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Abstract. We prove that there exists a version of Weil descent, or Weil
restriction, in the category of D-algebras. The objects of this category are k-
algebras R equipped with a homomorphism e : R → R⊗kD for some fixed field
k and finite-dimensional k-algebra D. We do this under a mild assumption on
the so-called associated endomorphisms. In particular, this yields the existence
of the Weil descent functor in the category of difference algebras, which, to
our knowledge, does not appear elsewhere.

1. Introduction

It is well known that if L/K is a finite field extension, then extension of scalars,
considered as a functor F : AlgK → AlgL, has a left adjoint, W . That is, W is a
functor AlgL → AlgK such that there is a natural bijection HomAlgK (W (C), R) →
HomAlgL(C,F (R)). This left adjoint is known as Weil descent or Weil restriction—
see, for instance, Section 1.3 of [19]. In fact, this result has been generalised by
Grothendieck to the case when K is an arbitrary commutative ring and L is a
K-algebra which, as a K-module, is free and finitely generated (see [5]).

This classical Weil descent has been used in applications to number theory [15]
and algebraic geometry [10]. It is also fundamental to the construction of prolonga-
tion spaces in the sense of Moosa-Scanlon [11]. Furthermore, since the adjunction
gives rise to the natural bijection HomAlgK (W (C),K) → HomAlgL(C,L), when C
is the coordinate ring of an affine L-variety V , we obtain a bijection between the
L-rational points of V and the K-rational points of the variety Spec(W (C)). This
fact is used by Pop in [14] to show that algebraic extensions of large fields are large.

In [7] the case of differential algebras is considered. The authors show that
the differential base change functor, F δ, has a left adjoint, which they call the
differential Weil descent functor, W δ. More precisely, they show that if (A, ∂)
is a differential ring and (B, d) an (A, ∂)-algebra, where B is finite and free as
an A-module, then for any (B, d)-algebra (D, δ), there exists a unique derivation
δW on W (D) making the unit of the classical adjunction into a differential ring
homomorphism. The authors then use this result in a similar way to Pop to show
that algebraic extensions of differentially large fields are again differentially large
(see [6]).
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It is natural, then, to explore whether the difference base change functor, Fσ—
here difference rings are rings equipped with an endomorphism—also has a left
adjoint. In general, it does not. Let A be a commutative unital ring and consider
the case when B = A[ε]/(ε2) for an indeterminate ε. Let τ : B → B be given by
τ(a + bε) = a so that (A, idA) ≤ (B, τ). Let R = B[x] and ρ : R → R the unique
endomorphism extending τ and sending x 7→ ε. If Fσ = Fσ

B/A had a left adjoint
Wσ, then the unit of this adjunction at R

ησR : R→ FσWσ(R)

would be a difference ring homomorphism. In particular

(†) ησR(ρ(x)) = (θ ⊗ τ)(ησR(x))
where θ is the endomorphism of Wσ(R). Let λ1 and λ2 be the coordinate projec-
tions with respect to the A-basis {1, ε} of B. Then, equation (†) translates to[

λ1(ρ(x))
λ2(ρ(x))

]
=

[
λ1(τ(1)) λ1(τ(ε))
λ2(τ(1)) λ2(τ(ε))

][
θ(λ1(η

σ
R(x)))

θ(λ2(η
σ
R(x)))

]
See Lemma 7.1 for details on this. Using the facts ρ(x) = ε, τ(1) = 1, and τ(ε) = 0,
the above yields [

0
1

]
=

[
1 0
0 0

][
θ(λ1(W

σ
R(x)))

θ(λ2(W
σ
R(x)))

]
which is clearly inconsistent. Hence, equation (†) cannot hold, and the left adjoint
Wσ cannot exist. The issue here is that the 2×2 matrix on the right-hand side that
we associate to (B, τ) is not invertible. In this case we say that τ does not have
invertible matrix. We will see in the course of Section 5 that τ having invertible
matrix is sufficient for a left adjoint to exist, and, in Section 6, that in the case
when A is a field, it is also necessary.

Theorem. Let (A, σ) be a difference ring and (B, τ) a difference (A, σ)-algebra
where B is finitely generated and free as an A-module, and τ has invertible ma-
trix. If (C, ρ) is a difference (B, τ)-algebra, then there is a unique endomorphism
ρW on the classical Weil restriction, W (C), making (W (C), ρW ) into a difference
(A, σ)-algebra and the unit of the classical adjunction ηC : C → W (C) ⊗A B into
a difference ring homomorphism (C, ρ)→ (W (C)⊗A B, ρ

W ⊗ τ). The assignment
(C, ρ) 7→ (W (C), ρW ) is the left adjoint to the difference base change functor.

One might initially think to define ρW = W (ρ). However, while ρ is a ring en-
domorphism, it is not in general a B-algebra homomorphism, and thus the functor
W cannot be applied to it. There is a natural way to make ρ into a B-algebra
homomorphism though: let Cτ be the B-algebra which, as a ring, is just C, but
whose B-algebra structure is given by b 7→ τ(b) ∈ C; then ρ is a B-algebra ho-
momorphism considered as a map C → Cτ . Applying W gives an A-algebra ho-
momorphism W (ρ) : W (C) → W (Cτ ). However, this does not correspond to an
endomorphism ofW (C). If we had an A-algebra homomorphismW (Cτ )→W (C)σ,
then composing with W (ρ) gives an A-algebra homomorphism W (C) → W (C)σ,
which corresponds to an endomorphism of W (C) extending σ. In Section 4 we
will see that such a map W (Cτ )→W (C)σ exists if τ has invertible matrix and in
Section 5 that it yields the left adjoint.

In fact, we prove our results in the more general framework of D-operators,
originally introduced in [11], of which endomorphisms are a special case. We refer
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the reader to Section 3 for details on D-rings, but give a brief presentation here.
For a fixed field k and a fixed finite-dimensional k-algebra D, by a D-ring we
mean a k-algebra R equipped with a k-algebra homomorphism e : R→ R⊗k D. If
we coordinatise e with respect to a basis of D, we obtain a sequence of additive
operators R → R—the coordinate maps of e with respect to the chosen basis.
These are often called free operators in the literature (for instance in [2] and [13]).
Differential rings fit into this framework of D-rings since δ is a derivation on R if
and only if the map

R→ R[ε]/(ε2)

r 7→ r + δ(r) ε

is a homomorphism, as do difference rings (trivially) since σ is an endomorphism
of R if and only if the map

R→ R

r 7→ σ(r)

is a homomorphism. For further details and examples see Example 3.3.
Now, let (A, e) be a D-ring and (B, f) an (A, e)-algebra where B is finite and

free as an A-module. The D-structure on B has associated endomorphisms (on B,
see Definition 3.4) and, as in the difference case, if the associated endomorphisms
of (B, f) do not have invertible matrix, then the left adjoint to the D-base change
functor (see Corollary 3.9) does not generally exist. Nonetheless, our main result
states that this is indeed the main obstacle: if the associated endomorphisms of
(B, f) have invertible matrix, then the D-base change functor has a left adjoint,
and if A is a field, this condition is necessary. See Theorem 5.5 and Corollary 6.20.

Besides being of independent interest, our work here on the D-Weil descent is
partly motivated by a model-theoretic study of a uniform companion for theories
of large D-fields, called UCD, in the spirit of the uniform companion of Tressl for
theories of large differential fields, UC, established in [17]. In a follow-up paper we
show that algebraic extensions of models of UCD which are large as a field are again
models of UCD—assuming that D is a local ring and the associated endomorphism
is trivial. We can then conclude that the algebraic closure of such a D-field is a
model of the theory D-CF0 of Moosa-Scanlon [13]. The argument we have in mind
to prove these results relies on the existence of a D-Weil descent—the content of
this paper. In the differential case this argument is done in [6].

The paper is organised as follows: Section 2 gives a brief overview of the classical
Weil descent and left adjoints in general. Section 3 then gives an introduction to D-
rings and D-algebras, as well as some algebraic notions about them. It also recalls
the definition of the D-base change functor. Section 4 examines sufficient conditions
for the D-Weil descent to exist, and Section 5 contains the proof of our main result.
Section 6 contains a partial converse to the main theorem, as well as some results
on properties preserved under taking the Weil descent. In particular, it will explain
how to apply our results in the case of several commuting endomorphisms and
derivations. Finally, the appendix shows how to explicitly construct the D-Weil
descent, mirroring the construction in the classical case.

The author would like to thank Omar León Sánchez for several helpful discus-
sions on the content of this paper and for support while writing it, as well as the
anonymous referee for their helpful comments and questions, which prompted a
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new, more natural proof of the main theorem. The original proof is sketched in the
appendix.

Throughout this paper we assume that all rings and algebras are commutative
and unital, and that ring and algebra homomorphisms preserve the unit.

2. Preliminaries on the classical Weil descent

In this section we briefly go over the details of the construction of the classical
Weil descent. We will not give proofs, but the reader can consult [3, §7.6] and [11,
§2] for further details. Our approach is modelled after [7], so the reader can also
consult there for a more in-depth explanation.

Let A be a ring, and B an A-algebra. For any A-algebra R we can form the
base change of R to B, namely R⊗A B, where the B-algebra structure is given by
b 7→ 1⊗ b. This base change naturally extends to a functor F : AlgA → AlgB where
we set F (ϕ) = ϕ⊗ idB . If we let G : AlgB → AlgA be the scalar restriction functor,
where G(C) is the A-algebra given by composing A → B → C, then G is right
adjoint to F . More importantly, if B is free of finite rank as an A-module, then F
has a left adjoint: Weil restriction W : AlgB → AlgA.

We state the following useful fact about adjunctions from Theorem 2 and Corol-
laries 1 and 2 of [9].

Theorem 2.1. Let F : X → Y be a functor, and suppose that for each C ∈ Y,
there is some W (C) ∈ X and ηC : C → F (W (C)) in Y such that the assignment
g 7→ F (g)◦ηC is a bijection HomX (W (C), R)→ HomY(C,F (R)). Then, W extends
to a functor Y → X which is left adjoint to F . The unit of this adjunction is given
by ηC .

In particular, for a morphism f : C → C ′ in Y, W (f) is defined to be the unique
morphism g : W (C)→W (C ′) such that F (g) ◦ ηC = ηC′ ◦ f .

This fact will allow us to construct the left adjoint using only the data of its
object map and unit. This fact is also the method of proof for the differential Weil
descent in [7].

For the convenience of the reader, we now briefly explain the situation in the
classical setup. Let b1, . . . , br be an A-basis of B. For each i = 1, . . . , r, let λi : B →
A be the A-module homomorphism with λi

(∑r
j=1 ajbj

)
= ai. If R is an A-

algebra, we consider the base change of λi to R—the R-module homomorphism
idR ⊗ λi : R ⊗A B → R. Note that idR ⊗ λi simply picks out the coefficient of the
basis element 1⊗ bi. We will write λi for idR ⊗ λi throughout, but it will be clear
from context which we mean.

Now let T be a set of indeterminates, and define

W (B[T ]) = A[T ]⊗r = A[T ]⊗A A[T ]⊗A . . .⊗A A[T ]

For each i and t ∈ T , let t(i) = 1⊗ . . .⊗ 1⊗ t⊗ 1⊗ . . .⊗ 1, where the t occurs in
the ith position. We also let ηB[T ] be the unique B-algebra homomorphism

ηB[T ] : B[T ]→ F (W (B[T ]))

t 7→
r∑

i=1

t(i)⊗ bi
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These choices make the following map τ(B[T ], R) a bijection for each A-algebra
R:

HomAlgA(A[T ]
⊗r, R)→ HomAlgB (B[T ], R⊗A B)

ϕ 7→ F (ϕ) ◦ ηB[T ]

where the compositional inverse is defined as follows. For ψ : B[T ] → R ⊗A B
a B-algebra homomorphism, let ϕ be the unique A-algebra homomorphism with
ϕ(t(i)) = λi(ψ(t)).

Now let C be a B-algebra, and take a surjective B-algebra homomorphism
πC : B[T ] → C for some set of indeterminates T . Let IC be the ideal of W (B[T ])
generated by all the λi(ηB[T ](f)) where f ranges over kerπC . Now define W (C) =
W (B[T ])/IC and W (πC) : W (B[T ])→W (C) as the residue map.

Then we induce a map τ(C,R) : HomAlgA(W (C), R)→ HomAlgB (C,F (R)) which
makes the following diagram commute:

HomAlgA(W (C), R) HomAlgB (C,F (R))

HomAlgA(W (B[T ]), R) HomAlgB (B[T ], F (R))

_◦W (πC)

τ(C,R)

_◦πC

τ(B[T ],R)

Let ηC = τ(C,W (C))(idW (C)), and note that

ηC(πC(t)) =

r∑
i=1

W (πC)(t(i))⊗ bi

From this we see that τ(C,R)(ϕ) = F (ϕ) ◦ ηC and that τ(C,R) is a bijection,
satisfying the conditions of Theorem 2.1. Then, W is a functor which is left adjoint
to F with unit ηC . This W is the classical Weil descent functor.

3. D-rings and D-algebra

In this section we review the basic definitions of D-rings as well as introduce
some algebraic notions which we will need later. See [2], [11], and [13] for more
details.

Fix a base field k, and let D be a finite-dimensional k-algebra. For the remainder
of this paper, we impose the following assumption:

Assumption 3.1. Since D is a finite-dimensional k-algebra, we may decompose
it as a finite product of local, finite-dimensional k-algebras (see [1, Theorem 8.7]),
say D = B1 × . . .×Bt. We assume that the residue field of each Bi is actually k.

This is the same assumption imposed by the authors in [13].
For any k-algebra R, we define D(R) = R⊗kD to be the base change of D to R.

Note that D(R) remains free and finite as an R-module. We will often identify a
k-basis of D with the corresponding R-basis of D(R). By a slight abuse of notation,
we think of D also as a functor Algk → Algk, where for a k-algebra homomorphism
ϕ : R→ S, D(ϕ) = ϕ⊗ idD.

Definition 3.2. A k-algebra R equipped with a map e : R→ D(R) is a D-ring if e
is a k-algebra homomorphism. In this case, we call e the D-structure or the D-ring
structure on R.
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Example 3.3. (1) Take D to be the algebra of dual numbers, k[ε]/(ε2), with
the standard k-algebra structure. If (R, e) is a D-ring, let σ and δ be such
that e(r) = σ(r) + δ(r)ε. Then, σ is a k-linear endomorphism of R, and δ
is a k-linear derivation on R which is twisted by σ. Indeed, the k-linearity
of e implies k-linearity of σ and δ, and multiplicativity implies that

σ(rs) + δ(rs)ε = σ(r)σ(s) + (σ(r)δ(s) + δ(r)σ(s))ε

Note that if a D-ring has σ = idR, then it is a differential k-algebra.
(2) Take D = kl with the product k-algebra structure. If (R, e) is a D-ring,

let e(r) =
∑

i σi(r)εi where εi is the standard basis of D. Then, D-rings
are precisely rings with l (not necessarily commuting) k-endomorphisms
σ1, . . . , σl.

We refer the reader to [13] for more examples.

Definition 3.4. Let (R, e) be a D-ring. Recall Assumption 3.1 that D = B1× . . .×
Bt and Bi is local with residue field k. Let πi : D → Bi → k be the composition
of the projection onto the ith coordinate and the residue map. These k-algebra
homomorphisms lift to πR

i : D(R) → R. Define σi = πR
i ◦ e for i = 1, . . . , t. Then,

σ1, . . . , σt are called the associated endomorphisms of the D-ring (R, e).

Remark 3.5. If D = kl as in Example 3.3(2) above, then the associated endomor-
phisms of a D-ring (R, e) are just the endomorphisms σ1, . . . , σl: the coordinate
functions of the homomorphism e with respect to the standard basis of kl.

Remark 3.6. In [13] the authors impose the condition that the D-ring structure
e must be a section to the projection map πR

1 : D(R) → R. This forces σ1 to be
the identity. Under this condition, every D-ring in Example 3.3(1) has σ = idR

and hence may be thought of as a differential k-algebra. We do not impose this
condition in this paper, but we will show that our results also work in this context
in Section 6.1.

We now specify the morphisms of the categories we are working in. These were
defined in Section 3.1 of [12].

Definition 3.7. If (R, e) and (S, f) are two D-rings, then ϕ : (R, e) → (S, f) is
a D-homomorphism if it is a k-algebra homomorphism and the following diagram
commutes:

D(R) D(S)

R S

D(ϕ)

ϕ

e s

If S is an R-algebra, then we will call (S, f) an (R, e)-algebra if the structure
map R → S is a D-homomorphism. If (S, f) and (T, g) are both (R, e)-algebras
and ϕ : S → T is a map between them, then we say that ϕ is a (R, e)-algebra
homomorphism if it is an R-algebra homomorphism and a D-homomorphism.

Remark 3.8. Note that in the context of Example 3.3(1) above, where σ is the
identity map, a map being a D-homomorphism is equivalent to it being a differential
ring homomorphism. In the context of Example 3.3(2), being a D-homomorphism
is equivalent to being a difference ring homomorphism for each endomorphism.

From now on we will denote by Alg(R,e) the category of (R, e)-algebras with
(R, e)-algebra homomorphisms.
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3.1. The tensor product of D-structures. We now need the correct notion of
base change in the context of D-algebras. That is, given a D-ring (R, e) and an
(R, e)-algebra (T, g), for any (R, e)-algebra (S, f) we need a D-ring structure on
S ⊗R T that makes S ⊗R T into a (T, g)-algebra. In [2], it is proved that there
exists a unique D-structure, f ⊗ g (called (f̃ , g̃) in [2]), on S⊗R T which makes the
natural maps ϕS : S → S ⊗R T and ϕT : T → S ⊗R T into D-homomorphisms. We
recall the definition of this structure:

D(S ⊗R T )

D(S) D(T )

S ⊗R T

D(R)

S T

R

D(ϕS) D(ϕT )

f⊗g

D(ιS) D(ιT )

ϕS

f

ϕT

g

ιS

e

ιT

Explicitly,
(f ⊗ g)(s⊗ t) = (D(ϕS) ◦ f(s)) · (D(ϕT ) ◦ g(t))

where · is the product in D(S ⊗R T ).
A short computation shows that this agrees with the correct notions of deriva-

tions on tensor products: (δ ⊗ d)(s ⊗ t) = δ(s) ⊗ t + s ⊗ d(t) (see [4, pg 21]), and
endomorphisms on tensor products: (σ ⊗ τ)(s⊗ t) = σ(s)⊗ τ(t).

In addition, if we have an (R, e)-algebra homomorphism θ : S → U , then the
map θ⊗ idT : S⊗R T → U ⊗R T is a (T, g)-algebra homomorphism. Indeed, we see
this from the following diagram:

D(U) D(U ⊗R T )

D(S) D(S ⊗R T ) D(T )

U U ⊗R T

S S ⊗R T T

θ

θ⊗idT

θ ⊗ idT is clearly a T -algebra homomorphism, so it remains to show the dashed
square commutes. Every other face in this diagram commutes by the result above,
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and since every element of S⊗RT is a sum of elements of the form s⊗ t, the dashed
face also commutes. So we have proved the following:

Corollary 3.9. Let (R, e) be a D-ring, and (T, g) an (R, e)-algebra. Define FD : Alg(R,e) →
Alg(T,g) by FD(S, f) = (S ⊗R T, f ⊗ g) on objects, and FD(θ) = θ ⊗ idT on mor-
phisms. Then, FD is a functor which is just the classical base change functor on
the underlying algebras.

We finish this section with the following lemma which will be used in Section 6.1.
It describes the associated endomorphisms of the D-structure on tensor products.

Lemma 3.10. Let (R, e) be a D-ring and (S, f), (T, g) ∈ Alg(R,e). If (S, f) has
associated endomorphisms σi and (T, g) has associated endomorphisms τi, then
(S ⊗R T, f ⊗ g) has associated endomorphisms σi ⊗ τi.

Proof. Using the notation of Definition 3.4, we have

πS⊗RT
i ◦ (f ⊗ g)(s⊗ t) = πS⊗RT

i (D(ϕS) ◦ f(s)) · πS⊗RT
i (D(ϕT ) ◦ g(t))

= (πS
i ◦ f(s)⊗ 1) · (1⊗ πT

i ◦ g(t))
= σi(s)⊗ τi(t)

■

4. The matrix associated to a free and finite D-ring

In this section we establish some technical results that will be needed to con-
struct a left adjoint to FD in Section 5. We carry forward the notation from the
previous section. In particular, k is a field, D is a finite-dimensional k-algebra, and
Assumption 3.1 still holds.

Recall from the example in the introduction that, in general, the difference base
change functor had no left adjoint. There, the nonexistence of the left adjoint is
due to the fact that the matrix associated to the endomorphism,[

λ1(f(1)) λ1(f(ε))
λ2(f(1)) λ2(f(ε))

]
=

[
1 0
0 0

]
,

is not invertible.
We will show in Section 5 that if the associated matrix is invertible, then we can

construct a left adjoint to FD. The next subsection investigates conditions under
which the associated matrix is invertible.

4.1. The matrix associated to an endomorphism. As before, let A be a ring
and B an A-algebra which is finite and free as an A-module. We fix a ring endo-
morphism σ : B → B with σ(A) ⊆ A.

Definition 4.1. For an A-basis b = (b1, . . . , br) of B, let Mσ
b be the following

matrix associated to σ:

Mσ
b =


λ1(σ(b1)) λ1(σ(b2)) · · · λ1(σ(br))
λ2(σ(b1)) λ2(σ(b2)) · · · λ2(σ(br))

...
. . .

λr(σ(b1)) λr(σ(b2)) · · · λr(σ(br))


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where λi is the ith coordinate projection B → A with respect to the basis b. Note
that the maps λi are dependent on the basis b1, . . . , br and hence will change if the
basis changes.

We will say that σ has invertible matrix with respect to the basis b = (b1, . . . , br)
if Mσ

b is invertible in Matr×r(A).

Proposition 4.2. The following are equivalent:
(i) σ has invertible matrix with respect to some A-basis of B.
(ii) σ has invertible matrix with respect to every A-basis of B.
(iii) If b1, . . . , br is an A-basis of B, then σ(b1), . . . , σ(br) is also an A-basis of

B.
(iv) spanA(σ(B)) = B.

Proof. (ii) ⇒ (i) and (iii) ⇒ (iv) are obvious.
For (ii)⇔ (iii), note that Mσ

b is just the change of basis matrix between the two
bases b1, . . . , br and σ(b1), . . . , σ(br).

For (i) ⇒ (ii), say σ has invertible matrix with respect to b1, . . . , br, and let
β1, . . . , βr be some other basis. Let X be the change of basis matrix from the
b to the β, that is, βi =

∑
j xjibj , and Y = X−1, and let µi be the A-module

homomorphisms with µi(
∑

j ajβj) = ai. Then,

σ(βi) =
∑
j

σ(xji)σ(bj)

=
∑
j

∑
k

σ(xji)λk(σ(bj))bk

=
∑
j

∑
k

∑
n

σ(xji)λk(σ(bj))ynkβn

and so µn(σ(βi)) =
∑

j

∑
k σ(xji)λk(σ(bj))ynk, that is, Mσ

β = YMσ
b σ(X). Now

since X is invertible, σ(X) is invertible in Matr×r(A). So Mσ
β is invertible.

For (iv) ⇒ (iii), assume b1, . . . , br is an A-basis of B. Any b ∈ B has b =∑
i aiσ(βi) for some βi ∈ B. Also, βi =

∑
j αijbj since the bi are a basis, and so b =∑

i

∑
j aiσ(αij)σ(bj). Then, σ(b1), . . . , σ(br) spans B over A. Now write X for the

matrix where σ(bi) =
∑

j xjibj , and Y for the matrix where bi =
∑

j yjiσ(bj). Then,
since b1, . . . , br is a basis, we have that XY = I, and so by taking determinants, we
see that X and Y are invertible in Matr×r(A). Then, σ(b1), . . . , σ(br) is an A-basis
of B. ■

Definition 4.3. As a result of this proposition, having invertible matrix is inde-
pendent of the choice of A-basis of B. We will say that σ has invertible matrix if
any of the above conditions hold.

The following lemmas explain the connection between the endomorphism σ hav-
ing invertible matrix and being an automorphism.

Lemma 4.4. If σ|A : A → A is an automorphism, then σ is an automorphism on
B if and only if σ has invertible matrix.

Proof. Define Bσ to be the A-algebra with underlying ring B, but A-algebra struc-
ture map a 7→ σ(a). Since σ|A is an automorphism, Bσ is a finite and free A-algebra
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of the same rank as B: in fact, if b1, . . . , br is a basis of B, then it is also a basis of
Bσ. Now the map f : B → Bσ given by f(b) = σ(b) is actually A-linear, with

f(bi) =
∑
j

λj(σ(bi))bj

=
∑
j

σ(σ|−1
A λj(σ(bi)))bj

and so the matrix of the A-linear map f is σ|−1
A (Mσ

b ). Then, f is an isomorphism
if and only if σ|−1

A (Mσ
b ) is invertible, if and only if σ has invertible matrix. ■

Lemma 4.5. If σ is an automorphism on B, then σ|A is an automorphism on A.

Proof. It is enough to show that σ|A is surjective onto A. Note that since σ is
surjective onto B, the A-linear span of {σ(b1), . . . , σ(br)} is B, and by a similar
argument to the proof of (iv)⇒ (iii) in Proposition 4.2, it must be an A-basis. Now,
let a ∈ A. Then there is a b ∈ B such that aσ(b1) = σ(b). Writing b =

∑r
i=1 aibi

for some ai ∈ A, we get aσ(b1) =
∑r

i=1 σ(ai)σ(bi). Since {σ(b1), . . . , σ(br)} is an
A-basis, we get that a = σ(a1), and hence σ|A is surjective onto A. ■

As a result, we see that if σ is an automorphism of B, then it has invertible
matrix. It turns out the converse is not true, as we point out in the following
example.

Example 4.6. Let A = R(x1, x2, . . .), B = C(x1, x2, . . .), with basis b1 = 1, b2 = i,
σ|C = idC, and σ(xi) = xi+1. Note that A and B are fields and that σ and σ|A are
not surjective. However, the associated matrix is

Mσ
b =

[
λ1(σ(b1)) λ1(σ(b2))

λ2(σ(b1)) λ2(σ(b2))

]
=

[
1 0

0 1

]
which is invertible.

On the other hand, one can have an injective endomorphism σ that does not
have invertible matrix.

Example 4.7. Let K be a field, A = K[x] and B = A[ε]/(ε2) with σ(p(x) +
q(x)ε) = p(x) + xq(x)ε. Then with respect to the basis b = {1, ε}, we have

Mσ
b =

[
λ1(σ(b1)) λ1(σ(b2))

λ2(σ(b1)) λ2(σ(b2))

]
=

[
1 0

0 x

]
which is not invertible in Mat2×2(K[x]).

4.2. The matrix associated to a D-ring. We now extend the ideas of the pre-
vious subsection to the more general case of D-rings. Just as we can associate a
matrix to an endormophism of B, we can associate a matrix to a D-ring structure
on B which, when invertible, will allow us to construct a left adjoint to FD in
Section 5. Here, we analyse this matrix and the conditions on its invertibility.
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Let (A, e) be a D-ring and let (B, f) be an (A, e)-algebra, where B is a finite
and free A-algebra. For any k-basis ε1, . . . , εl of D and any A-basis b1, . . . , br of B,
consider the following rl × rl matrix with entries in A:

M =


M11 M12 · · · M1,l

M21 M22 · · · M2,l

...
. . .

Ml,1 Ml,2 · · · Ml,l



where Mmj is the r × r matrix given by

(Mmj)ni =

l∑
k=1

ajkmλn(fk(bi))

Recall that λn : B → A is the coordinate bn-projection. The elements ajkm ∈ k
are defined by εjεk =

∑l
m=1 ajkmεm, and fk : B → B is the coordinate of f with

respect to εk given by f(r) =
∑l

k=1 fk(r)εk. We call M the matrix associated to
(B, f).

We will now briefly explain where this matrix comes from and why we need to
consider its invertibility. Define the functor De : AlgA → AlgA by setting De(R)
to be the ring D(R) but with A-algebra structure given by the composition of
e : A → D(A) with the natural map D(A) → D(R). See Notation 3.9 of [11] and
the discussion after Remark 2.10 of [2]. On morphisms, De(α) = D(α). We define
Df : AlgB → AlgB similarly. Suppose u : R → D(R) is a D-ring structure on the
A-algebra R. Then (R, u) is an (A, e)-algebra if and only if u is an A-algebra
homomorphism R→ De(R).

We now define a natural transformation µ : FDe → DfF in the following way: for
any A-algebra R, we have a natural A-algebra homomorphism De(R)→ Df (R⊗A

B) and an A-algebra homomorphism B → Df (R⊗A B) coming from the composi-
tion of f with the natural map. Since De(R)⊗A B is the coproduct of A-algebras,
we get an A-algebra homomorphism µR : De(R)⊗AB → Df (R⊗AB), which is also
a B-algebra homomorphism. It is clear from its construction that µ is natural in
R.

Lemma 4.8. The component of µ at R, µR : De(R) ⊗A B → Df (R ⊗A B), is an
R-linear map of free R-modules with the natural R-module structure. With respect
to the R-bases {εn⊗bm} of De(R)⊗AB and {1⊗bnεm} of Df (R⊗AB), the matrix
representation of µR is M . In particular, µ is a natural isomorphism if and only if
M is invertible.
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Proof. That µR is R-linear is clear from construction. The explicit formula for µR

is given by

r∑
i=1

 l∑
j=1

rijεj

⊗ bi 7→ r∑
i=1

 l∑
j=1

rij ⊗ 1 εj

 ·( l∑
k=1

1⊗ fk(bi)εk

)

=

r∑
i=1

l∑
j=1

l∑
k=1

l∑
m=1

ajkmrij ⊗ fk(bi) εm

=

r∑
i=1

l∑
j=1

l∑
k=1

l∑
m=1

r∑
n=1

ajkmλn(fk(bi))rij ⊗ bn εm

which immediately shows that M is the matrix of µR with respect to the aforemen-
tioned bases. ■

From the lemma, we see that if M is invertible, we have a natural transfor-
mation WDf → WDfFW → WFDeW → DeW coming from the composition
of µ−1 with the unit and counit of the classical adjunction. If g : C → Df (C)
is a B-algebra homomorphism, then composing the above natural transformation
with the morphism W (g) : W (C) → WDf (C) gives an A-algebra homomorphism
gW : W (C) → DeW (C). In the next section, we will see that this D-structure on
W (C) yields the left adjoint of FD. For now, we study the invertibility of M .

Note that M depends on the choice of the k-basis of D and the A-basis of B.
The following result shows us that invertibility of M is actually independent of the
k-basis of D. After the proof of Theorem 4.10, we will see that invertibility of M
is also independent of the A-basis of B.

Proposition 4.9. Suppose we have two bases ε = {ε1, . . . , εl} and ω = {ω1, . . . , ωl}
of D, with X the change of basis matrix from the ε to the ω, that is, ωi =∑l

j=1 xjiεj. Let X̃ be the rl × rl matrix obtained from X by replacing each en-
try x by the r × r block xI, where I is the r × r identity matrix. Write Mε for the
matrix M corresponding to the basis ε and similarly for Mω. Then,

Mω = X̃−1MεX̃

Proof. Let aijk be the product coefficients of the ε and αijk for the ω. Also, write
fεi for the ith operator with respect to the basis ε and similarly for fωi . We can
obtain a relation between these by noting that the homomorphism f : B → D(B)
they induce must be the same, that is:

l∑
i=1

fεi (b) εi =

l∑
i=1

fωi (b) ωi for all b ∈ B

To ease notation, let Ỹ = X̃−1. Let N = Ỹ MεX̃. Then, the mj block of N is

Nmj =
∑
p

∑
q

ỸmpM
ε
pqX̃qj

=
∑
p

∑
q

ympM
ε
pqxqj
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Then the ni element of Nmj is

(Nmj)ni =
∑
p

∑
q

ympxqj(M
ε
pq)ni

=
∑
p

∑
q

∑
k

ympxqjaqkpλn(f
ε
k(bi))

=
∑
p

∑
q

∑
k

ympxqjaqkpλn

(∑
r

xkrf
ω
r (bi)

)
=
∑
p

∑
q

∑
k

∑
r

xkrympxqjaqkpλn(f
ω
r (bi))

=
∑
r

(∑
p

∑
q

∑
k

xkrympxqjaqkp

)
λn(f

ω
r (bi))

We now claim that αjrm =
∑

p,q,k xkrympxqjaqkp. Indeed, we have

ωjωr =

(∑
q

xqjεq

)(∑
k

xkrεk

)
=
∑
q,k,p

xqjxkraqkpεp

=
∑

q,k,p,u

xqjxkraqkpyupωu

Then the claim follows.
It then follows that

(Nmj)ni =
∑
r

αjrmλn(f
ω
r (bi))

=
∑
k

αjkmλn(f
ω
k (bi))

= (Mω
mj)ni

and hence Mω = Ỹ MεX̃. ■

This proposition tells us that invertibility of M is independent of which k-basis
of D we choose. We now construct a “suitable” basis of D in order to characterise
invertibility of M in Theorem 4.10 below. This basis is constructed as follows.
Write D = B1 × . . . × Bt where each Bi is a local, finite-dimensional k-algebra
with residue field k (see Assumption 3.1). Let mi be the unique maximal ideal of
Bi. Nakayama’s Lemma tells us that mi is nilpotent: say di is minimal such that
mdi+1

i = 0. It then follows that for each Bi we can find a k-basis Bi =
⋃di

j=0 B
j
i

where Bji is a k-basis of mj
i modulo mj+1

i . Note that since the residue field of Bi

is k, we may choose B0i = {1}. Embed these bases inside D in the usual way,
that is, if x ∈ Bi, send x to the element of D with x in the ith position and zeros
elsewhere. Then, the union of these forms a basis B of D. Order B =

⋃t
i=1

⋃di

j=0 B
j
i

lexicographically on i and j. The ordering of each Bji does not matter. We will
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write the elements of B as ε1, . . . , εl. Let ajkm be the product coefficients of B; that
is, εjεk =

∑l
m=1 ajkmεm.

By the construction of the basis, we know that εjεk = 0 whenever εj and εk
come from different Bi. If they come from the same Bi, then they can be expressed
as a linear combination of Bi, and so if εm does not come from Bi, it will not appear
in this linear combination. So we see that ajkm = 0 unless εj , εk, and εm all come
from the same Bi.

Furthermore, if εj ∈ Bni and εk ∈ Bpi , then εjεk ∈ span(
⋃di

q=n+p B
q
i ). Hence, if

εm ∈ Bqi for q < n + p, ajkm = 0. From these facts we can deduce the values of
ajkm in specific cases:

(1) m < j and p > 0: ajkm = 0.
Since m < j, q ≤ n, and hence q < n+ p. By the above, ajkm = 0.

(2) m < j and p = 0: ajkm = 0.
Since p = 0, εk is the 1 in Bi. Then, εjεk = εj ̸= εm.

(3) m = j and p > 0: ajkm = 0.
Again, as m = j, q = n and so q < n+ p.

(4) m = j and p = 0: ajkm = 1.
εjεk = εj = εm. So ajkm = 1.

Now, recall the definition of the matrix M :

M =


M11 M12 · · · M1,l

M21 M22 · · · M2,l

...
. . .

Ml,1 Ml,2 · · · Ml,l


where

(Mmj)ni =

l∑
k=1

ajkmλn(fk(bi))

With respect to the chosen basis, B = {ε1, . . . , εl}, we now investigate the shape
of each block Mmj for m ≤ j. Consider first the case when m < j. As pointed out
above, if εj and εm belong to different Bi, then ajkm = 0 for all k. Otherwise, we
are in cases (1) or (2) above, and hence ajkm = 0 for all k. Hence, the block Mmj

is 0.
Now consider the case m = j, that is, the block Mjj . Again, if εj and εm belong

to different Bi, then ajkj = 0 for all k. If they belong to the same Bi, then case
(3) tells us that ajkj = 0 when p > 0, and (4) tells us that ajkj = 1 when p = 0. In
conclusion, (Mjj)ni = λn(fk(bi)) where k is such that εk ∈ B0r and εj ∈ Br.

From Definition 3.4 we see that the ith projection map πi is just the map that
projects onto the coefficient of εk where εk ∈ B0

i . Hence, the ith associated endo-
morphism of (B, f), denoted σi, is just fk. Note that σi has this form because of
the chosen basis of D.
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So in all, M is a block lower triangular matrix whose diagonal r × r blocks Mjj

are of the form

Mσi

b =


λ1(σi(b1)) λ1(σi(b2)) · · · λ1(σi(br))
λ2(σi(b1)) λ2(σi(b2)) · · · λ2(σi(br))

...
. . .

λr(σi(b1)) λr(σi(b2)) · · · λr(σi(br))


for some i = 1, . . . , t.

Note that Mσi

b is the matrix associated to the endomorphism σi as in Section 4.1.
Hence, we have proved the following important result:

Theorem 4.10. M is invertible if and only if each associated endomorphism of
(B, f) has invertible matrix (in the sense of Section 4.1).

Remark 4.11. Combining this theorem with Propositions 4.2 and 4.9, we see that
invertibility of M is independent of the choice of bases of D and B.

5. Weil Descent for D-algebras

In this section we prove the main theorem: Theorem 5.5 below. As before, we let
(A, e) be a D-ring, (B, f) an (A, e)-algebra where B is a finite and free A-algebra.

The proofs in this section make use of the natural transformation µ : FDe →
DfF defined in the previous section whose invertibility is equivalent to the invert-
ibility of the matrix M—the matrix associated to (B, f)—by Lemma 4.8. Further-
more, recall that in Theorem 4.10 we proved that M is invertible if and only if the
associated endomorphisms of (B, f) have invertible matrix. For the remainder of
this section, in addition to Assumption 3.1, we make the following assumption:

Assumption 5.1. The associated endomorphisms of (B, f) all have invertible ma-
trix. Equivalently, µ is a natural isomorphism.

The following is part of the content of our main theorem.

Theorem 5.2. The D-base change functor, FD, has a left adjoint WD. More
precisely, for a (B, f)-algebra (C, g), there exists a unique D-structure gW on W (C)
that makes the unit of the classical adjunction, ηC , into a D-homomorphism. WD

has the form WD(C, g) = (W (C), gW ).

Before proving this result, we fix some notation. Since W ⊣ F , we have the
natural transformations given by the unit, η : idAlgB → FW , and the counit,
ε : WF → idAlgA . We do not need to refer to the k-basis of D in this section, so we
will use ε to denote the counit. We will often identify a functor with the identity
natural transformation on that functor. Recall the functors De : AlgA → AlgA and
Df : AlgB → AlgB defined in the previous section where De(R) is the ring D(R)
but with A-algebra structure given by the composition of e : A → D(A) with the
natural map D(A)→ D(R), and on morphisms, De(α) = D(α). Recall also that a
D-ring structure on R making it into an (A, e)-algebra is equivalent to an A-algebra
homomorphism R→ De(R).

Remark 5.3. Suppose (R, u) is an (A, e)-algebra so that u : R → De(R) is an A-
algebra homomorphism. Then µR ◦F (u) : F (R)→ DfF (R) is the D-ring structure
on F (R) corresponding to u⊗ f from the D-base change functor in Section 3.2.
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We now use the natural isomorphism µ to define a suitable D-ring structure on
W (C). For ease of notation we first define the natural transformation

ζ : WDf → DeW

by the composition

(‡) WDf WDfFW WFDeW DeW
WDfη Wµ−1W εDeW

Now suppose (C, g) is a (B, f)-algebra, so that g corresponds to the B-algebra
homomorphism g : C → Df (C). Let gW = ζC ◦W (g) : W (C) → DeW (C). Then
(W (C), gW ) is an (A, e)-algebra. We define the functorWD on objects asWD(C, g) =
(W (C), gW ) and on morphisms as WD(α) =W (α). Since both W and ζ are natu-
ral, it is clear that if α is a D-homomorphism, then W (α) is a D-homomorphism,
so that WD is actually a functor. We now need to show that WD is left adjoint to
FD by showing that the natural bijection coming from the classical adjunction

HomAlgA(W (C), R)→ HomAlgB (C,F (R))

ϕ 7→ F (ϕ) ◦ ηC
εR ◦W (ψ)← [ ψ

restricts to a natural bijection

HomAlg(A,e)
(WD(C, g), (R, u))→ HomAlg(B,f)

((C, g), FD(R, u))

ϕ 7→ FD(ϕ) ◦ ηC
εR ◦WD(ψ)←[ ψ

We will do this by showing that both ηC and εR are D-homomorphisms with the
appropriate D-structures defined above. Consider the following diagram of natural
transformations:

FWDf FWDfFW FWFDeW FDeW DfFW

Df DfFW FDeW

FWDfη FWµ−1W FεDeW µW

ηDf

Dfη

ηDfFW

µ−1W

ηFDeW

The squares commute due to naturality of η, and the equality is due to the
adjunction axiom: Fε ◦ ηF = F . The composition along the top row is µW ◦ Fζ.
By naturality of η, we get

FW (C) FWDf (C)

C Df (C)

FW (g)

ηC

g

ηDf (C)

and putting these together we get

Df (C) DfFW (C)

C FW (C)

Df (ηC)

ηC

g µW (C)◦F (gW )

so that ηC is a D-homomorphism by Remark 5.3.
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Suppose now that g′ is a D-ring structure W (C) → DeW (C) making ηC into a
D-homomorphism, so that the following diagram of B-algebras commutes:

Df (C) DfFW (C)

C FW (C)

Df (ηC)

ηC

g µW (C)◦F (g′)

Since µ is an isomorphism, this is equivalent to the following diagram of B-
algebras commuting:

(∗)
Df (C) FDeW (C)

C FW (C)

µ−1
W (C)

◦Df (ηC)

ηC

g F (g′)

Consider now the diagram of A-algebras

WDf (C) WFDeW (C) DeW (C)

W (C) WFW (C) W (C)

W (µ−1
W (C)

◦Df (ηC)) εDeW (C)

W (ηC)

W (g) WF (g′)

εW (C)

g′

Note that the left square commutes by applying W to square (∗), and the right
square commutes by naturality of ε. By the adjunction axiom εW ◦Wη =W , the
composition along the bottom is idW (C), and the composition along the top is ζC
by definition. So gW = g′, and we have proved the following.

Lemma 5.4. gW is the unique D-structure on W (C) making (W (C), gW ) into an
(A, e)-algebra and the unit, ηC , into a D-homomorphism.

The adjunction axioms tell us that Fε ◦ ηF = F , so that DfFε ◦ DfηF = DfF .
Since µ is natural, the following diagram commutes :

FDeWF FDe

DfFWF DfF

DfF

FDeε

µWF µ

DfFε

DfηF
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Now apply W and use naturality of the counit to get

DeWF De

WFDeWF WFDe

WDfFWF WDfF

WDfF

Deε

εDeWF

WFDeε

WµWF Wµ

εDe

WDfFε

WDfηF

Note that the composition up the left is precisely ζF . So εDe = Deε ◦ ζF ◦Wµ.
Naturality of ε gives

WF (R) WFDe(R) DeWF (R)

R De(R)

WF (u)

εR εDe(R)

ζF (R)◦W (µR)

De(εR)
u

and since the composition along the top row is (µR ◦ F (u))W , the counit εR is a
D-homomorphism.

Theorem 5.5 (The D-Weil Descent). Suppose (A, e) is a D-ring and (B, f) is
an (A, e)-algebra, where B is a finite and free A-algebra. Suppose also that the
associated endomorphisms of (B, f) all have invertible matrix. Then, the D-base
change functor, FD : Alg(A,e) → Alg(B,f) has a left adjoint denoted WD called the
D-Weil descent. More precisely, WD(C, g) = (W (C), gW ) where gW is the D-ring
structure defined by ζC ◦W (g) and ζ : WDf → DeW is the natural transformation
defined in equation (‡).

In fact, the natural bijection τ(C,R) from the classical adjunction restricts to a
natural bijection:

τD((C, g), (R, u)) : HomAlg(A,e)
(WD(C, g), (R, u))→ HomAlg(B,f)

((C, g), FD(R, u))

Remark 5.6. If we apply this theorem to the case when D = k, we get what we call
the difference Weil descent and denote it Wσ. In this case, D-rings are rings with
a single (not necessarily injective) endomorphism.

6. Further remarks

In this section we investigate three further aspects. Firstly, we make some obser-
vations about properties of the associated endomorphisms that are transferred by
the D-Weil descent. In particular, we prove that if an associated endomorphism of
(C, g) is trivial, then the same is true of the D-Weil descent, (W (C), gW ). Secondly,
we prove results about the composition of a D1-structure and a D2-structure and
their Weil descents. In particular, we will show that commutativity of these struc-
tures is preserved after taking the Weil descent. These two subsections imply that
the result of this paper is an actual generalisation of the case of several commuting
derivations from [7]. Thirdly, we explore the necessity of the condition that the
associated endomorphisms of (B, f) have invertible matrix for the existence of the
D-Weil descent.
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Throughout this section, unless stated otherwise, (A, e) is a D-ring, (B, f) is
an (A, e)-algebra, where B is finite and free over A, and (C, g) is a (B, f)-algebra.
Assumption 3.1 is still in force.

6.1. Transfer properties of the associated endomorphisms. Recall from Def-
inition 3.4 the projection maps for D. If D =

∏t
i=1Bi where each Bi is a local

k-algebra with residue field k, then πi : D → Bi → k is the composition of the pro-
jection onto the ith component of D with the residue map onto k. These πi lift to
R-algebra homomorphisms πR

i : D(R) → R. Then the associated endomorphisms
of a D-ring (R, e) are defined by πR

i ◦ e for each i = 1, . . . , t.

Lemma 6.1. Let (C, g) be a (B, f)-algebra, and suppose that the associated endo-
morphisms of (B, f) have invertible matrix. Then the associated endomorphisms
of the D-Weil descent of (C, g) are the difference Weil descents of the associated
endomorphisms of (C, g). In particular, if an associated endomorphism of (C, g) is
trivial, then so is the corresponding one of WD(C, g).

Proof. Let (σi), (τi), (υi), (ρi) be the associated endomorphisms of (A, e), (B, f),
(C, g), (W (C), gW ), respectively. We need to show that ρi = υW

σ

i . Consider the
following diagrams for each i = 1, . . . , t:

C F (W (C))

D(C) D(F (W (C)))

C F (W (C))

ηC

πC
i

D(ηC)

π
F (W (C))
i

g

ηC

gW⊗f

The compositions of the vertical maps on the left are υi by definition. On
the right they are ρi ⊗ τi by Lemma 3.10. Hence ρi is a difference structure on
W (C) that makes (W (C), ρi) into an (A, σi)-algebra and ηC into a (B, τi)-algebra
homomorphism. Since τi has invertible matrix, Lemma 5.4 tells us that such a
difference structure is unique, and so we must have ρi = υW

σ

i .
For the in particular clause, since the following square commutes

C F (W (C))

C F (W (C))

ηC

idC

ηC

idW (C)⊗idB

we must have (idC)
W = idW (C) by the uniqueness of the difference structure on

W (C) making it an (A, idA)-algebra and ηC a (B, idB)-algebra homomorphism.
Note here that idB has invertible matrix. ■

Remark 6.2. This lemma tells us that we may apply our D-Weil descent result
(Theorem 5.5) in the context of [13]. Recall that, there, the authors impose the
condition that for a D-ring (R, e), e must also be a section to πR

1 , and hence that
the first associated endomorphism must be the identity. Thus, if (A, e) and (B, f)
have trivial first associated endomorphism, we may consider the category of (A, e)-
algebras (R, u) where u has trivial first associated endomorphism, and similarly for
(B, f)-algebras. Denote these subcategories Alg∗(A,e) and Alg∗(B,f). One checks that
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FD can now be considered as a functor Alg∗(A,e) → Alg∗(B,f), and the previous lemma
tells us that WD restricts to a functor Alg∗(B,f) → Alg∗(A,e) which is still left adjoint
to FD. In particular, our result is an actual generalisation of the single derivation
case from [7], since the category of differential A-algebras is equal to Alg∗(A,e) when
we take D = k[ε]/(ε2).

We point out here that WD does not in general preserve injectivity of the associ-
ated endomorphisms. That is, if the ith associated endomorphism of g is injective,
the ith associated endomorphism of gW may no longer be injective.

Example 6.3. Let D = k so that the associated endomorphism of a D-ring struc-
ture is just the D-ring structure itself. Let A = F2 be the field with two elements,
and let B = F2[ε]/(ε

2). Let idA and idB be the D-ring structures on A and B
respectively. Note then that if (C, ρ) is a (B, idB)-algebra, ρ is a B-algebra endo-
morphism of C making the following diagram commute:

C F (W (C))

C F (W (C))

ηC

ρ

ηC

ρW⊗idB

Note also that since ρ is a B-algebra endomorphism, it is a morphism in AlgB ,
and so we may apply the classical Weil descent to it. Theorem 2.1 tells us that
W (ρ) = ρW .

Let C = B[t] and let ρ be the unique map extending idB on B and sending
t 7→ t2. Then ρ is injective. Recall from Section 2 that W (B[t]) = A[t]⊗A A[t] and
that ηC(t) = t(1)⊗ 1 + t(2)⊗ ε. Then

ηC(ρ(t)) = ηC(t
2)

= ηC(t)
2

= t(1)2 ⊗ 1

where the last equality holds because ε2 = 0 and we are in characteristic 2.
Also

(W (ρ)⊗ idB)(ηC(t)) =W (ρ)(t(1))⊗ 1 +W (ρ)(t(2))⊗ ε

By the commutativity of the diagram, we have that W (ρ)(t(1)) = t(1)2 and
W (ρ)(t(2)) = 0. Hence W (ρ) is not injective.

Remark 6.4. (1) This example tells us that in general the difference Weil de-
scent functor does not restrict to the categories of algebras equipped with
an injective endomorphism. However, Corollary 6.9 will tell us that the dif-
ference Weil descent does preserve automorphisms, and hence will restrict
to a functor in the categories of inversive difference algebras (see [8]).

(2) The example above uses in an essential way the fact that the characteristic
is positive. We are not currently aware of such an example in characteristic
zero.
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6.2. The composition of a D1-structure and a D2-structure. Suppose we now
have two finite-dimensional k-algebras D1 =

∏t1
i=1Bi and D2 =

∏t2
j=1 Cj where each

Bi and Cj are local with residue field k. Then, D2 ⊗k D1 =
∏t1

i=1

∏t2
j=1 Cj ⊗k Bi.

From [16] we know that Cj ⊗k Bi is local with residue field k, and hence D2 ⊗k D1

satisfies Assumption 3.1. We may then consider the category of D2 ⊗k D1-rings.
We will write these as D1D2-rings since

(D2 ⊗k D1)(R) = R⊗k (D2 ⊗k D1) ∼= (R⊗k D2)⊗k D1 = D1(D2(R))

for a k-algebra R.
If some k-algebra R has a D1-structure e1 and a D2-structure e2, we can form a

D1D2-structure on R by the k-algebra homomorphism

D1(e2) ◦ e1 : R→ D1D2(R)

We now investigate the Weil descent of this composition of D1-structures and D2-
structures. SupposeR, S, and T all have aD1-structure e1, f1, g1 and aD2-structure
e2, f2, g2 that make (S, f1) and (T, g1) into (R, e1)-algebras and (S, f2) and (T, g2)
into (R, e2)-algebras. We can then define D1D2-structures on each of them as above.

Lemma 6.5. Assuming the notation of the paragraph above, we have

D1(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (D1(f2) ◦ f1)⊗ (D1(g2) ◦ g1).

Proof. Consider the following diagram

D1D2(S) D1D2(S ⊗R T )

D1D2(R) D1D2(T )

D1(S) D1(S ⊗R T )

D1(R) D1(T )

S S ⊗R T

R T

D1(f2)

D1(f2⊗g2)

D1(e2)

D1(g2)

f1

f1⊗g1

e1

g1

The horizontal maps are just the natural maps. The lower cube commutes due to
the definition of the tensor product of D1-algebras, and the upper cube commutes
by applying D1 to the cube that commutes due to the definition of the tensor
product of D2-algebras. This means that D1(f2⊗g2)◦ (f1⊗g1) is a D1D2-structure
on S⊗RT that extends the ones on S and T , and hence by uniqueness of the tensor
product of D1D2-structures, we must have that

D1(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (D1(f2) ◦ f1)⊗ (D1(g2) ◦ g1)
■

We now return to the case when B is a finite and free A-algebra, and let C be
a B-algebra.
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Definition 6.6. Let D-StrB(C) be the collection of triples (e, f, g) where e is a
D-structure on A, f one on B, and g one on C such that (B, f) is an (A, e)-algebra
and (C, g) is a (B, f)-algebra, and the associated endomorphisms of (B, f) have
invertible matrix. For any A-algebra R, let D-StrA(R) be the collection of pairs
(e, u) where e is a D-structure on A and u one on R such that (R, u) is an (A, e)-
algebra. The D-Weil descent then tells us that we have a map

( · )W
D
: D-StrB(C)→ D-StrA(W (C))

(e, f, g) 7→ (e, gW
D
)

Unless we need to be precise, we will drop the tuple notation and just use g for
(e, f, g) and u for (e, u). We will also suppress the D notation in the map ( · )WD

and just write ( · )W . In what follows, we will make use of these maps for D1,
D2, and D1D2, but it will be clear from context which we mean: ( · )WD1 will be
applied only to D1-structures, ( · )WD2 only to D2-structures, and ( · )WD1D2 only
to D1D2-structures.

Lemma 6.7. The following map is well-defined.

ΘB : D1-StrB(C)×D2-StrB(C)→ D1D2-StrB(C)
((e1, f1, g1), (e2, f2, g2)) 7→ (D1(e2) ◦ e1,D1(f2) ◦ f1,D1(g2) ◦ g1)

Proof. Since (e1, f1, g1) ∈ D1-StrB(C), the following diagram commutes:

D1(A) D1(B) D1(C)

A B C

e1 f1 g1

Since (e2, f2, g2) ∈ D2-StrB(C), we get a similar diagram. Apply D1 to this
second diagram and compose the vertical maps to get the following commuting
diagram:

D1D2(A) D1D2(B) D1D2(C)

A B C

D1(e2)◦e1 D1(f2)◦f1 D1(g2)◦g1)

So theseD1D2-structures make the algebra structure maps intoD1D2-homomorphisms.
Finally, we need to check that the associated endomorphisms of (B,D1(f2) ◦ f1)

have invertible matrix. Recall that the associated endomorphisms are defined using
the projection maps D2⊗kD1 → k. For 1 ≤ i ≤ t1 and 1 ≤ j ≤ t2, we will say that
the (i, j)th projection map for D2⊗kD1 is the composition D2⊗kD1 → Cj⊗kBi →
k. Then we claim that the (i, j)th associated endomorphism of (B,D1(f2) ◦ f1) is
σjτi where the τi are the associated endomorphisms of (B, f1) and the σj are those
of (B, f2). To see this, consider the following commuting diagram:
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D1D2(B) D1(B) B

D1(B) B

B

D1(π
2
j ) π1

i

π1
i

D1(f2)
D1(σj) σj

f1 τi

where π1
i is the ith projection map for D1 and π2

j is the jth projection map for D2.
The lower triangle commutes due to the definition of τi. The triangle in the

upper left commutes by applying D1 to the definition of σj . It remains to show
that the composition along the top row is the (i, j)th projection map for D2⊗kD1.
But this follows from the commutativity of the following diagram

D2 ⊗k D1 Cj ⊗k D1 k ⊗k D1

Cj ⊗k Bi k ⊗k Bi

k ⊗k k

where the composition along the top row is D1(π
2
j ), the composition along the

right column is π1
i and the diagonal composition is the (i, j)th projection map for

D2 ⊗k D1.
Recall that Proposition 4.2 says that an endomorphism has invertible matrix if

and only if it sends any A-basis of B to another A-basis. Then, since τi and σj
both have invertible matrix, σjτi must as well. ■

A similar proof also shows that we have a well-defined map

ΘA : D1-StrA(R)×D2-StrA(R)→ D1D2-StrA(R)
((e1, u1), (e2, u2)) 7→ (D1(e2) ◦ e1,D1(u2) ◦ u1)

We also get maps

D2-StrB(C)×D1-StrB(C)→ D2D1-StrB(C)

and

D2-StrA(R)×D1-StrA(R)→ D2D1-StrA(R)

by exchanging the roles of D1 and D2. We will also denote these maps by ΘB and
ΘA, but it will be clear from context which one we mean.

Theorem 6.8. For g1 ∈ D1-StrB(C) and g2 ∈ D2-StrB(C),

ΘB(g1, g2)
W = ΘA(g

W
1 , gW2 )
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Proof. Using the D1-Weil descent and the D2-Weil descent, the following squares
commute:

D1(C) D1(FW (C))

C FW (C)

D1(ηC)

g1

ηC

gW
1 ⊗f1

D2(C) D2(FW (C))

C FW (C)

D2(ηC)

g2

ηC

gW
2 ⊗f2

Apply D1 to the second square and compose the vertical maps so that the fol-
lowing square commutes:

D1D2(C) D1D2(FW (C))

C FW (C)

D1D2(ηC)

D1(g2)◦g1
ηC

D1(g
W
2 ⊗f2)◦(gW

1 ⊗f1)

By Lemma 6.5, the right vertical map is equal to (D1(g
W
2 ) ◦ gW1 )⊗ (D1(f2) ◦ f1).

And hence, by the uniqueness of the D1D2-structure on W (C) that makes it into
an (A,D1(e2) ◦ e1)-algebra and ηC into a (B,D1(f2) ◦ f1)-algebra homomorphism,
we must have

(D1(g2) ◦ g1)W = D1(g
W
2 ) ◦ gW1

■

We now apply this theorem to the difference case. Let D = D1 = D2 = k. Then,
D2⊗kD1 = k and ΘA and ΘB are just composition of endomorphisms. D-StrB(C)
is a monoid with composition ΘB and identity (idA, idB , idC). Similarly, D-StrA(R)
is a monoid under ΘA and (idA, idR).

Corollary 6.9. In the notation of the above paragraph,

( · )W : D-StrB(C)→ D-StrA(W (C))

is a monoid homomorphism.

Proof. We have that ΘB(g1, g2)
W = (g1 ◦ g2)W and ΘA(g

W
1 , gW2 ) = gW1 ◦ gW2 . Then

Theorem 6.8 tells us that (g1 ◦ g2)W = gW1 ◦ gW2 . Lemma 6.1 then tells us that
(idC)

W = idW (C). ■

Remark 6.10. Corollary 6.9 tells us that the difference Weil descent restricts to the
categories of inversive difference algebras, that is, algebras equipped with an auto-
morphism. Indeed, if (A, e), (B, f) and (C, g) are all inversive difference algebras,
applying ( · )W to the equations g ◦ g−1 = idC = g−1 ◦ g tells us that gW is also an
automorphism on W (C).

We now further develop these results to study the commutativity of a D1-
structure and a D2-structure. Let Γ be the canonical isomorphism

Γ: D2 ⊗k D1 → D1 ⊗k D2

α2 ⊗ α1 7→ α1 ⊗ α2
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For any k-algebra S, Γ lifts to ΓS : S⊗kD2⊗kD1 → S⊗kD1⊗kD2 in the usual way.
Therefore, Γ induces maps D1D2-StrB(C)→ D2D1-StrB(C) and D1D2-StrA(R)→
D2D1-StrA(R) by applying the appropriate Γ coordinate-wise. We will also denote
these maps Γ. It should be clear from context which we mean.

Definition 6.11. Let S be a k-algebra, equipped with a D1-structure e1 and a
D2-structure e2. We will say that e1 commutes with e2 if

ΓS ◦ D1(e2) ◦ e1 = D2(e1) ◦ e2.

For g1 ∈ D1-StrB(C) and g2 ∈ D2-StrB(C), we will say that g1 commutes with
g2 if

Γ ◦ΘB(g1, g2) = ΘB(g2, g1).

Similarly, for u1 ∈ D1-StrA(R) and u2 ∈ D2-StrA(R), we will say that u1 commutes
with u2 if Γ ◦ΘA(u1, u2) = ΘA(u2, u1).

Remark 6.12. If we choose bases of D1 and D2 and think of e1 and e2 as their
corresponding sequence of free operators, the condition

ΓS ◦ D1(e2) ◦ e1 = D2(e1) ◦ e2
says that every operator of e1 commutes with every operator of e2.

We now prove a modification of Theorem 6.8 that includes Γ.

Lemma 6.13. For g1 ∈ D1-StrB(C) and g2 ∈ D2-StrB(C),

(Γ ◦ΘB(g1, g2))
W = Γ ◦ΘA(g

W
1 , gW2 )

Proof. Firstly, suppose e1, f1, g1 and e2, f2, g2 are D1- and D2-structures on R, S,
and T making (S, f1) and (T, g1) into (R, e1)-algebras and (S, f2) and (T, g2) into
(R, e2)-algebras. Consider the following diagram:

D2D1(S) D2D1(S ⊗R T )

D2D1(R) D2D1(T )

D1D2(S) D1D2(S ⊗R T )

D1D2(R) D1D2(T )

S S ⊗R T

R T

ΓS

ΓS⊗RT

ΓR

ΓT

where the horizontal maps are the usual ones and the vertical ones in the lower cube
are the compositions of the D1-structure and D2-structure. By the uniqueness of
the D2D1-structure on S ⊗R T , we have that

ΓS⊗RT ◦ D1(f2 ⊗ g2) ◦ (f1 ⊗ g1) =
(
ΓS ◦ D1(f2) ◦ f1

)
⊗
(
ΓT ◦ D1(g2) ◦ g1

)
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Now, returning to the original context, the following diagram also commutes:

D2D1(C) D2D1(F (W (C)))

D1D2(C) D1D2(F (W (C)))

C F (W (C))

ΓC ΓF (W (C))

ηC

D1(g2)◦g1 (D1(g
W
2 )◦gW

1 )⊗(D1(f2)◦f1)

Hence, ΓW (C) ◦ D1(g
W
2 ) ◦ gW1 is a D2D1-structure on W (C) making it into an

(A,ΓA ◦ D1(e2) ◦ e1)-algebra and ηC into a (B,ΓB ◦ D1(f2) ◦ f1)-algebra homo-
morphism. If the associated endomorphisms of ΓB ◦ D1(f2) ◦ f1 all had invert-
ible matrix, then by the uniqueness of such a D2D1-structure, we must have that
(ΓC ◦ D1(g2) ◦ g1)W = ΓW (C) ◦ D1(g

W
2 ) ◦ gW1 , from which the result follows.

Now, note that the (i, j)th projection map for D1 ⊗k D2 =
∏t2

i=1

∏t1
j=1Bj ⊗ Ci

is D1 ⊗k D2 → Bj ⊗k Ci → k. Let πD1⊗D2

(i,j) denote the (i, j)th projection map
for D1 ⊗k D2, and let πD2⊗D1

(i,j) denote the (i, j)th projection map for D2 ⊗k D1:
D2 ⊗k D1 → Cj ⊗k Bi → k. Then πD1⊗D2

(i,j) ◦ Γ = πD2⊗D1

(j,i) . Thus, the (i, j)th
associated endomorphism of ΓB ◦D1(f2)◦f1 is the (j, i)th associated endomorphism
of D1(f2) ◦ f1, σiτj , which has invertible matrix. ■

Corollary 6.14. Let g1 ∈ D1-StrB(C) and g2 ∈ D2-StrB(C). If g1 commutes with
g2, then gW1 commutes with gW2 .

Proof. If g1 commutes with g2, then Γ ◦ ΘB(g1, g2) = ΘB(g2, g1). Applying ( · )W
to this equation and using Theorem 6.8 and Lemma 6.13, we get Γ◦ΘA(g

W
1 , gW2 ) =

ΘA(g
W
2 , gW1 ). Hence, gW1 commutes with gW2 . ■

For a k-algebra S, we will say that aD-structure e on S commutes if ΓS◦D(e)◦e =
D(e) ◦ e. Note that this is equivalent to saying that, with respect to a fixed basis of
D, the free operators corresponding to e pairwise commute. For g ∈ D-StrB(C), we
will say g commutes if Γ ◦ΘB(g, g) = ΘB(g, g), and similarly for u ∈ D-StrA(R), u
commutes if Γ ◦ΘA(u, u) = ΘA(u, u). An immediate consequence of Corollary 6.14
is the following.

Corollary 6.15. Let g ∈ D-StrB(C). If g commutes, then gW commutes.

These results allow us to deduce that commutativity is preserved by the D-Weil
descent in several cases. We give details for the case of m endomorphisms and n
derivations.

Example 6.16. Suppose D = k[x1, . . . , xn]/(x1, . . . , xn)
2 × km and that for every

D-structure, the first associated endomorphism is trivial (unless n = 0, in which
case we do not impose that any associated endomorphism is trivial). Then, a D-
structure is a collection of n derivations and m endomorphisms. Suppose also that
for a given A, B, C, all of the derivations and endomorphisms pairwise commute.
Then, by Corollary 6.15, we have that the Weil descents of all the derivations and
endomorphisms pairwise commute.

Remark 6.17. The n = 0 case also follows from Corollary 6.9. The m = 0 case
appears in [7].
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Remark 6.18. It seems possible that Corollary 6.15 could be extended to a more
general context where commutativity is replaced by an iterativity condition as in
Section 2.2 of [12]. We leave this for future work as it goes beyond the scope of this
paper.

6.3. On the necessity of having invertible matrix. It is a natural question to
ask whether a converse to our main theorem holds.

Question. If FD has a left adjoint, must every associated endomorphism of (B, f)
have invertible matrix?

We do not yet know the answer in general, but we do have the following partial
converse which imposes some mild conditions on such a left adjoint. We use the
following notation. For each z ∈ D(B), let gz : B[t] → D(B[t]) be the D-structure
on B[t] that extends f on B and sends t 7→ z.

Theorem 6.19. Suppose FD has a left adjoint, WD, and that for each z ∈ D(B)
the underlying A-algebra of WD(B[t], gz) is a faithfully flat A-module. Then, the
associated endomorphisms of (B, f) all have invertible matrix.

Proof. Note that by [18, Section 1.9], for any R-algebra S, S is a faithfully flat
R-module if and only if S is a flat R-module and every linear system of equations
defined over R which has a solution in S already has a solution in R.

For z ∈ D(B), consider the unit of the adjunction η : (B[t], gz)→ FDWD(B[t], gz).
That this is a D-homomorphism at t means that

l∑
m=1

r∑
n=1

λn(η(g
z
m(t)))⊗ bn εm =(∗)

r∑
i=1

l∑
j=1

l∑
k=1

r∑
n=1

l∑
m=1

ajkmλn(fk(bi))h
z
j (λi(η(t)))⊗ bn εm

where hz is the D-structure on WD(B[t], gz). Write z =
∑

m βmεm and βm =∑
n anmbn. Then, λn(η(gzm(t))) = λn(η(βm)) = λn(βm) = anm since η is a B-

algebra homomorphism.
Let ā be the vector in Arl of the elements anm. Then, equation (∗) tells us that

we have a solution in WD(B[t], gz) to the system ā = Mx̄. Since WD(B[t], gz)
is faithfully flat, we have a solution in A, and hence M is onto as a linear map
Arl → Arl. Let ei be the standard basis of Arl and ui ∈ Arl with Mui = ei. Then,
the matrix whose columns are ui is a right inverse to M . Taking determinants tells
us that M is invertible. ■

If A is a field, then WD(B[t], gz) is a free A-module—hence faithfully flat—so
Theorems 5.5 and 6.19 yield the following:

Corollary 6.20. Suppose A is a field. Then, FD has a left adjoint if and only if
the associated endomorphisms of (B, f) all have invertible matrix.

This result specialises to the difference case:

Corollary 6.21. Suppose (K,σ) ≤ (L, τ) is an extension of difference fields where
L/K is finite and σ is an automorphism. Then, the difference base change functor
has a left adjoint (the difference Weil descent).
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Proof. Note that by Lemma 4.4, τ is an automorphism if and only if it has invertible
matrix. Since σ is an automorphism, L/K is a finite-dimensional K-vector space,
and τ is injective, τ must also be an automorphism. ■

7. Appendix: An explicit construction of the D-Weil descent

While the construction of the D-ring structure gW given in Section 5 is very nat-
ural, it does not yield an explicit or computational construction. In this appendix
we will sketch a construction that parallels the classical one. Let ε1, . . . , εl be a
k-basis of D and b1, . . . , br an A-basis of B. We continue to impose Assumptions 3.1
and 5.1.

We need some notation and a technical result relating the matrix M to whether
an algebra homomorphism is also a D-homomorphism.

Notation. For a collection of elements {xij : 1 ≤ i ≤ r, 1 ≤ j ≤ l} in some A-
algebra, we write (xij) for the rl-vector ordered reverse lexicographically on the
indices i and j. We write M · (xij) to denote the standard matrix multiplication of
an rl × rl matrix with an rl-vector. Thus, the result is an rl-vector.

Lemma 7.1. Let (C, g) be a (B, f)-algebra, (R, u) an (A, e)-algebra, and ϕ : C →
F (R) = R ⊗A B a B-algebra homomorphism. Then, ϕ is a (B, f)-algebra homo-
morphism if and only if the following equation holds for every c ∈ C:

(∗) (λiϕgj(c)) =M · (ujλiϕ(c))
As a result, when M is invertible, the values ujλiϕ(c) are uniquely determined.

Proof. ϕ is a (B, f)-algebra homomorphism if and only if it is a D-homomorphism,
if and only if the following diagram commutes:

D(C) D(F (R))

C F (R)

D(ϕ)

g

ϕ

u⊗f

Now expand both compositions and equate coefficients of the bnεm. ■

Remark 7.2. If some S ⊆ C generates C as a B-algebra, then it is enough to ask
for equality (∗) to hold for every s ∈ S.

Our explicit construction of the D-Weil descent parallels the classical construc-
tion. So we need the algebraic notions of D-ideals, D-quotients, and D-polynomial
rings. The proofs will be mostly omitted—they all essentially follow from simple
computations using the fact that D is a free and finite k-algebra.

Definition 7.3. Let (R, e) be a D-ring, and let I be an ideal of R. We say that
I is a D-ideal if e(I) ⊆ D(I) := I ⊗k D. Note that D(I) is an ideal of D(R): if
IR ⊆ I, then

D(I) · D(R) = (I ⊗k D) · (R⊗k D) ⊆ I ⊗k D.

Remark 7.4. In the context of Example 3.3(1) where σ is trivial, I is a D-ideal if
and only if it is a differential ideal, that is, if δ(I) ⊆ I. For Example 3.3(2), D-ideals
are ideals with σi(I) ⊆ I for each i.

Lemma 7.5. Let (R, e) and (S, f) be two D-rings and suppose ϕ : R → S is a
D-homomorphism. Then, kerϕ is a D-ideal.
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Lemma 7.6. Let I be an ideal of R. Then, D(R)/D(I) ∼= D(R/I).
Lemma 7.7. Let (R, e) be a D-ring, (S, f) an (R, e)-algebra, and I a D-ideal of
S. Then, there exists a unique D-ring structure on the quotient S/I given by

f̄ : S/I → D(S/I)
s+ I → f(s) +D(I)

which makes the quotient map q : S → S/I into an (R, e)-algebra homomorphism.

We now need the natural notion of a D-polynomial ring. These have been defined
in Section 3.1 of [12] (implicitly) and in Remark 3.8 of [13]. We expand on the
details here. First fix a k-basis ε = {ε1, . . . , εl} of D. For any k-algebra R, D(R)
has R-basis {1 ⊗ ε1, . . . , 1 ⊗ εl}. As before, we will abuse notation and write
εi for 1 ⊗ εi in D(R), but it will be clear from context which ring we are working
in. If (R, e) is a D-ring, we denote by ei : R → R the coordinate maps of e with
respect to the basis ε. That is, the maps ei are the additive operators of R such
that e(r) =

∑l
i=1 ei(r)εi for all r ∈ R.

Definition 7.8. We denote by Θ the set of all finite words on the alphabet
{1, . . . , l}. For aD-ring (R, e) and θ ∈ Θ, we will write eθ for the corresponding com-
position of coordinatised D-operators. For example, if θ = 123, then eθ = e3◦e2◦e1.
Note then that eθ1θ2 = eθ2 ◦ eθ1 .
Definition 7.9. Let (R, e) be a D-ring and T = (t)t∈T a collection of indetermi-
nates. The D-polynomial algebra in indeterminates T over (R, e) with respect to ε
is the ring

R{T}εD = R[tθ : t ∈ T and θ ∈ Θ]

where (tθ)t∈T,θ∈Θ is a new family of indeterminates, equipped with homomorphism

e′ : R{T}εD → D(R{T}εD)

tθ 7→ tθ1ε1 + tθ2ε2 + . . . tθlεl

r 7→ e(r)

This makes (R{T}εD, e′) an (R, e)-algebra.

Suppose (S, f) is an (R, e)-algebra and X ⊆ S. We denote by R{X}D the D-ring
generated in S by X over (R, e). This is a well-defined notion since the intersection
of a collection of D-subrings is a D-subring.

Lemma 7.10. Suppose that (S, f) is an (R, e)-algebra which is generated as a D-
ring by the (possibly infinite) tuple ā = (ai)i∈I over (R, e), so that S = R{ā}D.
Let t̄ = (ti)i∈I be a tuple of indeterminates. Then, there exists a unique, surjective
(R, e)-algebra homomorphism evā : R{t̄}εD → S which maps ti 7→ ai for each i ∈ I.
Proof. Define evā(t

θ
i ) = fθ(ai) (see Definition 7.8). Then, evā is clearly a surjective

R-algebra homomorphism. To show it is a D-homomorphism, we need to show that
the following diagram commutes:

D(R{t̄}εD) D(S)

R{t̄}εD S

D(evā)

e

evā

f

This follows from a short computation. ■
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This lemma yields:

Corollary 7.11. Suppose that ε and ω are two bases of D. Then, R{T}εD and
R{T}ωD are isomorphic as (R, e)-algebras.

As a result of this corollary, we omit the superscript and just write R{T}D.

Remark 7.12. Combining the above lemmas, we see that any (R, e)-algebra is a
quotient of some D-polynomial algebra over (R, e) by a D-ideal.

We now return to the construction of the D-Weil restriction. As usual, (A, e)
is a D-ring, and (B, f) is an (A, e)-algebra where B is finite and free as an A-
module with basis b1, . . . , br. Recall that the component of the unit of the classical
adjunction at the polynomial algebra B{T}D is

ηB{T}D

(
tθ
)
=

r∑
i=1

tθ(i)⊗ bi

We first construct the D-Weil descent for a D-polynomial algebra over (B, f).

Lemma 7.13. Let T be a set of indeterminates. Then, there exists a D-structure
s on W (B{T}D) making (W (B{T}D), s) into an (A, e)-algebra and ηB{T}D into a
D-homomorphism.

Proof. W (B{T}D) = A{T}⊗r
D , and applying Lemma 7.1 with ηB{T}D tells us that

ηB{T}D is a D-homomorphism if and only if

(λiηB{T}Dhj(t
θ)) =M · (sjλiηB{T}D (t

θ))

for every tθ. Now, (sjλiηB{T}D (t
θ)) = sj(t

θ(i)), and (λiηB{T}Dhj(t
θ)) = tθj(i).

Since M is invertible we have sj(tθ(i)) = M−1 · (tθj(i)). This gives an explicit
expression for sj on each generator of A{T}⊗r

D and hence an explicit expression for
s. Since A{T}⊗r

D is a polynomial algebra, this gives a D-ring structure on A{T}⊗r
D

making ηB{T}D into a D-homomorphism. ■

Remark 7.14. Note that W (B{T}D) is a polynomial algebra, but that, in general,
s is not the D-ring structure that makes (W (B{T}D), s) a D-polynomial algebra as
in Definition 7.9—it is twisted by M−1. The same occurs in the differential case;
see the proof of Theorem 3.2 of [7].

Now let (C, g) be a (B, f)-algebra. By Lemma 7.10, there is a set of indetermi-
nates T and a surjective (B, f)-algebra homomorphism πC : B{T}D → C, where
B{T}D has the standard D-structure h extending f with h(tθ) = tθ1ε1+ . . .+ t

θlεl.
The component of the unit of the classical adjunction at C, ηC , is given by

ηC
(
πC(t

θ)
)
=

r∑
i=1

W (πC)(t
θ(i))⊗ bi

TheD-ring structure from Lemma 7.13 will induce one onW (C) =W (B{T}D)/IC .
Recall from Section 2.1 the definition of the ideal IC . This ideal is generated by
the elements λi(ηB{T}D (γ)) as γ ranges over kerπC , and W (πC) is the residue map
of this ideal.

Lemma 7.15. The ideal IC of W (B{T}D) is a D-ideal for the s given in Lemma 7.13.
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Proof. Let γ ∈ kerπC . By definition of IC , we need to show s(λi(ηB{T}D (γ))) ∈
D(IC) for each i, that is, that the vector (sjλiηB{T}D (γ)) ∈ IC .

Since ηB{T}D is a D-homomorphism, we have

(λiηB{T}Dhj(γ)) =M · (sjλiηB{T}D (γ))

Now kerπC is aD-ideal for h : B{T}D → D(B{T}D) (the standardD-polynomial
structure), and so hj(γ) ∈ kerπC . Then, by construction of IC , (λiηB{T}Dhj(γ)) is
in IC . Since M is invertible, (sjλiηB{T}D (γ)) ∈ IC . ■

Lemmas 7.7 and 7.15 imply that the s from Lemma 7.13 induces a D-structure
gW on W (C) = W (B{T}D)/IC which makes it an (A, e)-algebra and W (πC) an
(A, e)-algebra homomorphism. One then readily checks it makes ηC into a D-
homomorphism by an argument similar to Theorem 3.2 of [7].

Therefore, we have provided an explicit way to construct the D-Weil descent
WD(C, g) = (W (C), gW ).
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