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Abstract. Motivated by structural properties of differential field extensions,

we introduce the notion of a theory T being derivation-like with respect to

another model-complete theory T0. We prove that when T admits a model-
companion T+, then several model-theoretic properties transfer from T0 to

T+. These properties include completeness, quantifier-elimination, stability,

simplicity, and NSOP1. We also observe that, aside from the theory of differ-
ential fields, examples of derivation-like theories are plentiful.

Contents

1. Introduction and preliminaries 1
2. Main results 3
3. Examples 11
3.1. Separably closed fields and Hasse-Schmidt fields 11
3.2. D-fields in characteristic zero 12
3.3. Differential fields in positive characteristic 15
3.4. CCMs with meromorphic vector fields 17
References 18

1. Introduction and preliminaries

Extending the argument of simplicity of the theory ACFA, in [4] Chatzidakis and
Pillay studied the abstract condition of adding an automorphism to a first-order
theory T0 and proved that if such an expanded theory has a model-companion T0A,
then T0A is simple whenever T0 is stable (this stable-to-simple transfer result has
been further generalised in [3]). In this paper we propose an abstract analogue of
this where instead of adding an automorphism, we expand T0 to a theory T that
satisfies certain conditions which resemble structural properties of “derivations”.

Recall that given a difference field (K,σ), the automorphism σ extends (not
necessarily uniquely) to the separable closure Ksep. In the case of a differential field
(K, δ) much more is true: the derivation extends uniquely to any separably algebraic
extension. This is a crucial difference between the theories of difference fields and
differential fields; for instance, it is one of the reasons why DCF0 has quantifier
elimination while ACFA does not. Another structural property of differential fields
(or even differential rings) is that given two differential fields (K, δ1) and (L, δ2)
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with a common differential subfield (E, δ), the tensor product K⊗E L has a unique
derivation extending those on K and L (note that this property also holds for
difference fields).

We extract the above two properties of differential field extensions to an abstract
setup and define (in Definition 2.1) the notion of a theory T being derivation-
like with respect to a complete and model-complete theory T0 equipped with an
invariant ternary relation |⌣

0
. The motivating example, of course, is that the

theory of differential fields in characteristic zero DF0 is derivation-like with respect

to ACF0 equipped with the algebraic-disjointness relation |⌣
alg

. In §3, we provide
several other instances of derivation-like theories; in particular, we note that the
recently developed theory DCCM of compact complex manifolds with meromorphic
vector fields, introduced by Moosa in [14], is derivation-like.

In §2, under the assumption that T has a model-companion T+ (and some as-

sumptions on |⌣
0
), we prove that several model-theoretic properties transfer from

T0 to T+. In particular, completeness and quantifier-elimination transfer, and we
also observe that the model-theoretic dcl and acl have a natural description. In
order to state the other neostability transfers, let us briefly recall what is meant by
an independence relation in T0. We somewhat follow the presentation of Adler [1].

Definition 1.1. A relation |⌣
0
on triples of small subsets of a monster model U0

of T0 is called an independence relation if it is invariant under automorphisms and
satisfies the following eight properties:

(1) normality: A |⌣
0

C
B =⇒ A |⌣

0

C
BC;

(2) monotonicity: A |⌣
0

C
BD =⇒ A |⌣

0

C
B;

(3) base monotonicity: A |⌣
0

C
BD =⇒ A |⌣

0

CD
B;

(4) transitivity: A |⌣
0

C
B and A |⌣

0

B
D =⇒ A |⌣

0

C
D for C ⊆ B ⊆ D;

(5) symmetry: A |⌣
0

C
B =⇒ B |⌣

0

C
A;

(6) full existence: for any A,B,C there is A′ ≡C A with A′ |⌣
0

C
B;

(7) finite character: if A0 |⌣
0

C
B for all finite A0 ⊆ A then A |⌣

0

C
B;

(8) local character: for any A there is a cardinal κ = κ(A) such that for any B

there is C ⊆ B with |C| < κ such that A |⌣
0

C
B.

There are other properties that are generally of interest:

• existence: for any A and C we have A |⌣
0

C
C;

• extension: if A |⌣
0

C
B then for any D there is A′ ≡BC A with A′ |⌣

0

C
BD;

• anti-reflexivity: if a |⌣
0

C
a then a ∈ acl(C) (an independence relation is

called strict if it satisfies anti-reflexivity);
• chain local character: for a a finite tuple and κ > |T0| a regular cardinal,
for every continuous chain of models (Mi)i<κ with |Mi| < κ there is j < κ

such that a |⌣
0

Mj
∪i<κMi;

• independence theorem over M : if A1 |⌣
0

M
A2, a1 |⌣

0

M
A1, a2 |⌣

0

M
A2, and

a1 ≡M a2, then there is a |= tp(a1/MA1)∪ tp(a2/MA2) with a |⌣
0

M
A1A2;

• stationarity over M : if M ⊆ A, a |⌣
0

M
A, b |⌣

0

M
A, and a ≡M b, then

a ≡A b.
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While most neostability properties have local combinatorial descriptions, the
Kim–Pillay type theorems indicate semantic ways to describe such properties in
terms of ternary relations. We summarise the developments in this direction that
will be relevant for us.

Theorem 1.2.

(i) [10] The theory T0 is stable if and only it admits an independence relation

|⌣
0
(i.e., satisfying (1)-(8) above) which satisfies stationarity over models.

Moreover, in this case |⌣
0
coincides with forking independence.

(ii) [11] The theory T0 is simple if and only it admits an independence relation

|⌣
0
which satisfies the independence theorem over models. Moreover, in

this case |⌣
0
coincides with forking independence.

(iii) [5] The theory T0 is NSOP1 if and only if it admits an invariant ternary re-

lation |⌣
0
with chain local character and which over models satisfies mono-

tonicity, transitivity, symmetry, finite character, existence, extension, and
the independence theorem. Moreover, in this case |⌣

0
coincides with Kim-

independence over models.
(iv) [1] Suppose T0 eliminates imaginaries. Then, T0 is rosy if and only if it

admits a strict independence relation.

By inducing (from |⌣
0
) a natural ternary relation |⌣

+
on the model companion

T+ and using Theorem 1.2, in §2 we are able to prove that stability and simplicity
transfer from T0 to T+. Furthermore, when T0 is the theory of a very slim field and

T is in addition derivation-like w.r.t. |⌣
alg

, we also prove that NSOP1 transfers to
T+. Finally, assuming that both T0 and T+ eliminate imaginaries, we obtain that
Rosiness also transfers. Our method of proof relies on a detailed study on how the
independence properties in Definition 1.1 transfer from T0 to T+. This is explicitly
done in Theorems 2.11, 2.13, and 2.14.

Conventions. We assume that all our theories are closed under deductions.

Acknowledgements. The authors would like to thank Jan Dobrowolski and
Amador Martin-Pizarro for several useful discussions that led to improvements
of this paper.

2. Main results

We fix the following data:

• L0 ⊆ L are two (first-order) languages, possibly multi-sorted,
• T0 is a complete and model-complete L0-theory equipped with an auto-
morphism invariant ternary relation |⌣

0
, we denote by U0 a monster model

of T0 and, unless otherwise stated, acl0 refers to model-theoretic algebraic
closure taken with respect to the language L0 in U0, and

• T is an L-theory such that T ∀
0 ⊆ T .

Definition 2.1. We say that T is derivation-like with respect to (T0, |⌣
0
) if

whenever A,B,C |= T ∀, with C a common L-substructure of A and B, are such

that A,B ≤L0 U0, acl0(C) ∩A = acl0(C) ∩B = C, and A |⌣
0

C
B, we have that

(i) there exists M |= T such that M ≤L0
U0 and A,B ≤L M , and
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(ii) for any M as in (i) and any L0-structure D such that

⟨A,B⟩L0
≤L0

D ≤L0
acl0(A,B) ∩M,

we have that D ≤L M and, moreover, this L-structure on D is the unique
one expanding its L0-structure, making it a model of T ∀, and extending
the L-structures of A and B.

Note that part (i) of the definition is, in some sense, a strong form of independent
amalgamation.

Remark 2.2. Suppose T is derivation-like with respect to (T, |⌣
0
) and M |= T

with M ≤L0 U0. We note that if A ≤L M is such that

A
0

|⌣
A

A,

then acl0(A) ∩ M ≤L M . Indeed, taking B and C equal to A, part (ii) of the
definition yields

acl0(A) ∩M = acl0(A,B) ∩M ≤L M.

More generally, wheneverD is an L0-structure such that A ≤L0 D ≤L0 acl0(A)∩M ,
we then have that D ≤L M and this L-structure on D is the unique one expanding
its L0-structure, making it a model of T ∀, and extending the L-structure of A.

The following assumptions will be in place throughout the rest of this section.

Assumption 2.3.

(i) From now on T is a derivation-like theory with respect to (T0, |⌣
0
).

(ii) We assume that T has a model companion T+ and that T ⊆ T+. We fix a
monster model U+ of a completion of T+. Since T ∀

0 ⊆ T+, without loss of
generality we may assume that U+ ≤L0

U0. acl+ refers to model-theoretic
algebraic closure taken in U+ (w.r.t. the language L).

(iii) If T0 ̸⊆ T+, we further assume that T0 has quantifier elimination.

Let L∗
0 be some language expanding L0, and set L∗ = L ∪ L∗

0. Let T ∗
0 be an

expansion by definitions of T0 to the language L∗
0 (e.g., the Morleyisation of T0).

Also, expand T and T+ to T ∗ and T ∗
+, respectively, to the language L∗ using the

same definitions as for T ∗
0 .

Remark 2.4. The following can be readily checked:

(1) (T ∗
0 )

∀ ⊆ T ∗;

(2) |⌣
0
is naturally an invariant ternary relation on U0 as a model of T ∗

0 ;

(3) T ∗ is derivation-like with respect to (T ∗
0 , |⌣

0
);

(4) T ∗
+ is the model companion of T ∗ and T ∗ ⊆ T ∗

+; and
(5) U0 and U+ remain monster models of T ∗

0 and T ∗
+, respectively.

Lemma 2.5. Assume |⌣
0
satisfies full existence. Let A ≤L U+. If T ∗

0 ∪diagU0

L∗
0
(A)

is complete, then T ∗
+ ∪ diag

U+

L∗ (A) is complete.

Proof. Let K |= T ∗
+ ∪ diag

U+

L∗ (A). We will show that K ≡A U+ as L∗-structures.

First note that K |= (T ∗
0 )

∀, and hence it L∗
0-embeds in some K ′ |= T ∗

0 . Now by

completeness of T ∗
0 ∪ diagU0

L∗
0
(A), K ′ L∗

0-embeds inside U0 over A. Let L be an L∗-

elementary substructure of U+ containing A. Use full existence to find a copy of L
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with L′ |⌣
0

A
K and tpU0

L∗
0
(L′/A) = tpU0

L∗
0
(L/A). This last fact means that L induces

an isomorphic L∗-structure on L′. The partial L∗
0-elementary map A → A from K

to L′ extends to a partial L∗
0-elementary map aclU0

L∗
0
(A) ∩K → aclU0

L∗
0
(A) ∩ L′. By

Remark 2.2, this map must be an L∗-isomorphism (note that full existence yields

A |⌣
0

A
A). So we may assume that A is relatively aclL∗ -closed in K and L′.

Since T ∗ is derivation-like, there is some M |= T ∗ such that M ≤L∗
0
U0 and

K,L′ ≤L∗ M . Since T ∗
+ is the model companion of T ∗, there is some N |= T ∗

+

extending M as an L∗-structure. Now, T ∗
+ is model complete, so L′ ⪯ N ⪰ K as

L∗-structures. Finally K ≡A N ≡A L′ ≡A L ≡A U+. □

We collect some immediate corollaries.

Corollary 2.6. Assume |⌣
0
satisfies full existence. Suppose T ∗

0 is the model com-
panion of some inductive L∗

0-theory S. Then

(1) T+ ∪ S is the model companion of T ∪ S;
(2) if T ∗

0 is the model completion of S, then T+ ∪ S is the model completion of
T ∪ S; and

(3) if T ∗
0 has quantifier elimination, then T ∗

+ has quantifier elimination.

Without loss of generality (due to Remark 2.4), by possibly passing to the Mor-
leyisation of T0, from this point on we assume that T0 has quantifier elimination.

Lemma 2.7. Assume |⌣
0
satisfies monotonicity, symmetry, full-existence, and

anti-reflexivity. Then, for any A ⊂ U+, we have

acl+(A) = acl0(⟨A⟩L) ∩ U+.

Proof. By full-existence, we have that A |⌣
0

A
A, and so by Remark 2.2 we have that

F := acl0(⟨A⟩L) ∩ U+

is an L-substructure of U+. As T0 has q.e., we get F ⊆ acl+(A). For the other
containment, consider a ∈ acl+(A). Let K be an elementary L-substructure of U+

containing all (finitely-many) realisations of tp+(a/F ). By full-existence, there is

an L0-substructure L of U0 such that L |⌣
0

F
K and tp0(L/F ) = tp0(K/F ). The

latter induces an L-structure on L, via some σ ∈ AutL0(U0/F ) with L = σ(K),
making L |= T+ and an L-extension of F . Since T is derivation-like, there is
M |= T with M ≤L0

U0 such that K and L are L-substructures of M . Let N |= T+

be an L-extension of M . Since T+ is model-complete and K |= T+ is a common
substructure of N and U+, there is an elementary L-embedding ϕ : N → U+ over
K. Let L′ = ϕ(L). We first note that

tp
U+

+ (a/F ) = tpK+ (a/F ) = tpL+(σ(a)/F ) = tpN+ (σ(a)/F ) = tp
U+

+ (ϕ(σ(a))/F )

and so ϕ(σ(a)) ∈ K (as K contains all realisations of tp
U+

+ (a/F )).
We now claim that tp0(L/K) = tp0(L

′/K). First note that

qftpU0
0 (L/K) = qftpM0 (L/K) = qftpN0 (L/K) = qftp

U+

0 (L′/K) = qftpU0
0 (L′/K).

Since T0 admits q.e., it follows that tp0(L/K) = tp0(L
′/K).

Now, by invariance, we have L′ |⌣
0

F
K. Then, monotonicity and symmetry imply

that ϕ(σ(a)) |⌣
0

F
ϕ(σ(a)). By anti-reflexivity, ϕ(σ(a)) ∈ acl0(F ) ∩ U+ = F . Since

ϕ ◦ σ fixes F pointwise, we get that a ∈ F , as desired.
□
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We now observe that in derivation-like theories with T0 ⊆ T+ we have a natural
description of dcl.

Lemma 2.8. Assume |⌣
0
satisfies monotonicity, symmetry, full-existence, and

anti-reflexivity. In addition, assume that T0 ⊆ T+. Then, for any A ⊂ U+, we have

dcl+(A) = dcl0(⟨A⟩L).

Proof. As T0 has q.e., we have

dcl0(⟨A⟩L) ⊆ dcl+(A).

For the other containment, let a ∈ dcl+(A) and let σ be an L0-automorphism of U0

fixing ⟨A⟩L pointwise. We aim to show that σ(a) = a. Note that the assumption
T0 ⊆ T+ implies U+ ⪯L0

U0; this together with Lemma 2.7 yields

σ(dcl+(A)) ≤L0 σ(acl0(⟨A⟩L) = acl0(⟨A⟩L) ≤L0 U+.

Because T is derivation-like, by Remark 2.2, we have that σ(dcl+(A)) ≤L U+ and
this is the unique L-structure expanding its L0-structure, making it a model of T ∀,
and extending ⟨A⟩L. It follows from this and the fact that T+ admits q.e. (by
Corollary 2.6(3)), that σ restricted to dcl+(A) is a partial L-elementary map of U+.
Thus, we may extend this restriction to an automorphism ρ of U+ (which fixes A).
But then, as a ∈ dcl+(A), we have that a = ρ(a) = σ(a). □

Remark 2.9. We note that in the proofs of Lemmas 2.5, 2.7, 2.8, condition (ii) of
derivation-like was only used when A = B = C. Namely, we applied Remark 2.2.
In other words, one could say that T is almost derivation-like if in condition (ii)
we restrict only to A = B = C; and then all results stated so far hold when T is
almost derivation-like with respect to (T0, |⌣

0
).

Definition 2.10. Define the following relation on triples of small subsets of U+:

A
+

|⌣
C

B ⇐⇒ acl+(AC)
0

|⌣
acl+(C)

acl+(BC).

The following provides a detailed description of how independence properties of
|⌣

0
transfer to |⌣

+
.

Theorem 2.11. (1) |⌣
+

is invariant and normal;

(2) if |⌣
0
satisfies any of monotonicity, symmetry, finite character, then so

does |⌣
+
;

(3) if |⌣
0
is transitive and monotone, then |⌣

+
is transitive;

(4) if |⌣
0
satisfies base monotonicity, finite character, and local character, then

|⌣
+

has local character;

(5) if |⌣
0
satisfies normality, monotonicity, base monotonicity, transitivity,

symmetry, and full existence, then |⌣
+

satisfies base monotonicity;

(6) if |⌣
0
satisfies monotonicity, symmetry, and full existence, then |⌣

+
sat-

isfies full existence;
(7) if |⌣

0
satisfies monotonicity and extension and T+ has quantifier elimina-

tion, then |⌣
+

satisfies extension.

In addition, if T0 ⊆ T+, then (2), (3), and (7) also hold for the corresponding
properties stated over models.
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Proof. Invariance. Suppose A |⌣
+

C
B and tp+(ABC) = tp+(A

′B′C ′). Then

tp+(acl+(ABC)) = tp+(acl+(A
′B′C ′)),

and similar arguments to the proofs above (using q.e. for T0) show that

tp0(acl+(ABC)) = tp0(acl+(A
′B′C ′)).

Invariance for |⌣
0
then means that A′ |⌣

+

C′ B
′.

Normality is by definition (i.e. does not require normality of |⌣
0
).

Monotonicity. SupposeA |⌣
+

C
B andD ⊆ B. Then acl+(AC) |⌣

0

acl+(C)
acl+(BC).

Also acl+(DC) ⊆ acl+(BC), so by monotonicity for |⌣
0
, we have that

acl+(AC)
0

|⌣
acl+(C)

acl+(DC);

that is, A |⌣
+

C
D.

Transitivity follows from transitivity and monotonicity of |⌣
0
.

Symmetry follows from symmetry of |⌣
0
.

Finite character follows from finite character of |⌣
0
and the fact that acl+ is

finitary.
Local character. Precisely the same proof as in Theorem 2.1 of [3] applies here.

Base monotonicity. Suppose A |⌣
+

C
B and C ⊆ D ⊆ B. We may also assume

that A ⊇ C by normality. Then acl+(A) |⌣
0

acl+(C)
acl+(B). By monotonicity, we

have acl+(A) |⌣
0

acl+(C)
acl+(D). Since T is derivation-like,

acl0(acl+(A) acl+(D)) ∩ U+ ≤L U+.

So ⟨AD⟩L ⊆ acl0(acl+(A) acl+(D)) ∩ U+, and so by Lemma 2.7 we have

acl+(AD) = acl0(⟨AD⟩L) ∩ U+ ⊆ acl0(acl+(A) acl+(D)) ∩ U+.

By base monotonicity and normality for |⌣
0
, we get

acl+(A) acl+(D)
0

|⌣
acl+(D)

acl+(B).

By full existence, we get

acl0(acl+(A) acl+(D))
0

|⌣
acl+(A) acl+(D)

acl+(B),

and by symmetry, transitivity, and monotonicity, acl+(AD) |⌣
0

acl+(D)
acl+(B). That

is, A |⌣
+

D
B.

For full existence, suppose a,A,B are given inside U+. We need to find a′ ∈ U+

such that tp+(a
′/A) = tp+(a/A) and a′ |⌣

+

A
B. Let K be some small L-elementary

substructure of U+ containing a,A,B. Write C = acl+(A). Use full existence for

|⌣
0
to find L ≤L0

U0 with L |⌣
0

C
K and tp0(L/C) = tp0(K/C). Let σ ∈ Aut(U0/C)

be the L0-automorphism taking K to L. This automorphism then induces an
L-structure on L. Since T is derivation-like, there is some M |= T such that
K,L ≤L M ≤L0

U0. Since T+ is the model companion of T , there is some N |= T+
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extending M . Let ϕ : N → U+ be the L-elementary embedding of N inside U+ that
fixes K. Then

tp
U+

+ (a/C) = tpK+ (a/C) = tpL+(σ(a)/C) = tpN+ (σ(a)/C) = tp
U+

+ (ϕσ(a)/C).

We also have the following chain of equalities of quantifier-free L0-types:

qftpU0
0 (L/K) = qftpM0 (L/K) = qftpN0 (L/K) = qftp

U+

0 (ϕ(L)/K) = qftpU0
0 (ϕ(L)/K).

As T0 has q.e., this yields tp0(L/K) = tp0(ϕ(L)/K). Invariance then gives

ϕ(L) |⌣
0

C
K, and monotonicity gives acl+(C, ϕσ(a)) |⌣

0

C
acl+(AB); that is, ϕσ(a) |⌣

+

A
B.

Extension. Suppose A |⌣
+

C
B and D ⊇ B is given. We need to find A′ ≡BC A

with A′ |⌣
+

C
D. As usual we may assume C ⊆ A,B and that these parameter sets

are acl+-closed. Let K be a small L-elementary substructure of U+ containing all

of these sets. Use extension for |⌣
0
to find A′ |⌣

0

C
K with tp0(A

′/B) = tp0(A/B).

This L0-isomorphism induces an L-isomorphic structure on A′. By the derivation-
like axiom, there is some M |= T such that M ≤L0

U0 with A′,K ≤L M . Since T+

is the model companion of T , extend M to some N |= T+, and let ϕ : N → U+ be
an L-elementary embedding of N in U+ which fixes K. Then

qftp
U+

+ (A/B) = qftpK+ (A/B) = qftpM+ (A′/B) = qftpN+ (A′/B) = qftp
U+

+ (ϕ(A′)/B).

By quantifier elimination for T+, tp+(A/B) = tp+(ϕ(A
′)/B).

As usual,

qftpU0
0 (A′/K) = qftpM0 (A′/K) = qftpN0 (A′/K) = qftp

U+

0 (ϕ(A′)/K) = qftpU0
0 (ϕ(A′)/K),

and by quantifier elimination for T0 and invariance and monotonicity for |⌣
0
, we

get ϕ(A′) |⌣
0

C
D.

For the “In addition” clause in the statement, note that the arguments provided
in (2), (3), (7) hold when working over models. □

Using the above theorem, we observe that rosiness transfers.

Corollary 2.12. Assume both T0 and T+ admit elimination of imaginaries. If T0

is rosy, then so is T+.

Proof. By Theorem 1.2(iv), it suffices to show that T+ admits an strict indepen-

dence relation. Taking |⌣
0
to be any strict independence relation (which exists by

rosiness of T0), Theorem 2.11 yields that |⌣
+

is an independence relation; thus,

it suffices to show that |⌣
+

satisfies anti-reflexivity. Suppose a |⌣
+

C
a. Then, by

symmetry and monotonicity of |⌣
0
, we get a |⌣

0

acl+(C)
a; and so, by anti-reflexity

of |⌣
0
, we obtain

a ∈ acl0(acl+(C)) ∩ U+ = acl+(C).

Where the last equality uses Lemma 2.7. □

We now address the transfer of the independence theorem.

Theorem 2.13. Let M |= T+ and suppose T0 ⊆ T . Assume the following: T0

has, in addition, an independence relation |⌣
1
such that |⌣

0

M
=⇒ |⌣

1

M
; T is

derivation-like with respect to (T0, |⌣
1
); and |⌣

0

M
satisfies monotonicity, symmetry,

and extension. If |⌣
0
satisfies the independence theorem over M , then so does |⌣

+
.
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Proof. LetM |= T+, A1 |⌣
+

M
A2, a1 |⌣

+

M
A1, a2 |⌣

+

M
A2, and tp+(a1/M) = tp+(a2/M).

We will show that there is a |⌣
+

M
A1A2 realising tp+(a1/MA1)∪tp+(a2/MA2). Let

N |= T+ be some L-elementary substructure of U+ containing all of the above sub-
sets.

Note that, by Theorem 2.11, |⌣
+

M
satisfies symmetry and extension (the fact that

T is derivation-like w.r.t. the independence relation |⌣
1
yields that T+ has q.e. by

Corollary 2.6). Thus, we may assume that A1, A2, a1, and a2 are all acl+-closed
and contain M (note that T0 ⊆ T implies that they are also acl0-closed).

Claim 1. There is some a ∈ U0 with a |⌣
0

M
N and a |= tp0(a1/A1)∪tp0(a2/A2).

Proof of claim. Note first that by definition of |⌣
+
, we have the following facts:

A1 |⌣
0

M
A2, a1 |⌣

0

M
A1, a2 |⌣

0

M
A2, and tp0(a1/M) = tp0(a2/M). By the indepen-

dence theorem for |⌣
0
, there is a ∈ U0 with a |⌣

0

M
A1A2 and a |= tp0(a1/A1) ∪

tp0(a2/A2). Now by extension for |⌣
0

M
, we may assume that a |⌣

0

M
N .

Claim 2. Inside U0, there are L0-isomorphic copies of N , N1 and N2, both
containing a, with N1 |⌣

1

a
N2 and N |⌣

1

A1A2
N1N2.

Proof of claim. Note first that, by assumption and the fact that a |⌣
0

M
N , we

have that a |⌣
1

M
N . Now for i = 1, 2, let N ′

i be the copy of N coming from the

L0-automorphism Aiai 7→ Aia. By full existence for |⌣
1
, let Ni ≡0

Aia
N ′

i with

N1 |⌣
1

A1a
N and N2 |⌣

1

A2a
NN1. Then N |⌣

1

A1
N1 and N |⌣

1

A2
N2 by transitivity.

From a |⌣
1

M
N we get a |⌣

1

A1
A2, and so A1a |⌣

1

A1
A2. Along with A1 |⌣

1

M
A2,

transitivity gives A1a |⌣
1

M
A2, so that A1a |⌣

1

a
A2 by base monotonicity. This im-

plies A1 |⌣
1

a
A2 and N1 |⌣

1

a
A2. This last part implies N1 |⌣

1

a
A2a and along with

N2 |⌣
1

A2a
NN1 implies N1 |⌣

1

a
N2. Also, N |⌣

1

A1A2
N1 by base monotonicity since

A1A2 ⊆ N . From NN1 |⌣
1

A2a
N2, we get N |⌣

1

A2aN1
N2, and hence N |⌣

1

A2N1
N2

since a ∈ N1. Combining this with N |⌣
1

A1A2
N1 gives N |⌣

1

A1A2
N1N2.

Claim 3. There is some model of T which is an L-extension of N , N1, and N2.
Proof of claim. Define L-structures on N1 and N2 such that (Ni, Ai, a) is L-
isomorphic to (N,Ai, ai). So Ni |= T+ for i = 1, 2. Note that since ai is an

L-substructure of N , a is also an L-substructure of Ni. Now N1 |⌣
1

a
N2, and a is

relatively acl0-closed in N1 and N2; since T is derivation-like w.r.t. (T0, |⌣
1
), there

is some P |= T such that P ≤L0 U0 and N1, N2 ≤L P . Since T0 ⊆ T and using part
(ii) of the definition of derivation-like, we have acl0(N1N2) is an L-substructure
of P . By the uniqueness clause of part (ii) of derivation-like and the fact that

A1 |⌣
1

M
A2, we have that acl0(A1A2) is equipped with an L-structure that makes it

simultaneously an L-substructure of N and an L-substructure of acl0(N1N2). Now

N |⌣
1

A1A2
N1N2, and so N |⌣

1

acl0(A1A2)
acl0(N1N2) by invariance, base monotonic-

ity, monotonicity, transitivity, and full existence. Now by part (i) of derivation-like
we may find some S |= T with S ≤L0 U0 and N, acl0(N1N2) ≤L S. So S is an
L-extension of N , N1, and N2, as desired.
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Now S extends to some S′ |= T+. Let j : S
′ → U+ be an L-elementary embedding

of S′ in U+ that fixes N . Then

tp
U+

+ (a1/A1) = tpN+ (a1/A1) = tpN1
+ (a/A1) = tpS

′

+ (a/A1) = tp
U+

+ (j(a)/A1)

and similarly we have j(a) ≡+
A2

a2.
As T0 has q.e., we have tp0(a/N) = tp0(j(a)/N). Now, by construction of a,

we had a |⌣
0

M
N , and by monotonicity and invariance, we get j(a) |⌣

0

M
acl(A1A2),

and so j(a) |⌣
+

M
A1A2. □

The following addresses transfer of stationarity.

Theorem 2.14. Let M |= T+ with dcl0(M) |= T0. Suppose |⌣
0
satisfies base

monotonicity, extension, and full existence. If |⌣
0
satisfies stationarity over M ,

then so does |⌣
+
.

Proof. Note that, by full existence and Corollary 2.6, T+ has q.e.. Now suppose

M ⊂ N ⊂ U+, a, b ∈ U+ with tp+(a/M) = tp+(b/M), a |⌣
+

M
N , and b |⌣

+

M
N .

Since |⌣
+

satisfies extension (by Theorem 2.11(7)), we may assume that N is a

model of T+. Let Ka = acl+(Ma) and Kb = acl+(Mb). By definition of |⌣
+
, we

have that Ka |⌣
0

M
N and Kb |⌣

0

M
N . By extension for |⌣

0
, the same independence

holds after replacing N for some N0 containing N ∪ dcl0(M). Hence, by base

monotonicity,Ka |⌣
0

dcl0(M)
N0 andKb |⌣

0

dcl0(M)
N0. Note that tp0(Ka/dcl0(M)) =

tp0(Kb/ dcl0(M)). Then by stationarity for |⌣
0
,

tp0(Ka/N) = tp0(Kb/N).

This implies that there is an L0-isomorphism ⟨KaN⟩L0
→ ⟨KbN⟩L0

taking a 7→ b
and fixing N .

Note that M is an L-substructure of Ka, Kb, and N . Furthermore, by Re-
mark 2.2 and full existence, acl0(M) ∩ U+ = acl+(M) = M (as M |= T+).

By the derivation-like axiom, ⟨KaN⟩L0 and ⟨KbN⟩L0 are L-substructures of
U+. By its uniqueness clause, this L0-isomorphism must be an L-isomorphism. So
qftp+(a/N) = qftp+(b/N). By quantifier elimination for T+, we have tp+(a/N) =
tp+(b/N). □

Corollary 2.15. Suppose |⌣
0
is nonforking independence.

(1) Assume that dcl0(M) |= T0 whenever M |= T+. If T0 is stable, then T+ is

stable and |⌣
+

is nonforking independence.

(2) Assume T0 ⊆ T . If T0 is simple, then T+ is simple and |⌣
+

is nonforking
independence.

Proof. (1) follows from Theorems 2.11 and 2.14; while (2) follows from Theo-

rems 2.11 and 2.13 (note that in the latter we take |⌣
1
= |⌣

0
). □

We now aim to prove a similar result on the transfer of NSOP1. We will need to
restrict to the case of fields to apply Theorem 2.13 with a particular choice of |⌣

1
.

Assume T0 is an L0-theory of fields, we say that a relation |⌣
1
on T0 implies L0-

compositums if for all K,L ≤L0
U0 satisfying K |⌣

1

E
L, for some E = acl0(E)∩K =
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acl0(E) ∩ L, the compositum K · L is an L0-substructure of U0. Following [9], we
say that T0 is very L0-slim if for every F ≤L0 U0 we have that

acl0(F ) = F alg ∩ U0.

Define the relation |⌣
1
on small subsets of U0 by

(1) A
1

|⌣
C

B ⇐⇒ ⟨AC⟩L0

alg

|⌣
⟨C⟩L0

⟨BC⟩L0

where |⌣
alg

denotes algebraic independence in fields.

Fact 2.16. Assume |⌣
1
implies L0-compositums. The relation |⌣

1
as defined above

is an independence relation if and only if T0 is very L0-slim.

The proof is an adaptation of Theorem 2.1 of [9]. Some details are provided in
Lemma 4.4.7 of the second author’s thesis [13].

Corollary 2.17. Assume that T0 is very L0-slim, that |⌣
1
implies L0-compositums,

that T is derivation-like with respect to (T0, |⌣
1
), and that T0 ⊆ T . If T0 is NSOP1

and |⌣
0
is Kim-independence, then T+ is NSOP1 and |⌣

+
is Kim-independence.

Proof. By Proposition 3.9.26 of [17], if two subfields are Kim-independent over a

submodel, then they are algebraically independent. So the condition |⌣
0

M
=⇒

|⌣
1

M
holds, and |⌣

+
satisfies the independence theorem over models by Theo-

rem 2.13 (noting that |⌣
1
is an independence relation by Fact 2.16). Existence

over models and chain local character each transfer from |⌣
0
to |⌣

+
since every

model of T+ is also a model of T0. The remaining conditions of Theorem 1.2(iii)
hold by Theorem 2.11 (note that (7) of that theorem, i.e. transfer of existence,

does apply as T+ has q.e., this is by Corollary 2.6 and the fact that |⌣
1
satisfies

full existence). □

Remark 2.18. One can readily check that when T0 ⊆ T+, all results of this section
continue to hold after weakening condition (ii) of derivation-like by restricting to
those D that are dcl0-closed.

3. Examples

In this section we observe that there are plenty of examples of theories that are
derivation-like, and hence to which the results of the previous section apply (when
the model companion exists).

3.1. Separably closed fields and Hasse-Schmidt fields. Fix a prime p > 0
and e a nonnegative integer (finite). Let L0 be the language of fields, T0 = ACFp

and |⌣
0
forking-independence (which coincides with algebraic disjointness |⌣

alg
).

Let Lb,λ be the language of fields expanded by constants b = (b1, . . . , be) and unary
function symbols (λi)i∈pe . Let Tb,λ be the theory of fields of characteristic p together
with sentences specifying that b is a p-basis and that the λi’s are interpreted as the
λ-functions with respect to b (in some fixed order of the p-monomials).

Lemma 3.1. The theory Tb,λ is derivation-like with respect to (ACFp, |⌣
alg

).
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Proof. With U0 a monster model of ACFp, let A,B,C |= T ∀
b,λ be as in the definition

of derivation-like. Since C ≤Lb,λ
A, we have that A/C is a separable field extension.

This, together with the fact that C = Calg∩A, implies that the field extension A/C
is regular (i.e., separable and relatively algebraically closed). This, together with

A |⌣
alg

C
B, implies that A and B are linearly disjoint over C. Linear disjointness

implies that b is p-independent in the compositum A · B (and hence a p-basis). If
follows that A · B |= Tb,λ and A,B ≤Lb,λ

A · B ≤L0
U0. This shows condition (i)

of derivation-like. Condition (ii) follows from the fact that p-bases are preserved
when passing to separably algebraic extensions. □

The model companion of Tb,λ is SCFp,e. Note that in this case for any M |=
SCFp,e we have that dcl

ACFp(M) |= ACFp (since perfect closures of separably closed
fields remain separably closed). Thus, our Corollary 2.15(1) applies and recovers the
well known fact that SCFp,e is stable and (in the language Lb,λ) forking-independece
coincides with algebraic-disjointness.

In a similar fashion we can also recover the context of iterative Hasse-Schmidt
derivations from [21]. Let L∂ be the language of fields expanded by unary function
symbols

((∂1,j)
∞
j=1, . . . , (∂e,j)

∞
j=1).

Let T∂ be the theory of fields of characteristic p expanded by sentences specifying
that (∂i,j)

∞
j=1 is an iterative Hasse-Schmidt derivation and that, for different i, they

pairwise commute.

Lemma 3.2. The theory T∂ is derivation-like with respect to (ACFp, |⌣
alg

).

Proof. Let A,B,C |= T ∀
∂ be as the definition of derivation-like. By Lemma 2.3 and

2.4 from [21], after possibly passing to a purely inseparable extension of the sepa-
rable closure of C, we may assume that C is strict and separably closed. Strictness
implies that A/C is a separable extension. Thus, since C is separably closed, A/C is
a regular field extension which implies that A and B are linearly disjoint over C. It
follows that A ·B is isomorphic to the quotient field of A⊗C B. The Hasse-Schmidt
derivations extend uniquely to A ⊗C B and this yields an L∂-structure on A · B
making it a model of T∂ (see for instance Lemma 2.5 of [21]). This yields condition
(i) of derivation-like. Since Hasse-Schmmidt fields have a smallest strict extension
(see [21, Lemma 2.4]) and separably algebraic extensions are étale, condition (ii) of
derivation-like follows. □

The model companion of T∂ is SCHp,e (using the notation from [21]). Recall that
the latter is the theory of fields equipped with strict and iterative Hasse-Schmidt
derivations that pairwise commute and whose underlying field is a model of SCFp,e.

As in the SCF case above, for any M |= SCHp,e we have that dcl
ACFp(M) |= ACFp.

Thus, Corollary 2.15(1) applies and recovers the fact that SCHp,e is stable and in
the language L∂ forking-independence coincides with algebraic-disjointness.

3.2. D-fields in characteristic zero. Let L0 be an expansion of the field language
and T0 a complete and model-complete L0-theory of fields of characteristic zero. As
before, we denote by |⌣

0
an invariant ternary relation on a monster model U0 |= T0.

Recall that |⌣
alg

denotes the algebraic disjointness relation.
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We say that |⌣
0
implies algebraic-disjointness if

K
0

|⌣
E

L =⇒ K
alg

|⌣
E

L

for K,L L0-substructures of U0 and E a common L0-substructure of K and L.
Recall from the previous section that |⌣

0
implies L0-compositums if for allK,L ≤L0

U0 satisfying K |⌣
0

E
L, for some E = acl0(E) ∩K = acl0(E) ∩ L, the compositum

K · L is an L0-substructure of U0. Recall also that T0 is very L0-slim if for every
F ≤L0 U0 we have that

acl0(F ) = F alg ∩ U0.

Following the general framework of Moosa-Scanlon from [16], let D be a finite-
dimensional algebra over a field k of characteristic zero equipped with a k-basis
ϵ0 = 1, ϵ1, . . . , ϵd such that D is a local ring with residue field k. A D-fieldK is a field
which is also a k-algebra equipped with a sequence of operators (∂i : K → K)di=1

such that the map K → K ⊗k D defined by

a 7→ a⊗ ϵ0 + ∂1(a)⊗ ϵ1 + · · · ∂d(a)⊗ ϵd

is a k-algebra homomorphism. Let LD be the language L0 expanded by the language
of k-algebras and the unary function symbols {∂1, . . . , ∂d}. Let TD be LD-theory
consisting of T0 together with the theory of D-fields. In addition, let TD∗ be TD
expanded by sentences specifying that the ∂i’s pairwise commute.

Remark 3.3. Let D = Q[x1, . . . , xd]/(x1, . . . , xd)
2. In this case, the theory TD is

the theory of differential fields of characteristic zero with d-many (not necessarily
commuting) derivations whose underlying field is a model of T0. The theory TD∗ is
similar but requires the derivations to pairwise commute.

Lemma 3.4. Suppose |⌣
0
implies algebraic-disjointness and L0-compositums. Also

assume T0 is very L0-slim. Then, the theories TD and TD∗ are derivation-like with
respect to (T0, |⌣

0
).

Proof. First we prove TD is derivation-like. Let K,L,E |= T ∀
D be as in the definition

of derivation-like. Since E = acl0(E)∩K and T0 is very L0-slim, K/E is a regular

field extension. Since |⌣
0
implies algebraic disjointness, it follows that K and L are

linearly disjoint over E. Then K · L is isomorphic to the quotient field of K ⊗E L.
Since |⌣

0
implies L0-compositums and D-structures extend uniquely to K ⊗E L

(see [2, Proposition 2.20]), this yields an LD-structure on K · L. As we are in
characteristic zero, this D-structure extends to all of U0 (recall that D-structures
always extend to smooth extensions, see [2, Lemma 2.7(3)]) which yields condition
(i) of derivation-like. Since algebraic extensions are étale (in characteristic zero),
condition (ii) follows (recall that D-structures extend uniquely to étale extensions,
see [2, Lemma 2.7(2)]).

For TD∗ , the same argument works by simply noting that uniqueness of the D-
structure on K ⊗E L forces the ∂i’s to commute. And similarly when passing to
algebraic extensions (as they are étale in characteristic zero). To extend the D-
structure from K · L to U0, first extend to a transcendence basis in a trivial way
to force commutativity of the ∂i’s and after this the unique extension to U0 will
necessarily commute. This sort of argument is spelled out in Example 4.4.11 of the
second author’s thesis [13]. □
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For the remainder of this section we set |⌣
0
to be the relation we defined in (1)

at the end of Section 2.

(2) A
0

|⌣
C

B ⇐⇒ ⟨AC⟩L0

alg

|⌣
⟨C⟩L0

⟨BC⟩L0

Note that this particular relation implies algebraic-disjointness. We recall Fact 2.16
along with an additional fact.

Fact 3.5. (1) Assume |⌣
0
implies L0-compositums. The relation |⌣

0
as de-

fined in (2) is an independence relation if and only if T0 is very L0-slim.
(2) Suppose L0 = Lfields(C) where C is a set of constants. If models of T0 are

large fields, then T0 is very L0-slim.

We note that (2) is an adaptation of Theorem 5.4 of [9] and appears in Lemma
4.4.10 of the second author’s thesis [13].

Corollary 3.6. Suppose models of T0 are large fields, L0 = Lfields(C) for C a set of

constants, and |⌣
0
is given as in (2). Assume TD and TD∗ have model companions

T+
D and T+

D∗ , respectively.

(i) If T0 is simple, then so are T+
D and T+

D∗ .

(ii) If T0 is NSOP1, then so are T+
D and T+

D∗ .

(iii) Assume T0, T
+
D and T+

D∗ all eliminate imaginaries. If T0 is rosy, then so

are T+
D and T+

D∗ .

Proof. (i) follows immediately by Corollary 2.15(2), (ii) by Corollary 2.17, (iii) by
Corollary 2.12. □

Remark 3.7. Under the hypothesis of Corollary 3.6 (and recall that we are in
characteristic zero), an immediate application is that

(i) if T0 is the theory of a bounded PAC field , then T+
D and T+

D∗ are simple,

(ii) if T0 is the theory of an ω-free PAC field, then T ∗
D and T+

D∗ are NSOP1,
and

(iii) the theory CODF (closed ordered differential field in one derivation) is rosy.

Indeed, for (i) recall that bounded PAC fields are simple; while for (ii) recall that
ω-free perfect PAC fields are NSOP1. For (iii), recall that the theory RCF is rosy
and eliminates imaginaries; also, CODF eliminates imaginaries by [6].

We conclude this section by noting that under the hypothesis of Corollary 3.6
the model companions T+

D and T+
D∗ in fact exist. Existence of T+

D is one of the main
results of the second author’s paper [12] and, moreover, the simplicity claimed in
Remark 3.7(i) already appears there. Existence of T+

D∗ will appear in a forthcoming
paper.1 In the case when D = Q[x1, . . . , xd]/(x1, . . . xd)

2 (i.e., in the context of
differential fields of characteristic zero, see Remark 3.3) and T0 is the theory of a
bounded PAC field, the existence of T+

D∗ is an instance of the main result of [19]
and its simplicity already appears in [7].

1As part of joint work of the first author with Jan Dobrowolski.
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3.3. Differential fields in positive characteristic. In this section we apply our
results in the context of separably differentially closed fields [8]. Fix a prime p > 0.
Let Lλ be the language of fields expanded by the (countably-many) λ-functions.
Namely, by functions (λn,i : n ∈ ω, i ∈ pn) where λn,i is (n + 1)-ary. We denote

by SCFλ
p,∞ the theory of separably closed fields of infinite (algebraic) degree of

imperfection expanded by sentences specifying that the λn,i are to be interpreted
as the λ-functions; that is, for (ā, b), if ā is p-dependent or (ā, b) is p-independent
then λn,i(ā, b) = 0; otherwise,

b =
∑
i∈pn

(λn,i(ā, b))
p mi(ā)

where the mi(ā)’s denote the p-monomials (with some fixed order). We denote

forking-independence in SCFλ
p,∞ by |⌣

0
, and U0 is a monster model. Recall from

[18] that for Lλ-substructures K,L,E of U0 we have

K
0

|⌣
E

L ⇐⇒ K and L are algebraically disjoint and p-disjoint over E.

Let Lλ,δ be the expansion of Lλ by a (single) unary function symbol δ and let

DFλ
p be the theory of differential fields of characteristic p with sentences specifying

that the λn,i are the λ-functions.

Lemma 3.8. The theory DFλ
p is derivation like with respect to (SCFλ

p,∞, |⌣
0
).

Proof. Let K,L, , E |= (DFλ
p)

∀ be as in the definition of derivation-like. Since

K |⌣
0

E
L, K and L are p-disjoint over E, and so K ·L is an Lλ-substructure of U0.

On the other hand, since E ≤Lλ,δ
K, we have that K/E is a separable field

extension. This, together with the fact that E = Ealg ∩ K, implies that K/E

is a regular field extension. This, together with K |⌣
0

E
L, implies that K and L

are linearly disjoint over E. Linear disjointness implies K · L is isomorphic to the
quotient field of K⊗EL. This yields a derivation on K ·L making it a model of DFλ

p .
This yields condition (i) of derivation-like. Since separably algebraic extensions are
étale, condition (ii) follows. □

For ϵ ∈ N ∪ {∞}, recall that a differential field (K, δ) of characteristic p is said
to have differential degree of imperfection ϵ if

[CK : Kp] = pϵ.

Here CK denotes the field of δ-constants of (K, δ). When ϵ = ∞ the above equality
should be understood as the degree [CK : Kp] being infinite. See [8] for further
details.

In [8] it was shown that DFλ
p has a model-companion; namely, the theory

SDCFλ
p,∞ of separably differentially closed fields of characteristic p of infinite dif-

ferential degree of imperfection expanded by the λ-functions. We note that in
[8] the authors work in the language of the so-called differential λ-functions, de-
noted ℓn,i, but the model-companiability result holds as well working with the
algebraic λ-functions (the argument is spelled out in [13, Fact 4.4.16]). We note

that SCFλ
p,∞ ⊆SDCFλ

p,∞. Thus, Corollary 2.15(1) applies and recovers the fact
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that SDCFλ
p,∞ is stable; furthermore, it shows that, in the language Lλ,δ, forking-

independence coincides with algebraic-disjointness and p-disjointness (which is not
explicitly stated in [8]).

We conclude this section by noting that, unfortunately, our results do not seem
to apply to the theory DCFp, differentially closed fields of characteristic p > 0,
studied by Wood in [20]. Recall that DCFp is the model-companion of DFp, the
theory of differential fields (of characteristic p) in the language of differential fields
Lδ. In this language the theory DCFp does not eliminate quantifiers, but in [20]
Wood showed that it suffices to add the p-th root on constants function ℓ0; namely,
the unique function satisfying

(3)

{
(ℓ0(x))

p = x, when δ(x) = 0
ℓ0(x) = 0, o.w.

The theory of differentially perfect fields (i.e., those (K, δ) such that CK = Kp)

is denoted by DPFℓ0
p and can be axiomatised by expanding DFp by a sentence

specifying (3) above. It follows that DCFℓ0
p is the model-completion of DPFℓ0

p . One

could ask whether DPFℓ0
p is derivation-like with respect to SCFλ

p,∞ (note that the
underlying field of a DCFp is a model of SCFp,∞). We now prove this is not the
case.

Lemma 3.9. The theory DPFℓ0
p is not derivation-like with respect to (SCFλ

p,∞, |⌣
0
).

Proof. Consider the function field K = Fp(t) with standard derivation δ = d
dt .

Note that (K, δ) |= DPFp since CK = Fp. Inside the model U0 of SCFλ
p,∞, find

s such that t |⌣
0

Fp
s and tpSCFλ

p,∞(t/Fp) = tpSCFλ
p,∞(s/Fp). Equip L = Fp(s) with

the derivation δ = d
ds . We argue that there cannot be an M as in condition (i)

of derivation-like. It there were, M would be a model of DPFℓ0
p . In other words,

CM = Mp. Since K |⌣
0

Fp
L, we obtain that K and L are p-disjoint over Fp; and

so K · L = Fp(t, s) is an Lλ-substructure of M . Hence, the extension M/Fp(t, s) is
separable, which implies that Fp(t, s) is differentially perfect. But, since δ(t−s) = 0,
this would imply that t− s has a p-th root in Fp(t, s), which is impossible (as t and
s are algebraically independent). □

One could further ask whether DPFℓ0
p is derivation-like with respect to ACFp.

Again, this is not the case.

Lemma 3.10. The theory DPFℓ0
p is not derivation-like with respect to (ACFp, |⌣

alg
).

Proof. Consider the function field K = Fp(t) equipped with the standard derivation

δ = d
dt . Let x be a differential indeterminate over K. Let s := t + xp. Then, the

derivation onM := K⟨x⟩ = K(x, δx, . . . ) restricts to the standard derivation δ = d
ds

on L := Fp(s). Note that both K and L are differentially perfect and K |⌣
alg

Fp
L.

However, the algebraic closure of the compositum K · L contains x but it does not
contain δ(x); namely, it is not a differential subfield. In other words, condition (ii)
of derivation-like does not hold. □
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Remark 3.11.

(i) While DCFp is a stable theory, the two proofs above show that forking-
independence does not have an obvious algebraic description 2. Indeed,

the proof of Lemma 3.9 shows that |⌣
0
= |⌣

SCFp,∞ does not satisfy full

existence in DCFp; while the proof of 3.10 shows that |⌣
alg

does not satisfy
base-monotonicity in DCFp. Currently the authors are not aware of an
algebraic description of forking-independence in this theory.

(ii) We leave it as an exercise to check that DPFℓ0
p is almost derivation-like with

respect to (ACFp, |⌣
alg

) in the sense of Remark 2.9, and hence Lemmas 2.5

and 2.7 apply to the theory DCFℓ0
p .

3.4. CCMs with meromorphic vector fields. Our final example demonstrates
that our results apply beyond theories of fields. Namely, we observe that the theory,
recently formulated by Moosa [14], of compact complex manifolds equipped with a
“differential” structure fits into our setup.

Recall that the theory CCM - compact complex manifolds - is the theory of
the multi-sorted structure consisting of all compact complex manifolds (or rather
all reduced and irreducible compact complex-analytic spaces) by naming as basic
relations all closed complex-analytic subsets of finite cartesian products of sorts.
See [15] for further details on this theory. However, in [14], Moosa works in the
seemingly more general setup of “compactifiable” (rather than compact) complex-
analytic spaces. Namely, he works in a definable-expansion of CCM where there
is a sort for each irreducible meromorphic variety. We denote by L0 the language
of this expansion and continue to denote the theory of the expanded structure by
CCM. The advantage of this expansion is that now sorts are closed under taking
tangent bundles. The reader might want to refer to [14, §2] for further details and
explanations.

In the language L∇ = L0 ∪ {∇S : S is a sort of L0}, where each ∇S is a func-

tion symbol from sort S to TS, Moosa considers the universal L∇-theory CCM∀
∇

obtained by adding to CCM∀ axioms specifying that ∇S : S → TS is a section
to π : TS → S together with a compatibility condition of ∇ with definable mero-
morphic maps between sorts (see [14, Definition 3.3]). It turns out that, somewhat

unintentionally, Moosa has proven that CCM∀
∇ is derivation-like. Namely,

Lemma 3.12. The theory CCM∀
∇ is derivation-like with respect to (CCM, |⌣

0
)

(here |⌣
0
denotes forking independence).

Proof. In [14, Lemma 6.2] Moosa proved a form of independent amalgamation that
readily yields condition (i) of derivation-like. In addition, in [14, Lemma 6.1],
he proves the uniqueness of differential CCM-structures of dcl-closed sets inside
aclCCM-closures, yielding condition (ii) of derivation-like (or rather the weakening
observed in Remark 2.18). □

2These examples grew out of discussions with Amador Martin-Pizarro.
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In [14, Theorem 5.5], Moosa proves that the theory CCM∀
∇ admits a model-

companion which he denotes by DCCM. Our results then yield some of the model-
theoretic properties of DCCM deduced in §6 and §7 of [14]; e.g., completeness,
quantifier elimination, description acl and dcl, and stability.
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