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Chapter 1

Introduction

In 1936, Stone proved his celebrated representation theorem for Boolean algebras: any

Boolean algebra is isomorphic to the clopen sets of its Stone dual, the space of prime

filters (see [17]). As Johnstone describes in his introduction to [11], Stone’s work has

impacted various fields of mathematics, providing us with one of the earliest examples

of a non-trivial equivalence of categories, and of a construction of a topological space

from purely algebraic data. It has also allowed the study of Boolean algebras from a

topological perspective, and research in the same vein as Stone duality has continued

since, from Priestley’s representation of distributive lattices in [15], to current work by

Moshier and Jipsen on bounded lattices using compact open sets which are filters with

respect to specialisation in [13] and Bezhanishvili and Holliday on a choice-free version of

Stone duality in [3], on which this dissertation is largely based.

Stone’s representation requires the use of the Boolean Prime Ideal theorem:

(BPI) Every non-trivial (i.e. with 0 6= 1) Boolean algebra has a prime ideal/filter.

which is strictly weaker than AC but not provable within ZF (see [10, Diagram 2.21]).

The reasons we might choose to work without choice principles are detailed by Herrlich

in [10]: that a choice-free method for such an important result exists is as good a reason

as any to study it, even though it may sacrifice simplicity to avoid choice. In addition,

this construction allows us the topological benefits of Stone duality without needing to

consider whether choice is actually required.

BPI was necessary in Stone duality to ensure sufficiently many prime filters for the

representation to work. To avoid any choice principles then, we should look to avoid these.

We consider proper filters instead.

We start the dissertation with some preliminary but important results about the struc-

ture of filters in a Boolean algebra. Chapters 3 and 4 detail the construction that Bezhan-

ishvili and Holliday use in [3] for their choice-free duality. Chapter 5 then gives several

applications of the duality, also from [3], as well as a non-trivial construction of the dual

space of a Boolean algebra. The dissertation then concludes with a discussion of ortholat-

tices, describing their importance in orthologic, and a choice-free duality which parallels

that in [3]. This final chapter is largely based on work by Goldblatt in [7, 8] and Yamamoto

in [19].
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Chapter 2

Preliminaries

Throughout this dissertation we assume basic knowledge of lattices, Boolean algebras

and Stone duality, like the type found in [4, Chapters 1, 2, 4, 10, 11] or [9]. We also

assume basic category theory that can be found in [12]: categories, functors, natural

transformations, and a brief discussion on initial/final objects.

We will often use the notation ↑x = {y | x 6 y}, where 6 is partial order on a Boolean

algebra, the specialisation order, or inclusion, depending on context.

Definition 2.1. A lattice is a partially ordered set (poset) (L,6), such that x ∧ y =

inf{x, y} and x ∨ y = sup{x, y} exist for any x, y ∈ L.

A lattice L is bounded if there exist elements 0, 1 ∈ L such that 0 6 x 6 1 for all

x ∈ L.

A lattice L is distributive if it satisfies the following for all x, y, z ∈ L:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

An element x ∈ L is complemented if there exists an element y ∈ L with x ∧ y = 0

and x ∨ y = 1. A lattice is complemented if every element is complemented.

A Boolean algebra is a complemented, bounded, distributive lattice. Complements are

unique by distributivity, and denoted a′.

Definition 2.2. Let B be a Boolean algebra. A subset F is called a filter if

1. whenever x ∈ F and x 6 y, then y ∈ F ;

2. whenever x, y ∈ F , then x ∧ y ∈ F .

A filter is prime if whenever x ∨ y ∈ F , either x ∈ F or y ∈ F . A filter is maximal

or an ultrafilter if it is not strictly contained in any proper filter. In a Boolean algebra

these two notions coincide. Note that a proper filter cannot contain both an element and

its complement, since otherwise it contains 0 and hence is all of B.

Lower-case letters denote elements of B, and upper-case letters denote subsets of B,

filters most of the time. We will refer to the Boolean algebra operations ∨ and ∧ as join

and meet, respectively.

The following lemmas are important and will be used often in chapters 3, 4 and 6.
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Lemma A. Let B be a Boolean algebra, with a, b ∈ B such that 0 = a ∧ b. Then a 6 b′

and b 6 a′.

Proof.

b′ = b′ ∨ 0

= b′ ∨ (a ∧ b)
= (b′ ∨ a) ∧ (b′ ∨ b) by distributivity

= (b′ ∨ a) ∧ 1

= b′ ∨ a

So a 6 b′ and by a similar argument, b 6 a′. �

Lemma B. Let L be a lattice, S ⊆ L be non-empty. The filter generated by S is the

intersection of all filters containing S (arbitrary intersections of filters are filters), and is

equal to

〈S〉 =

{
b ∈ L

∣∣∣∣∣ b >
n∧
i=1

ai for some ai ∈ S

}

Proof. Clearly 〈S〉 is closed upwards. Let b, b̄ ∈ 〈S〉, so that b >
∧n
i=1 ai and b̄ >

∧m
j=1 āj

for some ai, āj ∈ S. Then

b ∧ b̄ >
n∧
i=1

ai ∧
m∧
j=1

āj

So b∧ b̄ ∈ 〈S〉. Any filter containing S must also contain 〈S〉, so 〈S〉 is the filter generated

by S. �

Lemma C. Let B be a Boolean algebra, and F a proper filter, with a 6∈ F . Now let G be

the filter generated by F ∪ {a′}. Then G is proper.

Proof. We will use the characterisation of G as in Lemma B. Suppose G is not proper.

Then 0 ∈ G and 0 >
∧n
i=1 bi for some bi ∈ F ∪ {a′}. Since 0 is the least element, this is

an equality.

Let J ⊆ {1, 2, . . . , n} such that bi ∈ F for i ∈ J , and bi ∈ {a′} for i 6∈ J . Since F

is a filter, it is also closed under finite meets, so that
∧
i∈J bi = c for some c ∈ F . Also∧

i 6∈J bi = a′. Note that J is both non-empty and a proper subset of {1, 2, . . . , n}, since

otherwise, 0 = a′ or 0 ∈ F . So 0 = c ∧ a′. Then c 6 a by Lemma A, and as F is a filter

with c ∈ F , a ∈ F , a contradiction. So G is proper. �

Distributivity is essential for this lemma: see the example M4 in Chapter 6 for an

instance of a complemented, bounded lattice that does not have this property.
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Chapter 3

The representation theorems

This chapter develops the first steps of what is necessary to prove Bezhanishvili and

Holliday’s choice-free version of Stone duality, leaving discussions of the maps to the next

chapter. This amounts to finding some subcategory C of Top, along with functors BA→ C
and C → BA, and then showing that these functors give us the duality, where Top is the

category of topological spaces and continuous maps, and BA is the category of Boolean

algebras and homomorphisms. So we have four main goals:

(A) Construct a functor α : BA→ Top.

(B) Attempt to categorise the image, C, of this functor in topological terms.

(C) Construct a functor β : C → BA.

(D) Show these two operations are inverse to each other, in the sense that there are

isomorphisms B → βα(B) and X → αβ(X) for B ∈ BA and X ∈ C.

A key feature of classical Stone duality is that any Boolean algebra is isomorphic to a

field of sets, that is, a subalgebra of the powerset algebra, but unfortunately, this property

implies BPI. If any Boolean algebra is a field of sets F ⊆ P(X), for a set X, then for

any x ∈ X, {A ∈ F | x ∈ A} is a prime filter. So we should expect our Boolean algebra

operations to differ from the usual.

The structure of this section is reminiscent of classical Stone duality, with key ideas

diverging only when necessary to avoid using BPI.

3.1 The dual space

As mentioned above, our first goal is to construct a topological space from the Boolean

algebra B, the dual space.

First we define some topological notions that we will use throughout.

Definition 3.1. Let X be a topological space. Define

� O(X) as the collection of open subsets of X;
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� CO(X) as the collection of compact open subsets of X;

� For x ∈ X, ?(x) as the set of elements of ?(X) which contain x, where ? is one of

O,CO,RO,CORO - these last two will be defined later.

We are now able to define what will be the dual space of a Boolean algebra B.

Definition 3.2. Let B be a Boolean algebra. Define UV (B) to be the space of proper

filters on B with topology generated by {â | a ∈ B}, where â = {F ∈ PropFilt(B) | a ∈
F}. Note that â ∩ b̂ = â ∧ b, so {â | a ∈ B} is closed under intersection. We will call this

the spectral topology on UV (B), to distinguish from another topology defined soon.

This definition is similar to the dual space in classical Stone duality, the only excep-

tion being the use of proper filters instead of prime filters; a necessary change given our

avoidance of BPI.

3.2 Spectral spaces

We now wish to categorise completely the type of space that UV (B) is, as in goal (B).

In [18], Stone used spectral spaces as the dual space of bounded distributive lattices. [5,

Theorem 1.3.4] also shows that Stone spaces are precisely Hausdorff spectral spaces. We

might then suspect that spectral spaces play an important role in a choice-free duality.

We investigate whether this is the case in this section.

Definition 3.3. A topological space X is a spectral space if:

1. X is compact;

2. T0 (for any distinct elements of X, there is an open set containing one but not the

other);

3. coherent (CO(X) is closed under intersection and forms a basis for the topology);

4. sober (every completely prime filter in O(X) ordered by inclusion is O(x) for some

x ∈ X).

Example. Every finite T0 space is spectral. See [5, Proposition 1.1.15]. The apparent

difference in this definition and the one in [5] is explained in 1.1.14.

Definition 3.4. Let X be a T0 space. Define the specialisation order on X by:

x 6 y if and only if y is contained in every open set that contains x.

Note that if x 6 y and y 6 x, then x and y are contained in precisely the same open

sets, so as X is T0, x = y. Clearly 6 is transitive, and so is indeed a weak partial order

on X.

The following proposition proves that this dual space is a spectral space and establishes

a useful result about the specialisation order of the dual space.
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Proposition 3.5. For a Boolean algebra B:

(i) UV (B) is a spectral space;

(ii) the specialisation order in UV (B) is the inclusion order.

Proof. We first show that each â is compact in UV (B). So suppose U is an open cover

for â. Since {b̂ | b ∈ B} is a basis for the topology, we can assume U = {b̂i | i ∈ I} and

so â ⊆
⋃
i∈I b̂i. Then any proper filter containing a must also contain one of the elements

bi. Consider the filter ↑a. This filter is proper (otherwise, a is 0 and so â is empty and

trivially compact), and contains a. Then ↑a contains some bi, and a 6 bi. So any proper

filter containing a must also contain bi, and so â ⊆ b̂i. That is, â is compact.

Any compact open set in UV (B) has the form
⋃
i∈I b̂i for finite I. Then⋃

i∈I

âi ∩
⋃
j∈J

b̂j =
⋃

i∈I,j∈J

(âi ∩ b̂j) =
⋃

i∈I,j∈J

âi ∧ bj

This is a finite union of compact open sets so is compact and open. Clearly this generates

the same topology as {â | a ∈ B} and so is also a basis. Then UV (B) is coherent.

Suppose F and G are distinct, proper filters on B. Without loss of generality, assume

F * G and let a ∈ F \G. Then â is an open set containing F but not G, and UV (B) is

T0.

Now let F be a completely prime filter in O(UV (B)). Let F be the filter generated

by {a ∈ B | â ∈ F}. F is proper so F is proper. We show that F = {U ∈ O(UV (B)) |
F ∈ U}. Let U be any open set in F . Then U =

⋃
i∈I âi, and as F is a completely prime

filter, âj ∈ F for some j. Then aj ∈ F , so F ∈ âj ⊆ U . For the other direction, suppose

U is an open set containing F . Then U =
⋃
i∈I âi, so F ∈ âj for some j ∈ I. Then aj ∈ F .

By Lemma B, this means that aj >
∧n
i=1 bi for b̂i ∈ F . As F is a filter,

⋂n
i=1 b̂i ∈ F , so

âj ∈ F and since U ⊇ âj, U ∈ F .

Then UV (B) is sober, and so a spectral space.

In proving UV (B) is T0, we saw that if F * G, then there is an open set containing F

but not G, so that, F 
 G, where 6 is the specialisation order on UV (B). Now suppose

F ⊆ G. Let U =
⋃
i∈I âi be any open set containing F . Then F ∈ âj for some j ∈ I, so

aj ∈ F . As F ⊆ G, aj ∈ G and G ∈ âj ⊆ U . Then F 6 G. �

3.3 The inverse operation

Having settled on this UV (B) being the dual space, we now need an operation taking

UV (B) back isomorphically to B. In classical Stone duality, this is done by taking the

clopen sets of the dual Stone space.

Definition 3.6. Let X be a space. U is a regular open set if U = int(cl(U)).

Example. In R2, regular open sets can be thought of as those without any ‘cracks’ ([9,

page 14]. {(x, y) ∈ R2 | x > 0} is regular open but {(x, y) ∈ R2 | x 6= 0} is not.
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Definition 3.7. Let X be a space with specialisation order 6. Define Up(X,6) to be

the topology generated by the upsets of (X,6), that is, the sets that are closed upwards

under 6. Then define

� RO(X) to be the set of regular open sets in (X,Up(X,6));

� CORO(X) = CO(X) ∩RO(X).

Note that upsets are closed under arbitrary unions and intersections, so that Up(X,6)

consists precisely of upsets of X.

The following is a technical lemma that will be used throughout this section.

Lemma 3.8. int6(cl6(U)) = {x ∈ X | ∀y > x,∃z > y such that z ∈ U}.

Proof. We will drop the 6 subscript from int and cl for ease of notation, but note that at

no point do we make use of the original topology.

int(cl(U)) = int(X \ int(X \ U)). Let x ∈ int(cl(U)). Then there is some upset

A ⊆ X \ int(X \ U) with x ∈ A. Let y > x. We need to show there is z > y with z ∈ U .

So suppose not. Then ↑y ⊆ X \ U . Also, A is an upset, so y ∈ A, and so y 6∈ int(X \ U).

But then ↑ y is an upset contained in X \ U , and so it is contained in int(X \ U), a

contradiction since y ∈ ↑y.

Now let x be an element of the right hand side. We show that ↑x ⊆ X \ int(X \ U).

So let y > x.

Claim. y 6∈ int(X \ U)

Proof of claim. Let A be any upset contained in X \ U . Suppose y ∈ A. Then as A is

an upset, for any z > y, z ∈ A, so z 6∈ U , but this contradicts x being an element of the

right hand side. So y is not in any upset contained in X \U , and hence y 6∈ int(X \U).

Then ↑x is an upset contained in X \ int(X \ U), and hence is contained in int(X \
int(X \ U)), and so x is an element of the left hand side. �

Remark. U is regular open in the upset topology if and only if U = {x ∈ X | ∀y > x,∃z >
y such that z ∈ U}. The following diagram gives a intuitive idea for what a set looks like

if it is regular open in the upset topology.

x1

x2

y1

y2

↑y1
↑y2

U

X
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3.4 The representation theorem for Boolean algebras

Now we are able to present the choice-free representation theorem, though more work

must be done to show this is a duality.

Theorem 3.9. Let B be a Boolean algebra with order 6. Then there is an isomorphism

φ : B → CORO(UV (B)) where CORO(UV (B)) is ordered by inclusion. CORO(UV (B))

is a Boolean algebra with operations given by:

� U ∧ V = U ∩ V

� U ∨ V = int6(cl6(U ∪ V ))

� ¬U = int6(UV (B) \ U)

Proof. Let φ(a) = â. We need to show CORO(UV (B)) = {â | a ∈ B}, but first we

establish a useful result that will help to prove this.

Claim 1.
∨̂n
i=1 ai = int6(cl6(

⋃n
i=1 âi)).

Proof of claim. Let F ∈
∨̂n
i=1 ai. Then

∨n
i=1 ai ∈ F . Let G ⊇ F (equivalent to G > F ).

We want to show there is H ⊇ G such that H ∈
⋃n
i=1 âi. If for each i, a′i ∈ G, then∧n

i=1 a
′
i = (

∨n
i=1 ai)

′ ∈ G, so G is not proper. So say a′j 6∈ G. Let H be the filter

generated by G ∪ {aj}. H is proper by Lemma C, contains G, and H ∈
⋃n
i=1 âi. By

the characterisation mentioned earlier, this gives the left to right inclusion. Now suppose

F 6∈
∨̂n
i=1 ai, so that

∨n
i=1 ai 6∈ F . Then the filter G generated by F ∪ {

∧n
i=1 a

′
i} is proper

by Lemma C and if any aj ∈ G, then
∨n
i=1 ai ∈ G. But also (

∨n
i=1 ai)

′ ∈ G, so G is not

proper. Then any proper filter H ⊇ G contains no ai, so that H 6∈
⋃n
i=1 âi.

Now we can show that CORO(UV (B)) = {â | a ∈ B}. We showed before that each

â is compact and open in UV (B). Using the characterisation of regular open sets given

earlier, we need to show â = {F ∈ PropFilt(B) | ∀G > F, ∃H > G such that H ∈ â},
where 6 is specialisation, or equivalently, inclusion. Then clearly â is an upset, giving

the left to right inclusion. For the converse, take F 6∈ â, so that a 6∈ F . The filter G

generated by F ∪{a′} is a proper filter by Lemma C, contains F , and for any proper filter

H containing G, a 6∈ H, and so H 6∈ â. This gives the right to left inclusion.

For CORO(UV (B)) ⊆ {â | a ∈ B}, let S ∈ CORO(UV (B)). As S is compact open,

it is a finite union of â, and so S =
⋃n
i=1 âi. Then since S is regular open, and using Claim

1,

S = int6(cl6(S)) =
n̂∨
i=1

ai

and so CORO(UV (B)) = {â | a ∈ B}.
It is easy to see that φ preserves the order, and so is then an order isomorphism, with

â ∧ b̂ = â ∧ b, â ∨ b̂ = â ∨ b, and ¬â = â′. We have already shown that â ∧ b = â ∩ b̂, and

Claim 1 gives ∨ on CORO(UV (B)).

Then it remains to show that â′ = int6(UV (B) \ â). Let F ∈ â′, so that a′ ∈ F . Then

as F is a proper filter, a 6∈ F so F ∈ UV (B) \ â. Now let G ⊇ F be a proper filter.
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Then also a′ ∈ G, so a 6∈ G, and G ∈ UV (B) \ â. Therefore ↑F is an upset contained

in UV (B) \ â, so F ∈ int6(UV (B) \ â). Now let F 6∈ â′, so that a′ 6∈ F . The filter G

generated by F ∪ {a} is proper by Lemma C and F ⊆ G ∈ â. Then any upset containing

F contains G but G 6∈ UV (B) \ â. So F 6∈ int6(UV (B) \ â). �

3.5 UV spaces

In the previous section we have managed to represent every Boolean algebra as a set of

subsets of a particular topological space. To go further, we would like to show that every

such space can be obtained from a Boolean algebra in this way. However, as the following

example shows, this is not possible with spectral spaces.

Example. Let X = {a, b} be a space with T0 topology T = {∅, {a}, {a, b}}. We have

already mentioned that finite T0 spaces are spectral.

Suppose there was a Boolean algebra B such that UV (B) ∼= X. Then B has two

proper filters. For every non-zero element, c, of a Boolean algebra, the set ↑c is a proper

filter. So B has at most two non-zero elements. Finite Boolean algebras have 2n elements

for some n > 0 (see [4, Section 5.6]). Then B must have one or two elements, but in either

case, there are not two proper filters. So X is not UV (B) for any Boolean algebra B.

So we must restrict to a proper subclass of spectral spaces. The following definition

introduces UV spaces, which turn out to be just what is necessary.

Definition 3.10. Let X be a topological space. Then X is called a UV space if:

1. X is T0;

2. CORO(X) is closed under ∩ and int6(X \ ·), and forms a basis for the topology1;

3. every proper filter in CORO(X) is CORO(x) for some x ∈ X.

Example. Here we give a simple example of a UV space, and the Boolean algebra from

which it can be constructed. Let X be a space with seven elements, {a, b, c, d, e, f, g}, and

specialisation order given by the following poset diagram:

f

b d

a

e g

c

1This is the updated definition in [3, Definition 5.1].
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X is T0 since this is a non-trivial partial order. For finite spaces, the topology is

uniquely determined by the specialisation order. To see this note that a subset is open if

and only if it is an upset.

X is finite so every subset is compact. Using the remark after Lemma 3.8, we find

that the following sets are precisely the elements of CORO(X).

∅

{e} {g}

{c, e, g}

X

{f}

{b, e, f} {d, f, g}

From this diagram it is easy to see that X satisfies conditions 2 and 3, and so is a UV

space. Note that CORO(X) is a Boolean algebra, and can be obtained from X by adding

a top element. This fact is characteristic of all finite UV spaces, and is proved in [3,

Corollary 5.4.5].

Theorem 3.11. For a Boolean algebra B, UV (B) is a UV space.

Proof. In Theorem 3.9 and Proposition 3.5, we showed that UV (B) is spectral and that

CORO(UV (B)) is a Boolean algebra. UV (B) has {â | a ∈ B} = CORO(UV (B)) as a

basis for its topology. This proves conditions 1 and 2.

Let F be a proper filter in CORO(UV (B)). Let F be {a ∈ B | â ∈ F}. This is a

proper filter by the isomorphism in Theorem 3.9. We claim CORO(F ) = F . CORO(F ) =

{U ∈ CORO(UV (B)) | F ∈ U}. Then â ∈ F ⇔ a ∈ F ⇔ F ∈ â. So CORO(F ) = F . �

Proposition 3.12. For a UV space X, CORO(X) is a Boolean algebra ordered by inclu-

sion with operations:

� U ∧ V = U ∩ V

� U ∨ V = int6(cl6(U ∪ V ))

� ¬U = int6(X \ U)

Proof. See [9, Section 4, Theorem 1] for a proof that the regular open sets of any space form

a Boolean algebra with the operations defined above. Then condition 2 of Definition 3.10

ensures CORO(X) is a subalgebra of this.

To see the order on this Boolean algebra is inclusion, note that the order is given by

a 6 b⇔ a = a∧ b. Once we establish U ∧ V = U ∩ V , then U 6 V ⇔ U ∩ V = U ⇔ U ⊆
V . �
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3.6 The representation theorem for UV spaces

Theorem 3.13. Let X be a UV space. Then θ : X → UV (CORO(X)) where x 7→
CORO(x) = {U ∈ CORO(X) | x ∈ U} is a homeomorphism.

Proof. First, since CORO(X) is closed under intersection, and ∅ ∈ CORO(X), CORO(x)

is a proper filter.

Injective. Suppose x 6= y for x, y ∈ X. Since X is T0, there is an open set containing

one but not the other, and since CORO(X) forms a basis, there is some U ∈ CORO(X)

containing one but not the other. So CORO(x) 6= CORO(y).

Surjective. This is guaranteed by condition 3 of Definition 3.10.

Continuous. Is it enough to check θ is continuous on elements of the basis of the

topology. Such an open set is Û for U ∈ CORO(X). Then

θ−1[Û ] = {x ∈ X | CORO(x) ∈ Û}
= {x ∈ X | U ∈ CORO(x)}
= {x ∈ X | x ∈ U}
= U

Continuous inverse. Similarly it is enough to check θ−1 is continuous on elements of

the basis of the topology. So let U ∈ CORO(X) be a basic open set in X. We need to

show that θ[U ] is open.

θ[U ] = {CORO(x) | x ∈ U}
= {CORO(x) | U ∈ CORO(x)}
= {CORO(x) | CORO(x) ∈ Û}
= Û

This last equality follows from the fact that the sets CORO(x) are precisely the proper

filters. �

As a corollary, we get:

Corollary 3.14. Let X be a UV space. Then X is a spectral space.

Proof. X is homeomorphic to UV (CORO(X)), CORO(X) is a Boolean algebra, and

UV (B) is spectral if B is a Boolean algebra. �

3.7 Regular open sets in the two topologies

In the case of compact open sets of UV (B), being regular open in the upset topology

is the same as being regular open in the spectral topology. Let RO(UV (B)) be the sets

which are regular open in the spectral topology, and CRO(UV (B)) the compact sets in

RO(UV (B)). Recall that ¬U = int6(UV (B) \U) and define U∗ = int(UV (B) \U). Then

U ∈ RO(UV (B)) if and only if U = U∗∗. Then

U∗ =
⋃
{V ∈ O(UV (B)) | U ∩ V = ∅} =

⋃
{â | U ∩ â = ∅}
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Proposition 3.15. Let B be a Boolean algebra. Then:

(i) if U ∈ O(UV (B)), then U∗ ⊆ ¬U ;

(ii) if U ∈ CO(UV (B)), then ¬U ⊆ U∗.

Proof. For (i), if F ∈ U∗, then F ∈ â and U ∩ â = ∅ for some a ∈ B. Then any proper

filter containing F also contains a so cannot be in U . So F ∈ ¬U .

For (ii), let U =
⋃n
i=1 âi and F ∈ ¬U . If some a′j 6∈ F then the filter generated by

F ∪{aj} is proper by Lemma C, contains F and is an element of U , contradicting F ∈ ¬U .

So c =
∧n
i=1 a

′
i ∈ F . Then F ∈ ĉ and U ∩ ĉ = ∅, so F ∈ U∗. �

From this we have

Corollary 3.16. CORO(UV (B)) = CRO(UV (B)), and so B ∼= CRO(UV (B)).

If we are not in the case of compact opens, ¬ and ∗ may differ, as the following ([3,

Proposition 4.3]) demonstrates.

Proposition 3.17. Let B be a Boolean algebra.

(i) RO(UV (B) ⊆ ORO(UV (B));

(ii) Let F be a non-principal ultrafilter in B and U =
⋃
{â′ | a ∈ F}. Then

(a) F ∈ ¬U \ U∗;
(b) U = ¬¬U ;

(c) U ( U∗∗.

(iii) Let F is a principal filter in B and U ∈ O(UV (B)). If F ∈ ¬U then F ∈ U∗.

Assuming BPI, every infinite Boolean algebra has a non-principal ultrafilter (see [6,

page 174]). Then, from part (ii), ¬ and ∗ can be distinguished with an open set. Also, it

is consistent with ZF that there exists an infinite Boolean algebra with no non-principal

filters (see [14, Proposition 2.5]), so by part (iii) and Proposition 3.15, ¬ and ∗ cannot be

distinguished by open sets.
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Chapter 4

Choice-free duality

So far, we have established operations between Boolean algebras and UV spaces, that is,

we have defined our functors on objects. To extend this correspondence to an equivalence,

we need to consider the structure-preserving maps between them. For Boolean algebras,

this is the Boolean algebra homomorphism: a map of the underlying sets A → B that

preserves the operations. To such a map, we can associate a canonical map in the other

direction between their corresponding UV spaces; the preimage of a proper filter in B is

a proper filter in A. The preimage map is also used in classical Stone duality. We then

have the following new goals:

(E) Categorise in topological terms these maps UV (B)→ UV (A) arising from Boolean

algebra homomorphisms A→ B.

(F) Associate to any such map of UV spaces X → Y a corresponding Boolean algebra

homomorphism CORO(Y )→ CORO(X).

(G) Show these operations on maps are inverse to each other, in the sense of a categorical

duality.

As the following proposition shows, we should not expect the maps UV (B)→ UV (A)

to be just continuous maps, like in the case of classical Stone duality.

Proposition 4.1. If C is some full subcategory of Top (that is, the morphisms are precisely

those in Top), and is dually equivalent to BA, then BPI holds.

Proof. BA has a unique initial object 2 = {0, 1}. So C has a unique final object X, and

the duality maps these objects to each other. As C is a full subcategory of Top, and Top

contains a final object 1, the space with one element, X ∼= 1. For any non-empty Y ∈ C,
there is a continuous map 1 → Y , and so there must be a homomorphism from any

non-trivial Boolean algebra to 2. Any such homomorphism h gives a prime filter h−1[1],

and so any non-trivial Boolean algebra has a prime filter. Note that the empty space is

initial in Top, and the 1-element Boolean algebra 1 is final in BA, so the duality maps

these to each other. Then any non-trivial Boolean algebra comes from a non-empty space

in Top. �
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4.1 Morphisms

Definition 4.2. Let A,B be Boolean algebras. A map f : A→ B is a (Boolean algebra)

homomorphism if it preserves ∧,∨, and ′. That is, for a, b ∈ A:

� f(a ∧ b) = f(a) ∧ f(b);

� f(a ∨ b) = f(a) ∨ f(b);

� f(a′) = f(a)′.

Note that these conditions imply f must preserve 0 and 1.

Proposition 4.3. Let A,B be Boolean algebras with h : A→ B a homomorphism. Then

for a proper filter F ⊆ B, the map h+ : UV (B) → UV (A) sending F 7→ h−1[F ] satisfies

the following condition:

h−1+ [U ] ∈ CO(UV (B)) whenever U ∈ CO(UV (A)).

Proof. First, if F is a proper filter in B, then h+(F ) = h−1[F ] is a proper filter in A. Let

U be compact open in UV (A). Then U =
⋃n
i=1 âi. Then h−1+ [U ] =

⋃n
i=1 h

−1
+ [âi], and

h−1+ [âi] = {G ∈ UV (B) | h+(G) ∈ âi}
= {G ∈ UV (B) | h−1[G] ∈ âi}
= {G ∈ UV (B) | ai ∈ h−1[G]}
= {G ∈ UV (B) | h(ai) ∈ G}

= ĥ(ai)

Then h−1+ [U ] =
⋃n
i=1 ĥ(ai) is a finite union of compact open sets, so is compact open. �

Any map of spectral spaces satisfying this condition is said to be a spectral map. Let

Spec be the category of spectral spaces with spectral maps. In Proposition 4.1, it was

proved that if BA was dually equivalent to a full subcategory of Top then BPI holds. All

the spaces and maps mentioned in that proof are actually spectral, so the same argument

holds for a full subcategory of Spec. That these spaces and functions are indeed spectral

is discussed in [5, Sections 1.2.5-7].

Therefore, in order to develop the duality for the functors we have already chosen,

we must look for an additional property for the morphisms of the dual category. The

following proposition shows that h+ satisfies the p-morphism condition, and this turns

out to be exactly what is required.

Proposition 4.4. Let A,B be Boolean algebras with h : A→ B a homomorphism. Then

the map h+ satisfies the following condition:

if h+(F ) ⊆ F̃ then there is G ∈ UV (B) such that F ⊆ G and h+(G) = F̃ .
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Proof. Suppose h+(F ) ⊆ F̃ . Let G be the filter generated by F ∪ h[F̃ ]. Suppose for a

contradiction that G is not proper. Then by Lemma B, and since 0 is the least element,

there are bi ∈ F ∪ h[F̃ ] such that 0 =
∧n
i=1 bi. Since F, F̃ are filters so are closed under

finite meets, and h is a homomorphism, we can combine the corresponding bi to get

0 = a ∧ h(c), for a ∈ F and c ∈ F̃ . Then by Lemma A, a 6 h(c)′ = h(c′). As a ∈ F ,

h(c′) ∈ F , and so c′ ∈ h+(F ) ⊆ F̃ . Then c ∧ c′ = 0 ∈ F̃ , a contradiction. So G is proper

and F ⊆ G. It remains to check h+(G) = F̃ .

By construction we have h[F̃ ] ⊆ G, so F̃ ⊆ h+(G). Let a ∈ h+(G), so h(a) ∈ G.

Then, again by Lemma B, h(a) > b ∧ h(c) for b ∈ F and c ∈ F̃ . Then

h(a) ∨ h(c)′ > (b ∧ h(c)) ∨ h(c)′

= (b ∨ h(c)′) ∧ (h(c) ∨ h(c)′) by distributivity

= (b ∨ h(c)′) ∧ 1

= b ∨ h(c)′

> b

Then b 6 h(a) ∨ h(c)′ = h(a ∨ c′). As b ∈ F , h(a ∨ c′) ∈ F , so a ∨ c′ ∈ h+(F ) ⊆ F̃ . Also

c ∈ F̃ , so (a ∨ c′) ∧ c ∈ F̃ , and

(a ∨ c′) ∧ c = (a ∧ c) ∨ (c′ ∧ c) = a ∧ c 6 a

so a ∈ F̃ . Then h+(G) = F̃ , so h+ satisfies the condition. �

Definition 4.5. Let X, Y be UV spaces. A map f : X → Y is a UV map if it is a spectral

map and satisfies the p-morphism condition:

1. f−1[U ] ∈ CO(X) whenever U ∈ CO(Y );

2. if f(x) 6 ỹ then there is y ∈ X such that x 6 y and f(y) = ỹ.

So we have shown that h+ is a UV map.

Remark. Condition 1 implies f is continuous, since a UV space is spectral and spectral

spaces have CO(X) as a basis of the topology.

For the duality to work, for each UV map, there needs to be an associated map of the

dual Boolean algebras that preserve the operations. Since spectral maps preserve compact

open sets under preimage, we might hope UV maps preserve compact open, regular open

sets under preimage.

Proposition 4.6. Let X, Y be UV spaces with f : X → Y a UV map. Then for U ∈
CORO(Y ) the following hold:

(i) f−1[U ] ∈ CORO(X);

(ii) f−1[int6(Y \ U)] = int6(X \ f−1[U ]).
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Proof. First we show that f−1[U ] is open in the upset topology on X. Let x ∈ f−1[U ],

and y > x. Then since f preserves the specialisation order, f(x) 6 f(y), and f(x) ∈ U .

As U is an upset, f(y) ∈ U , and so y ∈ f−1[U ].

To show f−1[U ] is regular open in the upset topology, we need to show that f−1[U ] =

{x ∈ X | ∀y > x,∃z > y such that z ∈ f−1[U ]}. So let x 6∈ f−1[U ]. Then f(x) 6∈ U . As

U is regular open, there is some ỹ > f(x), such that for all z̃ > ỹ, z̃ 6∈ U . Then, as f is

a UV map, by condition 2, we have some y ∈ X such that x 6 y and f(y) = ỹ. Now let

z > y. Then f(z) > f(y) = ỹ, so f(z) 6∈ U , and z 6∈ f−1[U ]. So f−1[U ] is regular open.

Since f is a spectral map, f−1[U ] ∈ CORO(X).

Let x ∈ f−1[int6(Y \ U)]. So f(x) is an element of an upset contained in Y \ U , and

in particular, ↑f(x) ⊆ Y \ U . To show x ∈ int6(X \ f−1[U ]), it is enough to show that

↑x ⊆ X \ f−1[U ]. So let y > x. Then f(y) > f(x), so f(y) ∈ Y \ U , and y ∈ X \ f−1[U ].

Now let x ∈ int6(X \ f−1[U ]). So ↑x ⊆ X \ f−1[U ]. To show x ∈ f−1[int6(Y \ U)], it

is enough show ↑f(x) ⊆ Y \ U . So let f(x) 6 ỹ. Then as f is a UV map, there is y ∈ X
with x 6 y and f(y) = ỹ. y ∈ ↑x, so y ∈ X \ f−1[U ], and ỹ = f(y) ∈ Y \ U , and we are

done. �

4.2 Duality

Having defined the morphisms and proved some useful results about them, we are now in

position to complete the duality.

Definition 4.7. Let UV be the category of UV spaces with UV maps, as defined in the

previous section1.

Define functors

� α : BA→ UV where:

– α(B) = UV (B);

– for a homomorphism h : A → B, let h+ : UV (B) → UV (A), sending F 7→
h−1[F ]. Let α(h) = h+.

� β : UV→ BA where:

– β(X) = CORO(X);

– for a UV map f : X → Y , let f+ : CORO(Y ) → CORO(X), sending U 7→
f−1[U ]. Let β(f) = f+.

Proposition 4.8. α and β define contravariant functors.

Proof. We need to show that α(h) is indeed a UV map, β(f) is a homomorphism, and

that both functors respect composition and identities.

1Checking this is actually a category requires checking that the composition of UV maps is a UV map,

and that the identity map is a UV map; but this is obvious. And composition of functions is always

associative.
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α(h) = h+ is a UV map by Propositions 4.3 and 4.4, and β(f) = f+ is a homomorphism

by Proposition 4.6.

For any maps (not necessarily UV maps or homomorphisms) f : X → Y and g : Y →
Z, and a subset U ⊆ Z, (g ◦ f)−1[U ] = f−1[g−1[U ]]. Then α(h1 ◦ h2) = α(h2) ◦α(h1), and

similarly for β.

Also if h and f are the respective identity maps, then so are h+ and f+, and hence α

and β are contravariant functors. �

Definition 4.9. Define natural transformations

� η : idBA ⇒ βα where ηB : B → βα(B) = CORO(UV (B)) is the map φ from Theo-

rem 3.9.

� ε : αβ ⇒ idUV where εX : UV (CORO(X)) = αβ(X) → X is the map θ−1 from

Theorem 3.13.

Theorem 4.10. η and ε are the unit and counit of a dual equivalence between BA and

UV.

Proof. This follows once we show the commutativity of the following two diagrams:

A B

CORO(UV (A)) CORO(UV (B))

ηA

h

ηB

βα(h)

X Y

UV (CORO(X)) UV (CORO(Y ))

f

εX

αβ(f)

εY

Let h : A→ B be a homomorphism, a ∈ A. βα(h)(â) = (α(h))−1[â], and so we show

(α(h))−1[â] = ĥ(a) (?)

Let F be a proper filter containing h(a). α(h)(F ) = h−1[F ] is clearly a proper filter

containing a, giving the right-to-left direction of (?). Now let F ∈ (α(h))−1[â], so that

α(h)(F ) ∈ â, that is, h−1[F ] ∈ â. So h−1[F ] is a proper filter containing a. Then F

is a proper filter containing h(a), giving the left-to-right direction of (?). This proves

commutativity of the first diagram.

Now let f : X → Y be a UV map and let x ∈ X. To show commutativity of

the second diagram, we show αβ(f)(CORO(x)) = CORO(f(x)). αβ(f)(CORO(x)) =

(β(f))−1[CORO(x)], so we show

(β(f))−1[CORO(x)] = CORO(f(x)) (†)
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Let U ∈ CORO(Y ) contain f(x). Then β(f)[U ] = f−1[U ] is in CORO(X), and

contains x. This gives the right-to-left direction of (†). Now let U ∈ (β(f))−1[CORO(x)].

Then β(f)[U ] = f−1[U ] ∈ CORO(x). β(f) is a map CORO(Y ) → CORO(X), so U ∈
CORO(Y ), and since f−1[U ] ∈ CORO(x), f(x) ∈ U , and so U ∈ CORO(f(x)). This

gives the left-to-right direction, and hence the commutativity of the second diagram. �
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Chapter 5

Applications

5.1 Relationship between UV (B) and the Stone dual

of B

We now wish to examine how this UV dual of a Boolean algebra relates to the Stone dual.

For this section, we will assume BPI. This section is based on Propositions 3.10 and 10.1

in [3].

Definition 5.1. Let X be a Stone space (Hausdorff, compact, with a basis of clopen

sets). Let F(X) be the collection of non-empty closed subsets of X. For U ∈ Clop(X), let

�U = {F ∈ F(X) | F ⊆ U}. Note that �U ∩�V = �(U ∩ V ). Define UV(X) to be the

space F(X) with topology generated by {�U | U ∈ Clop(X)}.

Proposition 5.2. Let X be a Stone space. Then UV(X) is homeomorphic to UV (Clop(X)).

Proof. Let f : UV(X) → UV (Clop(X)) send C 7→ {U ∈ Clop(X) | C ⊆ U}. Since C is

non-empty, f(C) is a proper filter in Clop(X).

Injective. Let C 6= D be non-empty closed subsets of X, and without loss of generality,

say x ∈ C \D. D is closed so compact, and so we can find1 disjoint open sets U1, U2 such

that D ⊆ U1 and x ∈ U2. X has a basis of clopen sets, so write U1 as a union of clopen

sets. Then as D is compact, it has a finite subcover, and finite unions of clopen sets are

clopen. So there is a clopen U such that D ⊆ U ⊆ U1 and x ∈ U2. Then D ⊆ U and

x 6∈ U , and so C 6⊆ U . Then f(C) 6= f(D), and f is injective.

Surjective. Let F be a proper filter in Clop(X). F has the finite intersection property,

so by compactness,
⋂
F is non-empty and an intersection of closed sets so is closed. We

now show f(
⋂
F ) = F . Clearly F ⊆ f(

⋂
F ). Let U ⊇

⋂
F be clopen. Then X \ U ⊆⋃

{X \ V | V ∈ F}. U is clopen so X \U is compact and so X \U ⊆
⋃
{X \ V | V ∈ F0}

for some finite F0 ⊆ F . Then
⋂
F0 ⊆ U , and as F0 is finite, U ∈ F .

1This result does not require any choice: consider the open cover of D, {U | U open, U ∩ D 6=
∅, and there exists V open such that x ∈ V, V ∩ U = ∅}, let U1 be the union of the finite subcover, and

U2 the intersection of the sets V corresponding to the finite subcover. This idea is taken from Asaf

Karagila on Mathematics Stack Exchange [1].
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Continuous. Let Û be a basic open set in UV (Clop(X)), so U ∈ Clop(X). Then

f−1[Û ] = {C ∈ F(X) | f(C) ∈ Û}
= {C ∈ F(X) | U ∈ f(C)}
= {C ∈ F(X) | C ⊆ U}
= �U

Continuous inverse. Now let �U be a basic open set in UV(X). Then

f [�U ] = {f(C) | C ∈ �U}
= {f(C) | C ∈ F(X) and C ⊆ U}
= {f(C) | U ∈ f(C)}
= Û

The last equality follows since we have already shown the proper filters on Clop(X) are

precisely the sets f(C). �

This proposition gives us a way of moving from the Stone dual of a Boolean algebra

B to its choice-free dual. Let S(B) denote the Stone dual of B. Then UV(S(B)) ∼=
UV (Clop(S(B))) ∼= UV (B). Note that this last point requires BPI since we use B ∼=
Clop(S(B)), but the proof of the proposition does not use choice.

Now let B be a Boolean algebra, and Y ⊆ UV (B) the subspace consisting of ultrafilters

on B, with the subspace topology. Then

U is open in Y ⇔ U = V ∩ Y for some V open in UV (B)

⇔ U =

(⋃
i∈I

âi

)
∩ Y for some ai ∈ B

⇔ U =
⋃
i∈I

(âi ∩ Y ) for some ai ∈ B

⇔ U is open in S(B)

The last equivalence is true since â ∩ Y are the ultrafilters containing a, so these are the

basic open sets in S(B). Then Y ∼= S(B).

5.2 The dual space of the finite-cofinite algebra on N

The finite-cofinite algebra on N is denoted FC(N), and consists of the finite and cofinite

subsets of N, with ∧,∨, ′ given by intersection, union, and set-theoretic complement. To

construct the dual space, we need to find all proper filters of FC(N). For each non-empty

A ∈ FC(N), we have the proper filter ↑A, consisting of the sets containing A, that is, the

principal filter generated by A.

Claim 1. If a proper filter contains a finite set, it is principal.
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Proof. Suppose F is a proper filter in FC(N). If F contains a finite set, let A ∈ F

be a finite set of minimal cardinality (necessarily non-zero as F is proper). There is a

unique such A since if there are two A,B ∈ F such that A and B have the same smallest

cardinality, then A ∩B has smaller cardinality unless A = B. Then F = ↑A. �

We will call a set A ∈ FC(N) n-cofinite if N \ A has size n. So a set is cofinite if and

only if it is n-cofinite for some n.

Claim 2. Suppose F is a proper filter containing only cofinite sets. Suppose also that

there is a minimal N such that every element of F is n-cofinite for some n 6 N . Then F

is principal.

Proof. By minimality of N , there is at least one N -cofinite set. Suppose there are two:

A and B. But then A ∩B is at least (N + 1)-cofinite unless one of A and B is contained

in the other. But this would contradict both being N -cofinite unless A = B. So there is

exactly one N -cofinite set, A, in F . It is then clear that F = ↑A. �

We now consider the case when F is a proper filter containing only cofinite sets, but

contains n-cofinite sets for arbitrarily large n. Note that if A ∈ F is n-cofinite, then since

F is a filter, B ∈ F for every B ⊇ A. So F contains m-cofinite sets for every m 6 n. So

it is equivalent to require F to contain n-cofinite sets for every n.

Claim 3. Let F be the set of proper filters containing only cofinite sets, and n-cofinite

sets for every n. Then every F ∈ F is non-principal. Let M be the set of non-cofinite

subsets of N. Then there is a bijection:

F ↔M

F 7→
⋂

F

FM ←[ M

where FM is the proper filter containing all cofinite sets containing M .

Proof. If F was principal, then F = ↑A for some n-cofinite A, but then F cannot contain

any m-cofinite sets for m > n, so F is not principal.
⋂
F is then a non-cofinite subset of

N.

Now let M be some non-cofinite subset of N, and let FM be the set of all cofinite sets

containing M . Then clearly FM is a non-principal proper filter, containing n-cofinite sets

for every n.

It is clear that these operations are inverse to each other. �

Then all three claims together prove that there is a bijection2

(P(N) \ {∅}) t Pf (N)→ PropFilt(FC(N))

(M, 0) 7→
{
↑M if M is finite or cofinite,

FM otherwise,

(M, 1) 7→ FM

2X t Y means the disjoint union, here given explicitly as (X ×{0})∪ (Y ×{1}), and Pf (X) is the set

of finite subsets of X.
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Now we need to explicitly find the open sets Â for each A ∈ FC(N). So let A ∈ FC(N)

be finite. Â consists of the proper filters containing A. These are the ↑B for B ⊆ A. Now

let A ∈ FC(N) be cofinite. Clearly if B ∈ FC(N) and B ⊆ A then A ∈ ↑B.

Claim 4. For A ∈ FC(N) finite, Â = {↑B | ∅ 6= B ⊆ A}, and for A ∈ FC(N) cofinite,

Â = {↑B | B ⊆ A and B is cofinite} ∪ {FB | B ⊆ A and B is not cofinite}.

Proof. We have already shown that the only proper filters containing a finite set A are

the principal ones ↑B generated by a finite set. But A ∈ ↑B ⇔ B ⊆ A.

Now for A ∈ FC(N) cofinite, the only proper filters that may contain A are the

↑ B for B cofinite, or the FB for B not cofinite. Similarly as before, for B cofinite,

B ⊆ A⇔ A ∈ ↑B, and for B not cofinite, B ⊆ A⇔ A ∈ FB. �

We will translate these open sets on PropFilt(FC(N)) to open sets on X = (P(N) \
{∅})tPf (N), to give a nicer description of the dual space, absent of any references to the

original Boolean algebra, FC(N).

We will continue to use the technical definition of the disjoint union X = (P(N) \
{∅})tPf (N). Corresponding to the open sets Â where A is finite, we have open sets on X

of the form {(B, 0) | ∅ 6= B ⊆ A}. Corresponding to the open sets Â where A is cofinite,

we have open sets on X of the form {(B, 0) | B ⊆ A and B is cofinite} ∪ {(B, 0) | B ⊆
A and B is neither finite nor cofinite} ∪ {(B, 1) | B ⊆ A and B is finite}.

Let

XA =


{(B, 0) | B ⊆ A and B 6= ∅} if A is finite,

{(B, 0) | B ⊆ A and B is not finite}
∪ {(B, 1) | B ⊆ A and B is finite} if A is cofinite.

Then (X, T ) is the dual space of FC(N), where T is the topology generated by the sets

XA.

5.3 Complete Boolean algebras

We now use the choice-free duality to prove a result about complete Boolean algebras.

We will not give proofs for the propositions that lead up to the final result; they can all be

found in [3, Sections 8, 9]. To begin with, we first characterise the UV-duals of complete

Boolean algebras.

Definition 5.3. A UV space X is complete if int(cl(U)) ∈ CORO(X) for every open

U . Note that int and cl are taken with respect to the spectral topology, not the upset

topology.

Proposition 5.4. Let B be a Boolean algebra and X = UV (B). Then B is complete if

and only if X is complete.

Lemma 5.5. If X is a complete UV space and U ∈ CORO(X), then U with the subspace

topology is a complete UV space.

Definition 5.6. An isolated point of a space X is x ∈ X such that {x} is open. Let Xiso

be the set of isolated points of X.
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It can be shown that a ∈ B is an atom if and only if ↑a ∈ UV (B) is an isolated point.

Then B is atomless if and only if UV (B) has no isolated points.

Proposition 5.7. Let X be the dual space of B. Then B is atomic if and only if

int(cl(Xiso)) = X if and only if cl(Xiso) = X.

Definition 5.8. Let X, Y be disjoint UV spaces. X#Y is the space with points X ∪Y ∪
(X ×Y ) and topology generated by sets of the form U ∪V ∪ (U ×V ) for U ∈ CORO(X),

V ∈ CORO(Y ). Then X#Y is the coproduct in the category UV, so that X#Y is a UV

space, UV (A)# UV (B) ∼= UV (A× B), and CORO(X # Y ) ∼= CORO(X)× CORO(Y ).

This is called the UV sum.

Lemma 5.9. Let X be a UV space, and U ∈ CORO(X). Then X is homeomorphic to

the UV sum of the subspaces induced by U and ¬U .

Proposition 5.10. Any complete Boolean algebra is isomorphic to the product of a com-

plete, atomless BA and a complete, atomic BA.

Proof. By duality, it is enough to show a complete UV spaceX is the UV sum of a complete

UV space with no isolated points, and a complete UV space with its isolated points as

a dense subset. X is complete and Xiso is open so let U = int(cl(Xiso)) ∈ CORO(X).

Consider U and ¬U as UV subspaces of X. Then X is the UV sum of these subspaces,

both of which are complete.

Claim 1. If V ⊆ X is open then Viso ⊆ Xiso.

Proof of claim. Let {x} be open in V . Then {x} = V ∩W for some W open in X. But

V ∩W is open in X as both V,W are. So {x} is open in X.

So Uiso ⊆ Xiso and (¬U)iso ⊆ Xiso.

Claim 2. Let V ⊆ X be open. If Xiso ⊆ V then Xiso ⊆ Viso.

Proof of claim. Let {x} be open in X. Then x ∈ V so {x} = {x} ∩ V . So {x} is open in

V , and x ∈ Viso.

Xiso is open so Xiso ⊆ U . Then by Claim 2, Xiso ⊆ Uiso, and Xiso = Uiso. As

U ∩ ¬U = ∅, (¬U)iso = ∅. Then in U , intU(clU(Uiso)) = U ∩ int(cl(Uiso)) = U ∩ U = U ,

and we are done. �

24



Chapter 6

Ortholattices

We now turn our attention to ortholattices: essentially Boolean algebras without distribu-

tivity. In [8], Goldblatt proved a dual equivalence of ortholattices, taking the dual space

to be the space of proper filters with basis â and X \ â. However, this requires choice.

In fact, if the basis is taken to be just the sets â, the use of choice can be avoided, with

the construction similar to that for Boolean algebras discussed in Chapters 3 and 4. The

construction of the duality is taken from [19].

In [7], Goldblatt considered a form of non-classical logic: orthologic. This type of logic

is similar to classical propositional logic, but lacks distributivity. It has been considered for

quantum logic, since distributivity of ‘and’ and ‘or’ do not necessarily hold in quantum

settings. An in depth discussion of quantum or orthologic, and where they might be

used, is beyond the scope of this dissertation, but we will summarise some important

results to provide motivation for studying ortholattices, once the necessary concepts are

introduced. Rawling and Selesnick in [16] consider quantum logic in more detail, motivated

by developments in quantum computation, and in [2], Bell extends Goldblatt’s ideas to a

predicate calculus for orthologic, though we focus only on the propositional case here.

6.1 Ortholattices

Definition 6.1. An ortholattice is a structure 〈L,∨,∧, 0, 1, ′〉, where 〈L,∨,∧, 0, 1〉 is a

bounded lattice, and ′ is a unary operation called orthocomplementation satisfying:

1. a ∧ a′ = 0 and a ∨ a′ = 1;

2. a′′ = a;

3. a 6 b⇒ b′ 6 a′;

4. a ∧ b = (a′ ∨ b′)′.

Example. The following lattice is denoted M4.
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0

a b c d

1

Now we define the complementation function on M4, though note that only 0 and 1

have unique complements:

� a′ = b, b′ = a

� c′ = d, d′ = c

It can be seen that M4 is an ortholattice. We know that M4 is not distributive since

it contains M3, ‘the diamond’, as a sublattice, given by the filled in nodes in the diagram.

This is known as the M3-N5 Theorem in [4, Section 4.10]. So M4 is not a Boolean algebra.

Definition 6.2. An orthoframe (X,⊥) is a set X and a irreflexive, symmetric (or-

thogononality) binary relation ⊥. For any subset Y ⊆ X, we define Y ⊥ = {a ∈ X |
a⊥b for all b ∈ Y }. Y is ⊥-regular if Y = Y ⊥⊥. This is also called an orthogonality space

in [8].

Definition 6.3. Let L be an ortholattice. Let XL be the set of proper filters on L, with

topology generated by â = {F ∈ XL | a ∈ F}. Then define a binary relation ⊥L on XL

by

F⊥LG⇔ there is a ∈ L with a ∈ F and a′ ∈ G.

Proposition 6.4. (XL,⊥L) is an orthoframe.

Proof. Irreflexive. If F⊥LF , then there is a ∈ L such that a ∈ F and a′ ∈ F . As F is

a filter, by condition 1 of Definition 6.1, a ∧ a′ = 0 ∈ F , contradicting F being a proper

filter. So F 6 ⊥LF .

Symmetric. Suppose F⊥LG. Then there is a ∈ L with a ∈ F and a′ ∈ G. By

condition 2 of Definition 6.1, a′′ = a ∈ F , so that there is a′ ∈ L with a′ ∈ G, and a′′ ∈ F ,

that is, G⊥LF . �

6.2 Orthologic

Having introduced the necessary concepts, we now are in position to discuss orthologic,

its relation to ortholattices, and how orthoframes can be used for orthologic semantics.

This section is based on [7].

The language we will use contains a collection of propositional variables, and the

symbols ¬ and ∧ for negation and conjunction. Well-formed formulae are constructed in

the usual way, and we will just refer to them as formulae, the set of which is denoted Φ.
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Definition 6.5. An orthologic K is a collection of ordered pairs of formulae 〈A,B〉 (we

write A `K B for 〈A,B〉 ∈ K) that satisfy the following conditions:

1. A `K A

2. A ∧B `K A

3. A ∧B `K B

4. A `K ¬¬A

5. ¬¬A `K A

6. A ∧ ¬A `K B

7. if A `K B and B `K C then A `K C

8. if A `K B and A `K C then A `K B ∧ C

9. if A `K B then ¬B `K ¬A

The intersection of any family of orthologics is also an orthologic, so we denote the

smallest orthologic by O. We could also define O in the following way. Call an expression

of the form α ⇀ β a sequent. Then A `O B if there is a finite list of sequents, the last of

which is A ⇀ B, where each one is an axiom from conditions 1-6, or can be inferred from

previous sequents using the rules of inference from conditions 7-9 (replace `K by ⇀ in

1-9). This has the added benefit of being similar to the standard definition of a deductive

system in propositional calculus, but Goldblatt’s definition above has the benefit of being

more general. The construction is detailed in [16, Section 2] and [2, Section 1].

It is easy to show that the Lindenbaum algebra (that is, Φ/ ∼K where A ∼K B if and

only if A `K B and B `K A) of any orthologic is an ortholattice. Using this result, we

can also prove an algebraic characterisation theorem for O:

Theorem 6.6. A `O B ⇔ v(A) 6 v(B) for all valuations v on all ortholattices, where

a valuation v on an ortholattice L is a map Φ → L with v(A ∧ B) = v(A) ∧ v(B) and

v(¬A) = v(A)⊥.

Definition 6.7. Let K be an orthologic and Γ a non-empty set of formulae.

1. A formula A is K-derivable from Γ, Γ `K A, if there are B1, B2, . . . , Bn ∈ Γ such

that B1 ∧ · · · ∧Bn `K A.

2. Γ is K-consistent if there is a formula not K-derivable from Γ.

3. Γ is K-full if it is K-consistent and closed under conjunction and K-derivability.

Remark. K-full sets of formulae correspond to proper filters of the Lindenbaum algebra

of K.
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One interesting aspect of orthologic is the proof of its version of Lindenbaum’s lemma,

[7, Theorem 1.4]. For classical propositional calculus, the proof of this requires some form

of choice or an enumeration of all formulae, but for orthologic, the proof is quite direct.

Definition 6.8. M = (X,⊥, V ) is an orthomodel on the orthoframe (X,⊥) if V is a

function from the set of propositional variables to the set of ⊥-regular subsets of X. We

can then define the truth of a formula A at x in M recursively:

1. M �x p for a propositional variable p if and only if x ∈ V (p).

2. M �x A ∧B if and only if M �x A and M �x B.

3. M �x ¬A if and only if for any y, M �y A⇒ x⊥y.

Writing ‖A‖M = {x ∈ X | M `x A}, these are equivalent to:

1. ‖p‖M = V (p);

2. ‖A ∧B‖M = ‖A‖M ∩ ‖B‖M;

3. ‖¬A‖M = (‖A‖M)⊥.

Let Γ be a non-empty set of formulae. Then:

1. Γ implies A at x in M, M : Γ �x A, if and only if M �x B ∀B ∈ Γ⇒M �x A.

2. Γ M-implies A, M : Γ � A, if and only if Γ implies A at all x ∈M.

3. if F is a frame, Γ F-implies A, F : Γ � A, if and only if M : Γ � A for all models

M on F .

4. If C is a class of frames, Γ C-implies A, C : Γ � A, if and only if F : Γ � A for all

frames F ∈ C.

To prove soundness and completeness for O, we need to construct the canonical or-

thomodel of an orthologic:

Definition 6.9. Let K be an orthologic. The canonical orthomodel for K is MK =

(XK ,⊥K , VK) where:

1. XK is the set of all K-full sets of formulae.

2. x⊥Ky if and only if there is a formula A such that A ∈ x and ¬A ∈ y.

3. VK(p) = {x ∈ XK | p ∈ x}.

Note that the canonical model corresponds precisely with Definition 6.3.

Theorem 6.10. Soundness and completeness for O

Γ `O A⇔ θ : Γ � A.

where θ is the class of all orthoframes.
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6.3 Representation of ortholattices

We now return to proving a duality for ortholattices. First we prove some useful lemmas

about ⊥-regular subsets that lead to an important proposition.

Lemma 6.11. Let (X,⊥) be an orthoframe, and A ⊆ X be any subset of X. Then

A ⊆ A⊥⊥.

Proof. Let a ∈ A. To show a ∈ A⊥⊥, we need to show a⊥b for all b ∈ A⊥. So let b ∈ A⊥.

Then b⊥c for all c ∈ A. In particular, b⊥a, and by the symmetry of ⊥, a⊥b, which proves

the lemma. �

Lemma 6.12. Let (X,⊥) be an orthoframe, and A ⊆ B be two subsets of X. Then

B⊥ ⊆ A⊥.

Proof. Let b ∈ B⊥. We need to show b⊥a for all a ∈ A. So let a ∈ A. Then as A ⊆ B,

a ∈ B, so b⊥a, and we are done. �

Proposition 6.13. Let (X,⊥) be an orthoframe. Then the collection of ⊥-regular subsets

of X is a complete ortholattice, ordered by inclusion, with ∧ as set intersection, and

complementation ′ as ⊥. This ortholattice is denoted R(X).

Proof. Let Yi ⊆ X be ⊥-regular for i ∈ I. First we show
⋂
i∈I Yi is ⊥-regular. Lemma 6.11

shows that
⋂
i∈I Yi ⊆ (

⋂
i∈I Yi)

⊥⊥. Now let a 6∈
⋂
i∈I Yi. So for some j ∈ I, a 6∈ Yj. Since

Yj is ⊥-regular, a 6∈ Y ⊥⊥j , and there is some b ∈ Y ⊥j with a 6 ⊥b. As b ∈ Y ⊥j , lemma 6.12

gives that b ∈ (
⋂
i∈I Yi)

⊥. So a 6∈ (
⋂
i∈I Yi)

⊥⊥.

We have that ∅⊥ = X vacuously, and X⊥ = ∅ by irreflexivity. So ∅ and X are

⊥-regular, so are 0 and 1 in R(X).

Let B be any ⊥-regular subset of X containing
⋃
i∈I Ai. Then two applications of

Lemma 6.12 gives (
⋃
i∈I Ai)

⊥⊥ ⊆ B⊥⊥. Since B is ⊥-regular, (
⋃
i∈I Ai)

⊥⊥ ⊆ B. Then∨
i∈I Ai = (

⋃
i∈I Ai)

⊥⊥, since (
⋃
i∈I Ai)

⊥⊥ is ⊥-regular from Lemmas 6.11 and 6.12.

Now we need to show
⋂
i∈I Ai = (

∨
i∈I A

⊥
i )⊥. Firstly, for each j, A⊥j ⊆

∨
i∈I A

⊥
i , so

that for each j, (
∨
i∈I A

⊥
i )⊥ ⊆ Aj. Then (

∨
i∈I A

⊥
i )⊥ ⊆

⋂
i∈I Ai. Now let a ∈

⋂
i∈I Ai,

and b ∈
⋃
i∈I A

⊥
i . Then b is in some A⊥j , so a⊥b, and a ∈ (

⋃
i∈I A

⊥
i )⊥ ⊆ (

⋃
i∈I A

⊥
i )⊥⊥⊥ =

(
∨
i∈I A

⊥
i )⊥. This proves the claim. �

Example. Let H be a Hilbert space with inner product 〈·, ·〉. Then for x, y ∈ H \{0}, let

x⊥y ⇔ 〈x, y〉 = 0. This is an orthogonality relation. A subset Y ⊆ H \ {0} is ⊥-regular

if and only if Y ∪ {0} is a closed subspace of H. So we can think of the ortholattice of

⊥-regular subsets as the closed subspaces of H.

In particular, for H = R3, the ⊥-regular subsets are precisely all subspaces, since

every subspace in a finite-dimensional space is closed. R(H) has the following order with

respect to inclusion:
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{0}

[x1, y1] [x2, y2] [x3, y3]

linear combinations

of x1 and y1

linear combinations

of x2 and y2

linear combinations

of x3 and y3

R3

where [x, y] denotes the 2-dimensional subspace spanned by the non-zero vectors x and

y. Also note that there is a 1-dimensional line lying in any two distinct planes, but this

has been omitted from the diagram to make it less cluttered.

Theorem 6.14. Let L be an ortholattice. Then there is an isomorphism φ : L→ COR(XL),

where COR(XL) is the ortholattice of compact open, ⊥-regular subsets of XL, a subortho-

lattice of R(XL).

Proof. For a ∈ L, let φ(a) = â.

Well-defined. First we need to show that â is compact and⊥-regular. So let â ⊆
⋃
i∈I b̂i

for some b ∈ L. Consider the proper filter ↑a ∈ â. Then ↑a ∈ b̂j for some j ∈ I, so that

bj ∈↑a, and a 6 bj. So any proper filter containing a also contains bj, and â ⊆ b̂j, and so

â is compact.

Claim 1. â⊥ = â′.

Proof of claim. The cases when a is 0 or 1 are obvious. Let F ∈ â′. Then for any proper

filter G containing a, F⊥LG, so that F ∈ â⊥.

Now let F ∈ â⊥. Let G be the filter ↑a. This is a proper filter since a 6= 0, so F⊥G.

Then there is some b ∈ L such that b ∈ F and b′ ∈ G. Then b′ > a, so by condition 3 of

Definition 6.1, a′ > b. Since b ∈ F and F is a filter, a′ ∈ F , and F ∈ â′.

Then â⊥⊥ = â′
⊥

= â′′ = â, and â is ⊥-regular. Hence φ is well-defined.

Injective. If â = b̂, then ↑a ∈ b̂ and ↑ b ∈ â. Then a 6 b and b 6 a, and therefore

a = b.

Homomorphism. We have that â∩ b̂ = â ∧ b. ∩ is ∧ on R(XL) and hence on COR(XL).

Claim 1 shows that φ preserves complements. Then by De Morgan’s laws (condition 4 of

Definition 6.1), φ preserves ∨ as well.
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Surjectivity. Let A ∈ COR(XL). As A is compact open, it is a finite union of basic

open sets, so A =
⋃n
i=1 âi. We wish to show that A = b̂ for some b ∈ L.

Using the fact that A is ⊥-regular,

A = A⊥⊥ = (
n⋃
i=1

âi)
⊥⊥

=
n∨
i=1

âi by definition of ∨.

=
n̂∨
i=1

ai since φ is a homomorphism.

So φ is surjective, and hence an isomorphism. �

Theorem 6.15. Let (X,⊥) be an orthoframe with topology satisfying the following con-

ditions:

1. T0;

2. COR(X) is closed under ∩, ⊥, and forms a basis for the topology;

3. every proper filter of COR(X) is COR(x) for some x ∈ X, where COR(x) is the set

of compact open, ⊥-regular subsets of X containing x;

4. if x⊥y then there is U ∈ COR(X) such that x ∈ U and y ∈ U⊥.

Then ρ(x) = COR(x) is a homeomorphism X → XCOR(X) that also preserves ⊥.

Proof. Surjective. Condition 3 ensures ρ is surjective.

Injective. Suppose x 6= y. Then since X is T0, there is an open set containing one but

not the other. Since COR(X) is a basis, this open set can be taken to be U ∈ COR(X).

So COR(x) 6= COR(y).

Continuous. Let Û be a basic open set in XCOR(X), where U ∈ COR(X). Then

ρ−1[Û ] = {x ∈ X | ρ(x) ∈ Û}
= {x ∈ X | U ∈ COR(x)}
= {x ∈ X | x ∈ U}
= U

Continuous inverse. Let U ∈ COR(X) be a basic open set in X. Then

ρ[U ] = {COR(x) | x ∈ U}
= {COR(x) | U ∈ COR(x)}
= {COR(x) | COR(x) ∈ Û}
= Û
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Preserves ⊥.

COR(x)⊥COR(y)⇔ there is some U ∈ COR(X) such that U ∈ COR(x)

and U⊥ ∈ COR(y)

⇔ there is some U ∈ COR(X) such that x ∈ U and y ∈ U⊥

⇔ x⊥y

The last⇒ follows since if y ∈ U⊥ then y⊥z for every z ∈ U , and the last⇐ follows from

condition 4. �

6.4 Choice-free duality for ortholattices

We can extend these two theorems to a full dual equivalence between the category OL

of ortholattices and the category UVO of orthoframes satisfying the conditions in Theo-

rem 6.15. The morphisms of OL are the homomorphisms, and for UVO they are spectral

maps f : (X,⊥)→ (X ′,⊥′) that are also p-morphisms:

� if u⊥v, then f(u)⊥′f(v);

� if s⊥′t and s = f(u) for some u ∈ X, then there is some v ∈ X such that u⊥v and

t = f(v).

This is proved in [19, Proposition 2.2].

6.5 Specialising to Boolean algebras

We now investigate how this method relates to the method given in Chapters 3 and 4.

Lemma 6.16. Let A ⊆ UV (B). Then A⊥ is an upset with respect to inclusion.

Proof. Let F ∈ A⊥, and G ⊇ F . Now let H ∈ A. F⊥H, so there is a ∈ F and a′ ∈ H.

So also, a ∈ G and a′ ∈ H. So G ∈ A⊥. �

Lemma 6.17. Let A ⊆ UV (B) be an upset with respect to inclusion. Then A⊥ =

int⊆(UV (B) \ A).

Proof. By lemma 6.16, A⊥ is an upset, and is contained in UV (B) \ A. So A⊥ ⊆
int⊆(UV (B) \ A).

Now let F ∈ int⊆(UV (B) \ A), so that ↑F ⊆ UV (B) \ A. Let G ∈ A, and let H be

the filter generated by F ∪G. If H is proper, then H ∈ ↑F and H ∈ A, a contradiction.

So H is improper, and there are a ∈ F , b ∈ G such that 0 = a∧ b, as in Lemma B. Then,

by Lemma A, a′ > b, so a′ ∈ G, and F⊥G. �

Example. Let B = 23 and A = {↑a, ↑f} ⊆ UV (B).
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B = 23

0

a c

e

1

b

d f

UV (B)
↑1

↑d ↑f

↑b

↑e

↑a ↑c

For F⊥ ↑f , we need f ′ = a ∈ F , since the only other element of ↑f is 1. So F =↑a.

But then ⊥ is irreflexive, so A⊥ = ∅. ¬A is the largest upset contained in UV (B) \ A.

From the diagram we can see that ¬A = {↑b, ↑c}. So ⊥ and ¬ do not coincide in general

on UV (B).

Using the above two lemmas, we see that a subset of UV (B) is ⊥-regular if and only

if it is regular open in the upset topology.

A = A⊥⊥ ⇔ A = A⊥⊥ and A is an upset, by Lemma 6.16

⇔ A = A⊥⊥ and A⊥⊥ = int⊆(UV (B) \ int⊆(UV (B) \ A)) by Lemma 6.17

⇔ A = int⊆(cl⊆(A))
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