theory of a
bounded PAC field with A interpreted by the A-functions and the constants C' nam-
ing coefficients of irreducible polynomials that encode all the finitely many Galois
extensions of a fixed degree, then Ty is simple and that if it, in addition, has finite
degree of imperfection, then it eliminates imaginaries after naming constants for a
p-basis. Hoffman and Leén Sénchez in [26] then prove the analogous results for
bounded pseudo differentially closed fields of characteristic zero. Their result gives
an example of a differential field whose theory is simple and unstable. In this chapter

we will prove analogous results in the case of D-fields.

5.1 PAC substructures in D-CF

PAC substructures of a given theory have been defined as generalisations of PAC

fields in various ways. We use the definition presented in [25].

Definition 5.1.1. Let T be an arbitrary complete L-theory, and € a monster
model. An extension of L-substructures A < B of € is called L-regular if dcl®*(B) N
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acl®¥(A) = dcl®*(A). An L-substructure A of € is called a PAC substructure if A is

existentially closed in every L-regular extension.

Consider now the L,ing(0)-theory D-CFy. This theory eliminates imaginaries (see
Theorem 5.12 of [53]), acl(A) is the (full) field-theoretic algebraic closure of the D-
field generated by A (Proposition 5.5 of [53]), and dcl(A) is the D-field generated by
A (this is not in [53] since there D-fields may have associated endomorphisms; in the
case when D is local, this fact is proved in the same way as for differential fields).
Then an extension of D-fields is L,ing(0)-regular exactly when the field extension
is field-theoretically, relatively algebraically closed (and so regular in the field sense
since we are in characteristic zero).

We now prove three conditions equivalent to being a PAC substructure in D-CF,.
Theorem 5.1.2. Let (K,0) be a D-field. The following are equivalent:

(1) (K,0) is a PAC substructure in the theory D-CFy;
(2) K is a PAC field and (K,0) = UCp;
(3) if (V,s) is a D-variety over K and V is absolutely irreducible, then (V,s) has

a K-rational sharp point; and

(4) (K, 0) is existentially closed in every D-field extension (L, &) which is R-regular,
that is, where tpP-CF°(a/K) is stationary for every finite tuple a € L.

Proof. (1) = (2). Let L be any regular field extension of K, and let § be any D-
structure on L extending 0. Then (K, 0) is existentially closed in (L, d) as D-fields,
and hence K is existentially closed in L as fields. So K is PAC. Now since K is
large, there is a D-field extension (F,v) = UCp of (K, J) such that K is elementary
in F as fields. In particular, K C F is regular. By (1), (K, 0) is existentially closed
in (F,7). Since UCp is inductive, (K,0) | UCp.

(2) = (1). Let (L,0) be an L,ing(0)-regular D-field extension of (K, d) so that
L/K is a regular field extension. Since K is PAC, K is existentially closed in L
as fields. By characterisation (5) of Theorem [3.3.5, (K, ) is existentially closed in
(L, 6) as D-fields.

(2) = (3). If V is absolutely irreducible, then K(V)/K is a regular extension.
V has a smooth K (V')-rational point, and since K is existentially closed in K(V), V
has a smooth K-rational point. By characterisation (3) of UCp in Theorem [3.3.5]
(V, s) has a K-rational sharp point.
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(3) = (2). Let V be an absolutely irreducible variety defined over K. Extend
the D-field structure on K to one on K (V) using Lemma As in the proof of
Theorem [3.3.5/(3) = (1), there is an open affine subset U C V' defined over K such
that this D-ring structure restricts to one on K[U]. This gives a D-variety structure
s on U, making (U, s) an absolutely irreducible D-variety defined over (K,d). By
(3), (U, s) has a K-rational sharp point, and hence V has a K-rational point. So K
is a PAC field. We again use characterisation (3) of Theorem and the fact that
a K-irreducible variety with a smooth K-rational point is absolutely irreducible to
get that (K, 0) = UCp.

(1) <= (4) is the content of Lemma 3.36 in [25]; R-regular extensions are the

same as L,ing(0)-regular extensions since D-CF is stable and eliminates imaginaries.
[ |

We say that a D-field is pseudo D-closed if any of the equivalent conditions of
Theorem [5.1.2 hold.

Remark 5.1.3. Apart from condition (3), this is just the D-field analogue of Theo-
rem 5.16 from [38]. There the authors need to consider differential varieties as they
work with several commuting derivations. In a single derivation, it is enough to

consider D-varieties; see Proposition 5.6 of [55] for instance.

5.2 The model theory of bounded pseudo D-closed
fields

Theorem 5.2 of [26] states that the theory of a bounded pseudo differentially closed
field (that is, a PAC substructure of DCFy ) is simple and eliminates imaginaries.
We will now prove the D-field analogue. Let (K, ) be a bounded pseudo D-closed
field. For each n > 1, let N(n) be the degree over K of the Galois extension
composite of all Galois extensions of K of degree n. Let C = (Cn;)n>1,0<i<N(n)
be the set of constant symbols in our language £ = L;ing(C), and consider the
set of L-sentences Yo = {0,: n > 1} where o, says that the polynomial V(™ +
Cn, N(n)_lmN (M-l .. .4 Cn,o is irreducible and the extension this polynomial defines is
Galois and contains all Galois extensions of K of degree n. This is the same set-up
used by Chatzidakis and Pillay in Section 4 of [I3] in their treatment of bounded
PAC fields. Let T+ = Th(K, d) UXc. Note then that 7+ D Th,, (K)UXcUUCp.

ring
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For the next two proofs, we will at times need to refer to notions both in the sense
of T* and in the sense of D-CFy. In the second case, we will always include this
as a superscript; if no superscript is given, the notion should be understood in the
sense of whatever model of T+ we are working in. The full, field-theoretic algebraic
closure of A is denoted by A, and A% denotes the relative, field-theoretic algebraic
closure of A. If A D C, then A%# is equal to acl;(A) since models of T+ are very

L-slim.

Lemma 5.2.1. Let (F,0,C) ET*, and A < B < F with A acl-closed in the sense
of Tt. Then
acl”°F(B) = acl(B) - acl> " (A).

Proof. Since B is a D-field containing C and F is very L-slim, acl(B) = B¢, and
acl”“F(B) = B. So we need to show B = B¢ . A. The proof of Proposition 4.6(2)
of [13] shows that the restriction maps Gal(F') — Gal(A) and Gal(F') — Gal(acl(B))
are isomorphisms, and hence the restriction map Gal(acl(B)) — Gal(A) is an isomor-
phism. Therefore, any automorphism of B that fixes B*€ - A must also fix B. Since

we are in characteristic zero, B/B*8- A is a Galois extension, and so B = B¥8.A. W

Remark 5.2.2. A similar result occurs in Lemma 3.8 of [57]. In [25], the author

requires this fact as an assumption to prove his analogue of the following theorem.
Theorem 5.2.3. Let (F,0,C) =T7 and (E,0,C) C (F,0,C). Then

1) acl(E) = E*s;
2) if E = acl(E), then T Udiag(E) is complete;

(

(

(3) Tt is model complete;

(4) the independence theorem holds for T over algebraically closed sets;
(5) T is simple and forking is given by forking independence in D-CFy;
(

6) T has elimination of imaginaries.

Proof. (1). By Proposition since (F,C) is very Lying(C)-slim (it is model com-
plete, large, and characteristic zero).

(2). By Proposition 4.6(2) of [13], Th., (K) U X¢ U diag(E [.) is complete.
Then Theorem tells us that The,, (K)UXc UUCp U diag(E) is complete. So
T+ Udiag(F) is complete.
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(3). By Theorem [3.2.7(i) since Thg,, (K) U X¢ is model complete (Proposi-
tion 4.6(1) of [13]).

(4). This follows from Theorem Example and the fact that the
independence theorem over algebraically closed sets holds for bounded PAC fields
(Theorem 4.7 of [13]).

(5). By Theorem Example and the corresponding result for bounded
PAC fields (Corollary 4.8 of [13]) we know that T is simple and forking independence
is given by linear disjointness after closing under acl — the relative algebraic closure of
the D-field it generates. We can then use general properties of linear disjointness of
regular extensions, along with Lemma to show that, if A, B, and D are all acl-
closed, then A and B are linearly disjoint over D if and only if A is linearly disjoint
from B over D. This is precisely forking independence in D-CF, (see Theorem 5.9
of [53]).

(6). This proof is essentially a combination of Theorem 5.12 of [53], Theorem 4.36
of [25], and Theorem 5.6 of [26]. Nonetheless, some details will be provided. We will
assume that (F, 9, C) is a monster model of (some completion of) 7", and that (D, 0)
is a monster model of D-CF, extending it. We write | for nonforking independence
in (F,0,C). If we omit a superscript from an operator, we mean in the sense of
(F,0,0C).

We need the notion of dimension from Definition 5.10 of [53]. If K is a D-
field, then dimp(a/K) = (trdeg(V,(a)/K): r < w) € w*, where V,(a) is the tuple
applying words of length at most r in the language {0,...,0,} to a. We order
dimensions with the lexicographic order on w*. Note that dimp(a/K) = dimp(a/K).
Using Lemma 5.11 of [563], we then get that if L/k is a regular extension, dimp(a/k) =
dimp(a/L) if and only if acl®°F°(ka) is linearly disjoint from L over k if and only if
al, L.

Let e € (F, 9, C)® given by a 0-definable function f and a finite real tuple a € F,
that is, f(a) = e. Let E = acl®(e) N F and let @ be the set of realisations of
tp(a/E). We now follow the proof in Theorem 5.12 of [53] to find some u € @ such
that f(u) =eand u | 5 a.

As in Theorem 5.12 of [53], Neumann’s lemma tells us that there is some by =
tp(a/Ee) such that acl®(Ea)Nacl®d(Eby)) NF = E. Then f(by) = e and by € Q. We
want b € F' such that

* b= tp(a/Ee);
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o acl®(Ea) Nacl®Y(Eb) N F = E;

o b has maximal dimp over acl(Fa).

By the same argument as in Theorem 5.12 of [53], we can in fact choose such a b.

Now let v = tp(b/acl(Ea)) with u | 5, b. Then f(u) = e. It remains to
show v | p a. Since u | p, b, we have that acl®*(Eau) N acl®!(Eab) C acl*)(Ea).
Then acl®}(Eu) Nacl®*(Eb) N F C acl®(Ea)Nacl®(Eb)NF = E. Let d be such that
tp(bu/Ee) = tp(ad/FEe). Then d |= tp(a/Ee) and acl®)(Ea)Nacl®(Ed)NF = E. By
maximality, dimp(d/ acl(Ea)) < dimp(b/ acl(Ea)), and since dimp is automorphism
invariant, dimp(u/ acl(Eb)) < dimp(b/ acl(Ea)). We also have that

dimp(u/ acl(Eb)) > dimp(u/ acl(Eab)) = dimp(u/ acl(Fa)) = dimp(b/ acl(Ea)).

The first equality is true since u | z, b and the second since u and b have the same
type over acl(Ea). Hence all these dimensions are equal, and dimp(u/acl(Eb)) =
dimp(u/ acl(Eab)), that is, u | g a.

Let p = tpPCFo(u/acl(Eab)). Since acl(Eab) is regular in F and u € F, p
is stationary (recall that R-regular and L,,,(0)-regular extensions are the same).
Then Cb(p) C dcl®“*°(acl(Eab)) = acl(Eab) C F. From u | z, b, we get Cb(p) C
acl”“F°(Ea), and from u | gz a, we get Cb(p) C acl®“°(Eb). So

Cb(p) C acl®*°(Ea) Nacl®>“F(Eb)N F
= acl(Fa) Nacl(Eb)
=FE.

So p does not fork over E and u | g ab. Then u | 5 a. This completes the
claim. We now follow the rest of the argument in Theorem 5.6 of [26]. Let D =
{d € Q: f(d) =e}. If D= Q, then e € dcl®}(E) and we get weak elimination of
imaginaries.

If DCQ,letdy€ Q\Dandd=gdywithd | 5 D. If f(d) = e, thend € D
and hence d € acl(E) = E. So d € acl®d(e). Since f(d) = e, e € dcl®)(d), and we get
weak elimination of imaginaries.

So assume f(d) # e. Now u =g d, u | a, and u | 5 d. By the independence
theorem over algebraically closed sets, we get m = tp(u/FEa)Utp(d/Eu) withm | g

au. But this contradicts f(d) # e. Finally, since we are in a theory of fields and we
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have weak elimination of imaginaries, we have elimination of imaginaries.

130



Bibliography

1]

2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

Hans Adler. Explanation of Independence. PhD thesis, University of Freiburg,
2005.

Hans Adler. A geometric introduction to forking and thorn-forking. Journal of
Mathematical Logic, 9(1):1-20, 2009.

Michael F. Atiyah and Ian G. Macdonald. Introduction to Commutative Algebra.
Addison-Wesley, 1969.

Ozlem Beyarslan, Daniel Max Hoffmann, Moshe Kamensky, and Piotr Kowalski.

Model theory of fields with free operators in positive characteristic. Transactions
of the American Mathematical Society, 372(8):5991-6016, 2019.

A. Bialynicki-Birula. On Galois Theory of Fields with Operators. American
Journal of Mathematics, 84(1):89-109, 1962.

Siegfried Bosch, Werner Liitkebohmert, and Michel Raynaud. Néron Mod-
els, volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer
Berlin, Heidelberg, 1990.

Alexandru Buium. Differential algebra and Diophantine geometry. Actualités

mathématiques. Hermann, Paris, 1994.

Alexandru Buium. Arithmetic analogues of derivations. Journal of Algebra,
198(1):290-299, 1997.

F. Campana. Algébricité et compacité dans ’espace des cycles d’un espace

analytique complexe. Mathematische Annalen, 251:7-18, 1980.

J.W.S. Cassels. An embedding theorem for fields. Bulletin of the Australian
Mathematical Society, 14(2):193-198, 1976.

131



Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

132

Zoé Chatzidakis. Generic automorphisms of separably closed fields. Illinois
Journal of Mathematics, 45(3):693-733, 2001.

Zoé Chatzidakis, Lou van den Dries, and Angus Maclntyre. Definable sets over
finite fields. Journal fir die reine und angewandte Mathematik, 427:107-136,
1992.

Zoé Chatzidakis and Anand Pillay. Generic structures and simple theories.
Annals of Pure and Applied Logic, 95(1):71-92, 1998.

Zoé Chatzidakis. Simplicity and independence for pseudo-algebraically closed
fields. In S. Barry Cooper and John K Truss, editors, Models and Computability,
volume 259 of London Mathematical Society Lecture Note Series, pages 41 —
62. Cambridge University Press, 1999.

Gregory Cousins. Some model theory of fields and differential fields. PhD thesis,
University of Notre Dame, 2019.

Francoise Delon. Idéaux et types sur les corps séparablement clos. Mémoires de
la Société Mathématique de France, 33:1-76, 1988.

Antongiulio Fornasiero and Giuseppina Terzo. Generic derivations on alge-
braically bounded structures. Preprint, arXiv:2310.20511, 2023.

Michael D. Fried and Moshe Jarden. Field Arithmetic, volume 11 of A Series
of Modern Surveys in Mathematics. Springer Berlin, Heidelberg, 1986.

Akira Fujiki. On the Douady space of a compact complex space in the category.
Nagoya Mathematical Journal, 85:189-211, 1982.

Jakub Gogolok and Piotr Kowalski. Operators coming from ring schemes. Jour-
nal of the London Mathematical Society, 106(3):1725-1758, 2022.

Alexander Grothendieck. Technique de descente et théorémes d’existence
en géométrie algébrique. I. Généralités. Descente par morphismes fidélement
plats. In Séminaire Bourbaki, volume 5, Exp. 190, pages 299-327. Société
Mathématique de France, Paris, 1995.

Nicolas Guzy and Francoise Point. Topological differential fields. Annals of
Pure and Applied Logic, 161(4):570-598, 2010.



Bibliography

[23] Charlotte Hardouin. Iterative g-difference galois theory. Journal fir die reine
und angewandte Mathematik, 2010(644):101-144, 2010.

[24] Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 1993.

[25] Daniel Max Hoffman. Model theoretic dynamics in a Galois fashion. Annals of
Pure and Applied Logic, 170(7):755-804, 2019.

[26] Daniel Max Hoffman and Omar Leén Sénchez. Model theory of differential fields
with finite group actions. Journal of Mathematical Logic, 22(1):2250002, 2022.

[27] Ehud Hrushovski. The Manin-Mumford conjecture and the model theory of
difference fields. Annals of Pure and Applied Logic, 112(1):43-115, 2001.

[28] Kai Ino and Omar Le6én Sanchez. Separably differentially closed fields.
arXiv:2302.11319, Preprint, 2023.

[29] Thomas Jech. Set Theory. Pure and Applied Mathematics: A Series of Mono-
graphs and Textbooks. Academic Press, 1978.

[30] Will Johnson, Chieu-Minh Tran, Erik Walsberg, and Jinhe Ye. The étale-open
topology and the stable fields conjecture. Journal of the European Mathematical
Society, 2023.

[31] Will Johnson and Jinhe Ye. A note on geometric theories of fields. Model
Theory, 2(1):121-132, 2023.

[32] Markus Junker and Jochen Koenigsmann. Schlanke Kérper (slim fields). The
Journal of Symbolic Logic, 75(2):481-500, 2010.

[33] Hirotaka Kikyo and Saharon Shelah. The strict order property and generic
automorphisms. Journal of Symbolic Logic, 67:214-216, 2002.

[34] Byunghan Kim. Simplicity Theory, volume 53 of Ozford Logic Guides. Oxford
University Press, 2013.

[35] Byunghan Kim and Anand Pillay. Simple theories. Annals of Pure and Applied
Logic, 88(2):149-164, 1997.

133



Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

134

Piotr Kowalski and Anand Pillay. Quantifier elimination for algebraic D-groups.
Transactions of the American Mathematical Society, 358(1):167-181, 2006.

Omar Leén Sanchez. Algebro-geometric axioms for DCFy ,,,. Fundamenta Math-
ematicae, 01 2016.

Omar Lebén Sanchez and Marcus Tressl. Differentially large fields. to appear in
Algebra and Number Theory, arXiv:2005.00888, 2020.

Omar Lebén Sanchez and Marcus Tressl. Differential Weil descent. Communica-
tions in Algebra, 50(1):104-114, 2022.

Alexander Levin. Difference Algebra, volume 8 of Algebra and Applications.
Springer Dordrecht, 2008.

Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer New York, 1978.

Angus MacIntyre. On definable subsets of p-adic fields. Journal of Symbolic
Logic, 41(3):605-610, 1976.

David Marker. Model Theory: An Introduction, volume 217 of Graduate texts
in mathematics. Springer, 2002.

Hideyuki Matsumura. Commutative Ring Theory, volume 8 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, 1989.

Tracey McGrail. The model theory of differential fields with finitely many
commuting derivations. Journal of Symbolic Logic, 65(2):885-913, 2000.

Margit Messmer. Some model theory of separably closed fields. In Model Theory
of Fields, Lecture Notes in Logic, page 135-152. Cambridge University Press,
2017.

Christian Michaux and Cédric Riviere. Quelques remarques concernant la
théorie des corps ordonnés différentiellement clos. Bulletin of the Belgian Math-
ematical Society, 12(3):341-348, 2005.

James S. Milne. On the arithmetic of abelian varieties. Inventiones Mathemat-
icae, 17(3):177-190, 1972.



Bibliography

[49] Shezad Mohamed. The uniform companion for fields with free operators in
characteristic zero. Preprint, arXiv:2311.01856, 2024.

[50] Shezad Mohamed. The Weil descent functor in the category of algebras with
free operators. Journal of Algebra, 640:216-252, 2024.

[51] Rahim Moosa and Thomas Scanlon. Jet and prolongation spaces. Journal of
the Institute of Mathematics of Jussieu, 9(2):391-430, 2010.

[52] Rahim Moosa and Thomas Scanlon. Generalized Hasse-Schmidt varieties and
their jet spaces. Proceedings of the London Mathematical Society, 103(2):197—
234, 2011.

[53] Rahim Moosa and Thomas Scanlon. Model theory of fields with free operators
in characteristic zero. Journal of Mathematical Logic, 14(2):1450009, 2014.

[54] David Pierce and Anand Pillay. A note on the axioms for differentially closed
fields of characteristic zero. Journal of Algebra, 204(1):108-115, 1998.

[55] Anand Pillay and Dominika Polkowska. On PAC and bounded substructures
of a stable structure. The Journal of Symbolic Logic, 71(2):460-472, 2006.

[56] Anand Pillay and Martin Ziegler. Jet spaces of varieties over differential and
difference fields. Selecta Mathematica, New Series, 9:579-599, 2003.

[57] O. P. Nicholas Marie Polkowska. On simplicity of bounded pseudoalgebraically
closed structures. Journal of Mathematical Logic, 07(02):173-193, 2007.

[58] Florian Pop. Embedding Problems Over Large Fields. Annals of Mathematics,
144(1):1-34, 1996.

[59] Alexander Prestel and Peter Roquette. Formally p-adic fields. Number 1050)
in Lecture notes in mathematics. Springer, 1984.

[60] Abraham Robinson. Complete Theories. Studies in logic and the foundations
of mathematics. North-Holland Publishing Company, 1956.

[61] G. Srour. The independence relation in separably closed fields. The Journal of
Symbolic Logic, 51(3):715-725, 1986.

135



Bibliography

[62] Moss Eisenberg Sweedler. When is the tensor product of algebras local? Pro-
ceedings of the American Mathematical Society, 48(1):8-10, 1975.

[63] Mitsuhiro Takeuchi. A Hopf algebraic approach to the Picard—Vessiot theory.
Journal of Algebra, 122:481-509, 1989.

[64] Katrin Tent and Martin Ziegler. A Course in Model Theory. Lecture Notes in
Logic. Cambridge University Press, 2012.

[65] Marcus Tressl. The uniform companion for large differential fields of character-
istic 0. Transactions of the American Mathematical Society, 357(10):3933-3951,
2005.

[66] L. van den Dries and K. Schmidt. Bounds in the theory of polynomial rings over
fields. a nonstandard approach. Inventiones Mathematicae, 76(1):77-91, 1984.

[67] André Weil. Adeles and Algebraic Groups, volume 23 of Progress in Mathemat-
ics. Birkhauser Boston, 1982.

136



	Abstract
	Declaration
	Copyright Statement
	Acknowledgements
	Introduction
	Preliminaries
	Model theory
	Algebraic geometry
	The Weil restriction
	Some field theory
	Differential fields and difference fields
	Fields with free operators
	The prolongation of an affine variety
	The theory D-CF0

	The D-Weil descent
	Some more D-algebra
	The tensor product of D-structures
	The matrix associated to a free and finite D-ring
	Weil descent for D-algebras
	Further remarks
	An explicit construction of the D-Weil descent

	The uniform companion for theories of D-fields in characteristic zero
	Difference largeness
	The uniform companion
	Alternative characterisations of the uniform companion
	The non-local case

	Derivation-like theories and neostability
	Introduction
	Derivation-like theories
	Transferring neostability properties
	Examples

	Pseudo D-closed fields
	PAC substructures in D-CF0
	The model theory of bounded pseudo D-closed fields

	Bibliography

