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Elasto-capillary adhesion: Effect of deformability
on adhesion strength and detachment
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We study the interaction between capillary forces and deformation in the context of a
deformable capillary adhesive: a clamped, tense membrane is adhered to a rigid substrate
by the surface tension of a liquid droplet. We find that the equilibrium adhesive force
for this elasto-capillary adhesive is significantly enhanced in comparison to the capillary
adhesion between rigid plates. In particular, the equilibrium adhesion force is orders of
magnitude greater when the membrane is sufficiently deformed to contact the substrate.
From a dynamic perspective, however, the formation of a fluid-filled dimple slows this
approach to contact and means that stable attachment is only achieved if adhesion is
maintained for a minimum time. The inclusion of a variable membrane tension (as a means
of modifying the deformability) gives additional control over the system, allowing new
detachment strategies to be explored.
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I. INTRODUCTION

Many insect species are capable of extraordinary feats of adhesion. They are able to climb smooth
vertical surfaces and have been observed supporting loads exceeding 100 times their body weight
while upside down and remaining adhered to glass [1]. This adhesion occurs reliably on surfaces
with various surface chemistries and across a wide range of scales [2], and the insects are able to
adhere and detach continuously during locomotion. The current understanding is that this adhesion
is mediated by a secreted fluid that attaches their feet to the substrate via capillary forces [3].

Many technological adhesives have been motivated by such biological adhesives: For example, a
switchable rigid capillary adhesive has been proposed, taking insects as its inspiration [4]. Other
examples include a soft pressure-controlled pad that can deform to grasp complex surfaces [5]
and a robotic gripper for use in capturing space debris [6] (both of which make use of geckolike
microfibrils [7]), as well as an octopus-inspired patch that can be used to adhere underwater [8].

The simplest models of insects’ “wet” adhesion are based on the confinement of a droplet
between two rigid surfaces—squashing the droplet in a narrow gap allows for the calculation of
the adhesion force provided by capillary pressure for a Hele-Shaw cell [3,9] or for more complex
geometries [10]. Quantifying this underlying mechanism gives plausible values of the observed
adhesive strength. However, detachment requires the droplet to be destabilized [11,12] and, if
performed dynamically, can lead to large resistive viscous forces [13].

While models of capillary adhesion between rigid surfaces are a useful starting point, it has been
observed that the footpads of some insects are soft and deformable [14]. In this paper, we will
consider how this deformability modifies the classic results attained for rigid surfaces. In particular,
the coupling between deformability and adhesion may allow the surfaces to come into closer contact,
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FIG. 1. A liquid droplet (blue) of volume V bridges the gap between a rigid plate (gray) and a deformable
membrane (red). The membrane (of thickness τ ) is clamped around a circle of radius L with an applied tension
T and at a height h∞ above the plate. The free surface of the droplet has a surface tension γ and makes a
contact angle θ with each surface.

increasing the maximum adhesive force. Moreover, if this deformability can be controlled, it may
also allow for new mechanisms of detachment.

In recent years, there has been significant progress on a variety of problems related to the
interaction between deformable surfaces and surface tension, with so-called elasto-capillary systems
exhibiting many interesting and counterintuitive phenomena [15–17]. One common theme in these
settings is the occurrence of hysteresis and rapid transitions between markedly different states, for
example, the zipping and unzipping of fibers by a droplet as the fiber tension or separation is varied
[18]. Furthermore, theory and experiments suggest that fluid droplets are capable of significant
deformation of surfaces: Beams clamped at one end can be bent into contact [19,20] and two soft
elastic half-spaces can be pulled together [21] by the forces of a single fluid droplet.

Inspired by the adhesive capabilities of insects, we study a model elasto-capillary system: A tense
membrane is adhered to a rigid, planar substrate by the action of a fluid droplet. A mathematical
model of this system is outlined in Sec. II, where we use a local force balance to determine the
governing equations and highlight the key parameters of the system. In Sec. III, we study the
equilibria of the system, focusing on the adhesion force and taking care to include solutions in which
the membrane is deformed sufficiently to contact the substrate. Section IV presents experimental
data that supports the equilibrium picture but also hints at the importance of dynamics, which we
then study in Sec. V using lubrication theory. We consider adhesive detachment in Sec. VI, focusing
on finding a strategy that minimizes the work required to release the membrane from the substrate.
Finally, in Sec. VII, we summarize our results and consider directions for future work.

II. MODEL

To investigate the possible role of elasticity in capillary adhesion, we consider perhaps the
simplest deformable surface possible: a circular membrane of thickness τ and Young’s modulus
E . We shall consider only small axisymmetric deformations of the membrane, which is subject to
a constant imposed tension and clamped at the radial position r = L. Adhesion to a flat and rigid
target surface (which lies a distance h∞ below the clamped edge of the membrane) is achieved by
introducing a liquid droplet between the two surfaces (as shown in Fig. 1). We anticipate that the
two surfaces will generally be close to contact and hence that the aspect ratio is small, h∞/L � 1,
though for clarity our figures will exaggerate the vertical scale; furthermore, we neglect the effect
of gravity on the droplet and membrane.

The surface tension of the droplet deforms the membrane because of the forces it exerts on the
membrane. This deformation in turn modifies the surface tension force, leading to novel feedbacks
in this system; our aim is to understand how the interaction between capillarity and deformability
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affect the adhesive properties of the system, particularly in comparison to capillary adhesion of rigid
surfaces.

For simplicity, we shall take the tension T in the membrane to be uniform and treat T as a control
parameter: We neglect any modification of the uniform tension due to additional stretching of the
membrane during vertical deformation. To understand when this approximation is valid, we note that
simple geometry gives the deformation-induced strain ε � (h∞/L)2. The thickness-integrated stress
in the membrane is then σ ∼ T + Eτh2

∞/L2: In scaling terms, the effect of deformation-induced
stretching is negligible provided that T � Eτ (h∞/L)2. (Note that this is a different condition from
that for the pre-existing tension in a membrane to dominate that induced by a spherical cap droplet,
T � γ 2/3(Eτ )1/3 [22].) Crucially, it is possible for the applied tension to dominate the geometry-
induced tension even while the membrane remains Hookean; this requires that the tension-induced
strain remains small, T/(Eτ ) � 1. We shall also neglect the bending stiffness of the membrane,
which requires that T � Eτ 3/L2.

A droplet with interfacial tension γ that is confined between two surfaces applies a capillary
force to each surface in two distinct ways: (i) a jump in the normal stress (i.e., a pressure difference
between the inside and outside of the droplet) proportional to the meniscus curvature results in a
force acting over the liquid-solid contact area, and (ii) a tension force as the meniscus pulls on the
contact line where the membrane, liquid and vapor meet. When a wetting droplet is confined to a
very narrow gap (and provided that the contact angle is not too close to π/2), the former dominates
the latter because the area scaling of the pressure force beats the length scaling of the line force.
Additionally, at this contact line we expect the surface tension to contribute to a discontinuity in the
membrane tension, [T ]+− ∝ γ , but we neglect this because of the high tensions considered, γ � T .
We shall make these assumptions henceforth.

To quantify the adhesive force, we need to determine the interfacial curvature. Consistent with
our assumption of a thin gap, we assume that the curvature is dominated by the component between
the solids and ignore the azimuthal contribution [9]. Further, we approximate the meniscus cross
section as a circular arc [23] of radius hM/(2 cos θ ), where hM is the height of the membrane above
the substrate where the meniscus meets the membrane (or “meniscus height”) and θ is the contact
angle of the liquid-solid-vapor system, taken for simplicity to be the same on both surfaces. (We
neglect any variations in the contact angle from the value given by the Young-Dupré law [24],
because the applied tension T � γ [22]. We also ignore the effect of the membrane slope at the
contact line on the contact angle as the typical slopes are taken to be small, h∞/L � 1.) The pressure
at the meniscus (which throughout this paper is measured relative to the ambient pressure) is then
given by

pmeniscus = −2γ cos θ

hM
. (1)

A. The rigid case

In what follows, we shall seek to understand the role of the membrane’s deformability in
modifying the adhesion force; it is therefore helpful to have the perfectly rigid case as a point
of comparison, not least since we expect to recover this limit as the tension T → ∞. In the rigid
case, the gap width is uniform, so that the meniscus height hM = h∞ and p = −2γ cos θ/h∞. The
adhesive force provided by a droplet of known volume V is due to the pressure 2γ cos θ/h∞ acting
over the area A = V/h∞ (ignoring a small correction due to the meniscus shape) and thus the force
is simply

frigid = 2γ cos θ
V

h2∞
. (2)

In this rigid case, and for fixed droplet properties (i.e., fixed volume V and surface tension γ ), the
adhesive force is solely controlled by the gap separation, h∞.
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B. Deformation

We assume that the droplet is positioned at the center of the membrane and that the system is
axisymmetric. (We expect that an off-center droplet will move to the center because of gradients
in capillary pressure, in a manner similar to droplets in a rigid tapered channel; see Ref. [25], for
example.) If the flat plate is located at z = 0, then the axisymmetric membrane position may be
written z = h(r, t ) with r the radial coordinate, z the vertical coordinate and t time.

A local force balance on the membrane requires that the membrane shape h(r, t ) must be
determined as the solution of the Young-Laplace equation

T ∇2
r h = −p, (3)

where ∇2
x denotes the axisymmetric Laplacian operator ∇2

x f = 1
x

∂
∂x (x ∂ f

∂x ) for any function f (x, t ),
and p(r, t ) is the pressure field within the droplet, which is uniform in static scenarios but may vary
spatially in the dynamic scenarios we consider in Sec. V. Here we have assumed that the membrane
slope remains small throughout (consistent with the small aspect ratio) and further neglect the
membrane’s inertia.

Finally, we impose a fixed droplet volume, V , through

V = 2π

∫ rM

0
rh dr, (4)

where rM is the radial position of the meniscus. Note that we have again assumed the meniscus
shape has negligible impact on the volume because of the small aspect ratio of the droplet.

C. Nondimensionalization

We render the problem dimensionless using the extrinsic radial length scale L and by rescaling
the droplet volume to unity, introducing the vertical length scale V/L2 in the process. Pressures, p,
are rescaled by the typical Laplace pressure γ L2 cos θ/V , and forces, f , are nondimensionalized by
γ L4 cos θ/V . We therefore define dimensionless variables

R = r/L, H (R) = h(r) × L2/V, P = p

γ L2 cos θ/V
, F = f

γ L4 cos θ/V
. (5)

With this nondimensionalization, the static membrane shape is controlled by two dimensionless
parameters

	 = γ L6 cos θ

TV 2
, H∞ = L2h∞

V
. (6)

Physically, the parameter H∞ represents the rescaled gap width and influences the system via
the clamped boundary condition H (1) = H∞; varying H∞ corresponds to changing the separation
of the membrane from the target surface. The parameter 	 represents the competition between
a typical capillary force, pr2 ∼ γ L2/h ∼ γ L4/V , pulling down on the membrane and a restoring
tension force, Tr dh/dr ∼ TV/L2. We impose a tension T � γ ; nevertheless 	 may remain an
O(1) quantity because of the amplifying effect of the ratio L6/V 2 in (6).

The parameter 	 can be considered a measure of the extent to which capillarity is able to deform
the membrane: For 	 � 1, the membrane is relatively rigid and little deformation occurs, while for
	 � 1, the membrane is highly deformed by capillarity. We therefore refer to 	 as the deformability
of the membrane.

We note that in the relatively undeformable case, 	 � 1, we expect to recover the rigid result
(2), which we write in dimensionless terms as

Frigid = frigid

γ L4 cos θ/V
= 2

H2∞
. (7)
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To understand how the adhesion force deviates from this result as the deformability 	 increases, we
turn to study the equilibrium problem. A key aim is to understand how the adhesive force F (	, H∞)
behaves.

III. EQUILIBRIUM SOLUTIONS

In equilibrium, there is no fluid flow and so the internal droplet pressure must be uniform and
equal to the value at the meniscus, i.e., P = −2/H (RM ), where RM denotes the radial position of the
meniscus. The problem of determining the equilibrium membrane shape, H (R; 	, H∞), therefore
reduces to solving Poisson’s equation (3) with forcing pressure

P(R) =
{

− 2
H (RM ) , 0 � R < RM

0, RM � R � 1
. (8)

The relevant boundary conditions arise from the imposed clamping (at R = 1) and symmetry or
regularity at the origin, i.e., H (1) = H∞ and H ′(0) = 0. At the meniscus, the membrane height and
slope are continuous. (In general, a horizontal force balance at the contact line between membrane,
liquid, and vapor shows that the membrane slope may have a discontinuity proportional to γ sin θ ;
this can be neglected provided that the droplet aspect ratio rM/hM � tan θ .)

A. Problem statement

In dimensionless terms, the equilibria of the system satisfy

∇2
RH =

{
2	/HM , 0 < R < RM ,

0, RM < R < 1.
(9)

The solution of (9) is to be found subject to the boundary conditions

[H]+− =
[

dH

dR

]+

−
= 0, R = RM, (10)

dH

dR
= 0, R = 0, (11)

H = H∞, R = 1. (12)

Note that the radial position of the meniscus, RM , and its height, HM , are not known a priori and must
be determined as part of the solution. We therefore require two additional relations. The first of these
is simply that H (RM ) = HM . The second, and final, condition is the imposed volume constraint,
namely

1 = 2π

∫ RM

0
RH dR. (13)

For given values of H∞ and 	, the system (9)–(13) may be solved analytically to give a single
transcendental equation for RM :

(
πH∞R2

M − 1
)2 + (1 − 4 log RM )

(
πH∞R2

M − 1
) − π2

4
	 (1 − 4 log RM )2R6

M = 0. (14)

This equation could be rearranged to give H∞ for given RM , but we prefer to solve (14) numerically
to find the (unknown) radius RM for given 	 and H∞, subject to the constraint that the liquid must
remain within the domain, i.e., RM < 1.

We find numerically that for some parameter values, the membrane touches the lower plane,
i.e., H = 0 at some radial position R, which is generally R = 0 (since the membrane is most
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deformable in the center). When this happens, the nature of the solution changes (since the
membrane cannot penetrate the base, H (R) � 0 for all 0 � R � 1); we therefore consider contacting
solutions separately now.

B. Contacting solutions

When the membrane is in contact with the rigid surface in some region R < C, it is no longer
solely subject to the capillary pressure but also to an unknown reaction force provided by the base.
In this contacting region, the shape of the membrane is therefore no longer governed by (3) but
rather by the requirement that the membrane conforms to the base, i.e., H = 0. At the boundary
between contacting and noncontacting regions, a local force balance reveals that the membrane
height and gradient should be continuous (assuming that contact does not give rise to additional
adhesion or repulsion). We therefore require that at the edge of the solid–solid contact region (i.e.,
R = C): H = dH/dR = 0. Note that with this condition, it is not possible to have an equilibrium
with an annular contact containing trapped fluid.

The contacting problem is therefore largely the same as the noncontacting problem, save that
H = 0 for R < C. The most significant change is that the wet region is now C < R < RM with C an
additional unknown to be found. The additional constraint required to find C comes from the two
continuity conditions at the edge of the solid-solid contact region

H = dH

dR
= 0, R = C, (15)

which replace the symmetry boundary condition of (11), H ′(0) = 0.
More concretely, the contact problem reduces to solving the following three nonlinear simulta-

neous equations for RM , HM , and C:

HM = 	

2HM

[
R2

M − C2 + 2C2 log (C/RM )
]
, (16)

H∞ = HM − 	

HM

(
R2

M − C2
)

log RM, (17)

1 = π	

HM

[
1

4

(
R4

M − C4
) + C2R2

M log (C/RM )

]
. (18)

C. Adhesion force and multiple solutions

The adhesive force in equilibrium, that is, the force acting normal to the rigid surface (or
equivalently the force that must be applied at the clamps to maintain the equilibrium) is readily
determined to be

F =
⎧⎨
⎩

2π
R2

M
HM

noncontacting,

2π
R2

M−C2

HM
contacting.

(19)

Therefore, to calculate the adhesive force, all that is required is a solution of the transcendental
equations for the equilibrium meniscus position RM and height HM (as well as the edge of the
solid-solid contact region, C, if it exists), which may readily be found numerically. Substituting these
values into (19), we find the dimensionless adhesive force, F , as a function of the gap separation
H∞ when 	 is fixed [Fig. 2(a)]; alternatively F may be plotted as a function of the deformability 	

when H∞ is fixed [Fig. 2(b)].
In Fig. 2(a), the edge height is varied at several (fixed) values of the deformability 	 and the

resulting adhesion force is plotted alongside the force in the rigid case (7). At each value of the
edge height, the adhesion force is larger for a deformable membrane (regardless of the applied
tension 	) than for the rigid case 	 = 0. The soft adhesive force can be as much as two orders
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FIG. 2. The dimensionless adhesive force F (	, H∞). Results are shown for (a) fixed deformability
	 = 1, 10, 102, 103, 104 and varying edge height H∞ and (b) fixed edge height H∞ = 2, 5, 10, 20 and varying
membrane deformability 	. The computation stops when the system is flooded, i.e., RM = 1 (solid circles). In
panel (a) the force is compared to Eq. (7) for a perfectly rigid membrane 	 = 0 (black dotted line) and in both
panels different thickness curves are used to distinguish different states, as described in the legend of panel (a).
We note that the adhesion force is significantly larger when the membrane is in contact with the base (thicker
solid curves) but even out of contact (thinner solid curves) the adhesive force remains larger than in the rigid
case.

of magnitude larger than the corresponding rigid adhesive force. Similarly, the softer membranes
are able to achieve a given adhesion force (for example, to support a given load) at a larger gap
separation. This suggest that the addition of deformability into a capillary adhesive may improve its
adhesive capabilities significantly.

The behavior of the solution, and in particular its adhesion force, is strongly characterized by
whether contact occurs or not: When contact occurs, the droplet spreads further [Fig. 3(a)] and
the meniscus height is significantly smaller [see Fig. 3(b), as well as the two profiles that contrast
the contacting and noncontacting states shown in the inset to Fig. 3(a)]. Although the width of the
wetted region, RM − C, appears to be approximately constant [see Fig. 3(a)], the net result of the
spreading in contact is an increase in the droplet footprint area. The two effects of an increased
Laplace pressure and a larger area over which it acts lead to the dramatic increase in the adhesive
force in the case of contact and motivate a more detailed study of when contact occurs.
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FIG. 3. (a) The equilibrium meniscus radius RM (blue) and contact point C (red) vary with gap width H∞,
when 	 is fixed (here 	 = 100). There is a noncontacting stable solution (thin solid curve), an unstable solution
(dashed curve), and a contacting stable solution (thick solid curve). Each of these three states only exists over a
specific range of values of H∞. Inset: Membrane profiles of the contacting and noncontacting stable solutions
when H∞ = 8 (blue circles). (b) The variation of the meniscus height HM with H∞ (again shown for 	 = 100).
The dotted line denotes HM = H∞ for comparison.

Exploring the (	, H∞) parameter space for the number and type of equilibrium solutions we
find three key regions: One in which there is a single noncontacting solution, another with a
single contacting solution, and one region where three solutions are possible (of these three, one
is contacting, one is noncontacting, and the third can be either, depending on the parameter choice).
Figure 4 summarizes which regions of parameter space each behavior is observed in. A stability
analysis using Maddocks’ theorem [26] reveals that, in the case of three solutions, the intermediate
solution is linearly unstable; the remaining two equilibria are linearly stable and consist of one
contacting and one noncontacting solution. (Note that when H∞ becomes sufficiently small then the
droplet floods the system and there is no longer any physically relevant solution.)

FIG. 4. The number and type of equilibria varies with the two parameters 	 and H∞. The hatching in each
region denotes the number of contacting or noncontacting solutions, as described in the legend.
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FIG. 5. Schematic of the experimental setup. A dyed droplet of mineral oil (blue) was confined between a
PVS-coated glass plate and a clamped PVS sheet (red). This system rested on a mass balance that recorded the
adhesive force. The height of the clamp (gray) was varied using a computer-controlled linear actuator, and the
tension in the sheet could be increased by withdrawing air from an annular chamber (light blue) in the clamp,
which sucked the outer edge of the sheet into the chamber, pulling the whole membrane taut. A camera imaged
the experiment from above.

In this system, we have imposed a fixed separation H∞ and calculated the force F that
is generated; alternatively, we could load the system with a given force F and determine the
corresponding H∞. In such a force-controlled scenario, we expect all solutions to be unstable, with
a small perturbation to the droplet or membrane resulting in either attachment with H∞ → 0 or
detachment with H∞ → ∞ (see, e.g., [12,27] for similar results in the rigid case).

Note that from Fig. 2(b) it appears that at a given edge separation in the contacting regime, the
force decreases as the strength of surface tension (γ ) increases. However, because the force has
been nondimensionalized by the surface tension (5), in fact the dimensional force increases as the
surface tension increases, as might be expected.

The transition between noncontacting and contacting states (and vice versa) is sharp as the
parameters are varied (Figs. 2–4); this transition is a saddle-node bifurcation and introduces
hysteresis into the system. The system can therefore be thought of as being “switchable”: Varying
the parameters can turn on and off contact (and hence strong adhesion) as these transition points are
passed. As we shall see shortly, this gives us alternative routes to deadhere from the substrate: One
can either increase H∞ fixing 	 (“yanking”) or reduce 	 while maintaining H∞ (“peeling”). Before
discussing this in more detail, however, we consider an experimental realization of the system
discussed so far.

IV. EXPERIMENTS

Our study of the equilibrium states of the system reveals two interesting features. First, the system
exhibits bistability—for the same parameters (namely 	 and H∞), the system may be in one of two
stable equilibrium states; second, the adhesion force of these two states may differ by more than an
order of magnitude. To test whether these two states are physical and to confirm the large difference
in force between them, we developed an experimental version of this simple adhesive system.

A. Setup

A thin (thickness τ ∼ 100 μm), soft (Young’s modulus E = 200 kPa) circular sheet of polyvinyl
siloxane (PVS) was fabricated by spin coating. The sheet was clamped onto an annular chamber
with radius L = 15 mm; the sheet tension was varied by withdrawing air from the chamber using
a syringe. This created a pressure difference that sucked the outer edge of the membrane into the
chamber, pulling the entire sheet taut across the clamp (see Fig. 5). The value of the tension was
inferred by an indentation technique [28] prior to each experiment; when the tension was varied
during the experiment, its value was also measured after the experiment. To ensure that the surface
properties of the target surface were the same as that of the membrane (and, in particular, that the
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contact angles were the same), a rigid glass plate was coated with a layer of PVS with thickness
∼100 μm to form the substrate. A dyed droplet of oil (Mineral Oil light, Sigma-Aldrich, UK;
volume 1 μL � V � 10 μL) was confined between the clamped sheet and the PVS-covered glass,
which itself rested on a mass balance accurate to 0.1 mg (Pioneer PA64C Analytic Balance, Ohaus,
Switzerland); this arrangement allowed the whole system to be weighed and the adhesive force
determined to 1 μN precision. Mineral oil was chosen to reduce the effects of evaporation. The
height of the clamped membrane was varied using a linear stage (M228.10S, Physik Instrumente,
Germany) driven by a stepper motor (Mercury Step C663.11, Physik Instrumente, Germany), with
a combined accuracy of ±2 μm. The force f and plate separation h∞ were both recorded digitally
in MATLAB; typical measurements were in the range 0.1–50 mN and 0.4–2 mm, respectively.

A camera positioned above the experiment recorded the droplet’s shape in plan view through the
elastic sheet. The droplet radius was determined by least-squares fitting of a circular profile to the
droplet’s edge. The surface tension of the mineral oil was measured to be γ = 32.1 ± 0.2 mN m−1

via the Wilhelmy plate method while the contact angle on PVS was measured to be θ = 23.5 ± 2.5◦.
With these values, the tension-dominated regime of interest occurs when T � Tc ≡ Eτh2

∞/L2;
here Tc � O(0.1) N m−1. Our experiments were conducted with the aspect ratio h∞/L � O(0.1)
and tensions in the range 1 N m−1 � T � 10 N m−1 so that γ /T � 3 × 10−2. Therefore, these
experiments do indeed satisfy the various assumptions made to simplify the theoretical analysis
(i.e., h∞ � L, γ � T , T � Eτ (h∞/L)2, and T � Eτ 3/L2).

B. Loading protocol

Experiments were initially performed at fixed sheet tension, varying the gap width. A droplet
of the mineral oil was placed on the PVS-covered glass. The clamped membrane was then lowered
toward the droplet, with droplet contact detected by a sudden jump in the weight of the system (since
the glass plate was partially lifted by the adhesive force of the liquid bridge as soon as it formed).

Once we had detected that the droplet had bridged the membrane-substrate gap, there were
three key stages to the experiment: (i) the clamp was lowered in steps of a few μm, being left
to settle on a timescale of 100 s between steps, until the force began to evolve dynamically (when
an inflection point was seen in the real-time measured force as a function of time), at which point
(ii) the separation (h∞) was kept constant for approximately 10 min to allow the system time to
equilibrate, before (iii) retracting at a constant speed (5 μm s−1) until the droplet bridge ruptured.
The force was recorded throughout this process via changes in the weight recorded by the mass
balance, and the radius was inferred from processing of images taken from above. The separation
distance was determined from readings of the height of the clamp relative to the position at which
dry surfaces contacted (measured prior to introduction of the droplet).

Further experiments were performed to understand the effect of changing tension. For these, we
followed the procedure as above but once strong adhesion was achieved at the end of stage (ii), we
increased the sheet tension over a period of O(10 s), instead of retracting the clamp.

C. Results

By fixing the tension in the sheet and varying the gap width, we obtain force-displacement
and radius-displacement curves, which are presented in Fig. 6 with the corresponding (static)
theoretical prediction with no fitting parameters. We note that the experiment exhibits the same
phenomenological behavior as predicted by our theory: There are two different stable states, each
with markedly different adhesive force (and fluid extent) and, further, the transition between these
two states is sharp as the gap width is varied. This transition occurs at different values of H∞
depending on the current state, i.e., the system exhibits hysteresis. The critical parameter values at
which the transition occurs, as well as the magnitude of the force and radius jump are predicted well
by the equilibrium theory. This transition is noticeably much slower when the force is increasing
toward contact than when the strong adhesion solution is lost (note that in Fig. 6 data points are
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FIG. 6. The measured dimensionless (a) force and (b) radius (symbols) compared with the theoretical
predictions without any fitting parameter (curves) for three different experiments. The arrows illustrate the
progression of the experiment: an initial lowering of the membrane, followed by a period at fixed height
and then retraction at constant speed. Dark blue squares: T = 4.9 N m−1, V = 7.8 μL, 	 = 1100. Blue-green
crosses: T = 5.1 N m−1, V = 8.2 μL, 	 = 970. Yellow triangles: T = 5.2 N m−1, V = 9.9 μL, 	 = 650.

shown at intervals of approximately 2.5 s, with many more points plotted during the motion into
contact than the motion out of contact). We shall show in Sec. V that the slowness of approach to
contact is due to fluid being trapped beneath the membrane as contact is approached.

There are, however, some discrepancies between the theory and experiment which could be
explained by factors such as a misalignment of H∞ = 0 (calibrated before the droplet is added),
dynamic effects, and additional forces not included in the model. As an example of an effect not
included in the model, we note that at larger gap separations we start to move out of the small
aspect ratio regime required by the theory (leading to the droplet necking and eventually rupturing);
furthermore, the small droplet radius in this case also means that the measurements of the radius
become more unreliable as small errors in the fitting are more pronounced.

At fixed gap width, experiments also reveal that when starting in the high-adhesion contacting
state it is possible to significantly decrease the adhesion force solely through an increase in the
tension (decrease in the deformability 	, example shown in Fig. 7). This confirms that tension
variation might be used as a detachment mechanism. We investigate this possibility further later.

D. Adhesion testing

To test the feasibility of this system as an adhesive, we tasked it with lifting some small loads
attached to a glass slide [Figs. 8(a)–8(c)]. For the parameters in our tests (γ cos θ = 29 mN m−1,
T = 2 N m−1, V = 10 μL), the equilibrium theory predicts that a load corresponding to a mass of
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FIG. 7. Increasing the tension, while maintaining a fixed separation, results in the switching off of strong
adhesion. The tension is increased from T = 2.5 N m−1 to T = 7.1 N m−1 over the duration of the highlighted
region and is constant otherwise. Examples of the droplet spread before and after the tension change are shown,
with the meniscus position denoted by a red dashed circle. Here the clamp was fixed at a height h∞ = 1.1 mm,
with a droplet volume V = 7.8 μL.
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FIG. 8. Schematic of the dynamic adhesive test. (a) The clamp is lowered to a set distance from the glass
plate. (b) After a time twait, the clamp is raised at a constant speed, lifting the glass plate and load. (c) After some
time thold, detachment may occur and the load falls back. (d) Experimental results showing the relationship
between the time the system is left to equilibrate, twait, and the adhesion time, thold, for h∞ = 0.3 mm, T =
2 N m−1, V = 10 μL and lifting a mass of 2.7 g. Experiments were performed with twait � 4 s but no noticeable
lift-off was observed. When twait � 10 s, the load would remain attached on the timescale of hours, making it
difficult to obtain an accurate value for thold, and for twait = 15 s, the load remained attached overnight (over
12 h).
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2.7 g can be comfortably supported at a separation h∞ = 0.3 mm; moreover, for these parameter
values, the equilibrium theory predicts that we should have an equilibrium configuration with the
membrane in contact with the glass slide. We note, however, that once a load is lifted, then the
droplet-membrane system evolves at fixed force, rather than a given gap separation; we expect
either the membrane to be pulled into close contact and remain stuck, or to detach completely.

On lowering the PVS sheet to a separation h∞ = 0.3 mm and lifting immediately, we find that the
load drops off. Holding the sheet at this set distance for a short period of time increases the length of
time for which the adhesion is successful [Fig. 8(d)]. Indeed, if we hold the two surfaces at the fixed
separation for sufficiently long (on the order of 15 s), then the load is adhered indefinitely (timescale
of days). This suggests that the dynamics of adhesion are nontrivial and deserve further study. We
therefore turn to study the dynamics of adhesion now.

V. DYNAMICS

To study the dynamics of adhesion, we use a lubrication-type model: We assume that the flow
in the thin gap between the membrane and substrate is viscous, consistent with the assumption of
small aspect ratio used in studying the equilibrium of the system. Applying the no-slip boundary
condition (i.e., zero velocity) at both the membrane and wall, the Stokes equation for the flow is
readily integrated to give the radial fluid flux as

q = − h3

12μ

∂ p

∂r
= T

12μ
h3 ∂

∂r

(∇2
r h

)
, (20)

with μ being the dynamic viscosity of the fluid.
Conservation of mass [29] then gives an evolution equation for the membrane height, h(r, t ).

This can be nondimensionalized in the same manner as the static scenarios, i.e., H = h/(V/L2) and
R = r/L, with the natural timescale t∗ = 12μL4/γV cos θ used to nondimensionalize time (note
that we denote the dimensionless time by t to avoid confusion with the applied tension T ). The
dimensionless partial differential equation (PDE) for the evolution of the membrane is then

∂H

∂t
= 1

R

∂

∂R

[
RH3 ∂P

∂R

]
, (21)

where the dimensionless pressure P = p/(γ L2 cos θ/V ) is

P = − 1

	
∇2

RH. (22)

As boundary conditions at the origin (R = 0), we impose zero membrane slope (axisymmetry)
and no radial flux, i.e.,

∂H

∂R
= 0 at R = 0, (23)

∂

∂R

(∇2
RH

) = 0 at R = 0. (24)

At the meniscus, R = RM , the pressure in the liquid is set by the pressure jump across the meniscus;
this provides a condition on the membrane curvature at R = RM . Just as with the static problem,
the slope of the membrane and the membrane displacement must both be continuous. Finally, the
membrane must reach its clamped value, H (1) = H∞. Since the problem in the dry membrane is
quasistatic, the membrane shape may be solved analytically in this region for given values of HM
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FIG. 9. The dynamic approach of the dimensionless adhesive force, F (t ), to its equilibrium value F∞ in
both (a) noncontacting and (b) contacting cases. (a) In the noncontacting case, the force decays exponentially
to its equilibrium value, consistent with a linear stability analysis of the equilibrium (dashed lines show the
expected decay rate, i.e., slope, only). (b) In the contacting case, the force instead appears to decay according
to a power law. In each case, the equilibrium force, F∞, is calculated from the static theory, and H∞ = 5.

and RM ; the result is that there are two conditions at the meniscus, namely

∇2
RH = 2	

HM
at R = RM , (25)

∂H

∂R
= HM − H∞

RM log RM
at R = RM . (26)

An equation for the motion of the meniscus, RM (t ), is determined by requiring it to have the
velocity that balances the flux, i.e.,

dRM

dt
= −H2

M

∂P

∂R

∣∣∣∣
R=RM

. (27)

(Note that this motion of the meniscus ensures that global conservation of mass, 2π
∫ RM

0 RH dR =
1, is automatically satisfied throughout.)

The PDE (21) is solved numerically subject to the boundary conditions (23)–(27) and the
initial condition H (R, 0) = H∞. To determine the numerical solution, we discretize space in a
flux-conservative manner and evolve in time using the method of lines integrated with MATLAB’s
ordinary differential equation (ODE) solvers. (Further details are given in Appendix A.)

A. Contacting and noncontacting dynamics

The numerical solutions of the dynamic problem qualitatively confirm the results of the static
analysis presented in Sec. III. In particular, the system appears to have two distinct types of equilibria
characterized by whether the membrane and base are in physical contact. Furthermore, it is possible
to switch between these states by changing the applied tension, for example. However, the dynamic
simulations demonstrate a further key difference between these types of solution: With fixed control
parameters (	 and H∞), the approach to equilibrium is significantly quicker in the noncontacting
case than it is in the contacting case [compare the different timescales in Figs. 9(a) and 9(b)]. This
also agrees qualitatively with our experimental observation in Fig. 6.

The results of Fig. 9 are presented with a fixed gap width H∞ but with various values of
the membrane deformability 	. We see that with lower values of 	 (more tense, hence less
deformable, membranes), the adhesion force decays exponentially to the expected equilibrium
value. These relatively undeformable membranes have equilibria that are out of contact; the
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FIG. 10. Snapshots of the cross-sectional profile of the membrane and droplet during the approach to
contact of a highly deformable membrane (here 	 = 100, H∞ = 5). Note that some of the fluid is trapped in
a dimple in the membrane and drains very slowly. The initial condition is shown in the top left panel with the
behavior at five subsequent times also shown. Note that the vertical scale is exaggerated here (by the different
scales used to nondimensionalize horizontal and vertical lengths)—in reality the droplet is thin and wide.

membrane approaches these equilibria quickly, and the exponential decay of the adhesive force to
the equilibrium value may be understood by a standard linear stability analysis about the equilibrium
configuration (see Appendix B). Increasing 	 to values for which the equilibrium analysis suggests
a contacting solution exists, we see [Fig. 9(b)] that the adhesive force approaches its final value
significantly more slowly than might be expected from a linear stability analysis: The decay appears
to be power law, rather than exponential.

B. Trapped liquid slows contact

The different dynamic behavior in the approach to contact (compared to that out of contact) can
be explained by the formation of a fluid dimple under the membrane (see snapshots of the membrane
shape from simulations in Fig. 10). Here, the membrane is pulled toward contact by the capillary
forces of the droplet, and to accommodate this motion the fluid must be squeezed radially outward
towards the meniscus. However, this flow is sufficiently resisted by viscosity that some of the fluid
becomes trapped beneath the membrane and only drains slowly; we shall see that this slow drainage
controls the dynamics at late times.

The dimple formation shown in fig. 10 is reminiscent of previous work by Jones and Wilson
[30] and Yiantsios and Davis [31] on a bubble approaching an interface or rigid wall through a
viscous liquid. We use these studies as templates with which to study the dynamics of our system.
At sufficiently late times, the bulk of the fluid inside the dimple is at uniform pressure, and likewise
for the fluid outside. Crucially, however, the two regions have different pressures and are joined by
a narrow region at the dimple edge, in which the shape of the membrane controls the leakage flux;
the structure of the problem is shown in Fig. 11.

In Fig. 11, we see that the portion of the membrane that separates the regions of approximately
constant pressure is narrow. We expect that, once the dimple has formed, this narrow gap will be
located close to the equilibrium contact point, C∞, which is calculated from the equilibrium theory.
We take its location to be at C∞ to leading order, and assume that the height there, Hmin = H (C∞),
is negligible in comparison to the height away from R = C∞. With this assumption, we see from
Reynolds’ equation for the dimensionless flux, Q = −H3∂P/∂R, that the pressure gradient is largest
where the gap width H is small, justifying taking the pressure to be uniform away from R = C∞.
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FIG. 11. When approaching contact, a dimple forms beneath the membrane. To understand the evolution
of the dimple, we split the fluid into 3 distinct regions: region I is the dimple at uniform positive pressure with
dimple height H0(t ), region III is the meniscus region at uniform negative pressure, and region II is a small
annular region surrounding the narrow gap, Hmin, that controls the fluid flux, and is at a radial position close to
the edge of the equilibrium contact region, C∞.

Inside the dimple, the uniform pressure is positive and dictates the membrane shape via a Poisson
equation. The profile of the dimple may therefore be written H (R) ≈ H0(1 − R2/C2

∞), where H0

is the height at the center (R = 0). Integrating, we find the volume trapped within the dimple is
Vdimple ≈ πC2

∞H0/2.
Outside the dimple, the constant fluid pressure must be negative (since it must match the pressure

at the meniscus); we therefore write this pressure P = −
 with 
 > 0. As with the dimple region,
the flow here is negligible, so that the membrane shape evolves quasistatically (though for simplicity
we do not give the shape of the membrane in this region explicitly here).

In the small gap at the edge of the dimple (which we call the “neck,” illustrated by region II
in Fig. 11), the volumetric flux of fluid, Q, is controlled by the local membrane geometry via a
lubrication flow. We introduce a local coordinate X = R − C∞ in the neck region (with |X | � C∞)
so that

Q ≈ 	−1H3 ∂3H

∂X 3
(28)

here.
Equation (28) can be solved to give the shape of the membrane in the neck region, but requires

matching conditions as X → ±∞, as well as a value for the flux q. In these local coordinates,
the curvature due to the pressure in the meniscus requires ∂2H/∂X 2 → 	
 as X → ∞; similarly,
the membrane gradient at the interior edge of the neck region requires ∂H/∂X → −2H0/C∞ as
X → −∞. Finally, the integrated flux through the neck region, 2πC∞Q, must balance the rate at
which the volume of the dimple decreases, V̇dimple. Combining these three relations with (28), we
obtain the scaling relations

Hmin

X 2∗
∼ 	
,

Hmin

X∗
∼ H0

C∞
,

C2
∞H0

t
∼ C∞H4

min

	X 3∗
,

where X∗ is the typical horizontal scale in the neck region. Solving these equations leads to leading-
order scalings for the dimple height H0, as well as the height Hmin and width X∗ in the narrow gap
region, in terms of 	,
,C∞, t as follows:

H0 ∼ 	1/2
1/4 C3/2
∞ t−1/4, X∗ ∼ 	−1/2
−3/4 C1/2

∞ t−1/4, Hmin ∼ 
−1/2 C∞ t−1/2. (29)
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This scaling analysis reveals that the dimple height H0 ∼ t−1/4, and the membrane height in
the narrow gap Hmin ∼ t−1/2, similar to the scalings obtained by Jones and Wilson [30] in drop
coalescence. Thus, contact between the membrane and base will not occur in finite time (unless
another shorter range force, such as van der Waals, takes over).

We also find that the similarity solution for the membrane shape in this transition region is the
same as that found by Jones and Wilson [30] (see Appendix C 1). However, the prefactors in the
scaling relations (29) differ because in this problem the outer curvature is set by the pressure at
the meniscus (i.e., the meniscus height) rather than, for example, a bubble radius or volume. These
prefactors may be found in terms of the membrane deformability 	 and the equilibrium contact point
C∞ (which is itself a function of 	 and H∞); the prefactors also depend on the meniscus pressure

 (at late times, we expect that 
 ∼ 2/H∞

M , with H∞
M being the equilibrium meniscus height, since

the pressure is set by the meniscus curvature).
Our main focus here is on the evolution of the key properties of the system at late times, especially

the adhesion force (but also the meniscus position and height). To progress, we assume that the
membrane behaves quasistatically outside the dimple, evolving due to the volume increase as fluid
leaks through the neck region. The meniscus position, RM , its height, HM , and the (effective) contact
position, C, therefore obey (16)–(18), but with the left-hand side of (18) modified to 1 − Vdimple

to account for the (decreasing) amount of fluid trapped within the dimple. We note that (see
Appendix C 1)

Vdimple ∼ π

2
A	1/2
1/4C7/2

∞ t−1/4 (30)

for a constant A ≈ 0.20 that is found numerically. (The radial flux is then Q ∼ V̇dimple/2πC∞ ∼
t−5/4.)

Expanding RM , HM , and C about their equilibrium values, and using the leading-order expression
for dimple volume, (30), we linearize these three conditions to calculate their first-order corrections
(Appendix C 2). The correction to the adhesion force is then determined from linearizing the relation

F = −2π

∫ RM

C
RP(R, t ) dR = 2π

	

HM − H∞
log RM

, (31)

which leads to

F ∼ F∞ − F1t−1/4 (32)

for F1, a constant that can be computed numerically (see Appendix C 2). Note that here F∞ is the
force calculated from the static theory; although the pressure within the dimple is positive (and
hence slightly reduces the adhesive force), at late times this correction is small and the adhesive
force is dominated by the suction pressure outside the dimple.

Figure 12 shows the numerically determined decay of the adhesion force to its equilibrium value,
together with the full prediction of the asymptotic theory (including prefactors). Qualitatively,
we see a reasonable match between the two quantities at late times, suggesting that the expected
algebraic decay of (32) is indeed that observed numerically. The inset of Fig. 12 shows the absolute
error in (32) and confirms that the error does indeed occur at higher order [i.e., at O(t−1/2)].

While the leading-order asymptotic results are in good agreement with numerical simulations for
very late times, the convergence is relatively slow: Our results suggest an expansion in powers of
t−1/4 so that to obtain even a 10% error requires t = O(104) or greater. The numerical results shown
in Fig. 12 confirm that the t−1/4 scaling is only observed for dimensionless times t � 104. In our
experiments, the dimensional timescale t∗ = 12μL4/γV cos θ ≈ 400 s; the time needed to observe
this dynamic scaling with our experimental parameters would therefore be on the order of weeks
and effectively not observable.
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FIG. 12. The adhesion force decaying to its equilibrium value, F∞ (calculated from the analysis of Sec. III),
in the contacting regime. The numerics (solid curves) approach the asymptotic dimple theory (dashed lines)
at late times. Inset: the absolute error (solid curve) between the numerically calculated force F (t ) and the first
two terms of the asymptotic expansion is approximately linear (black line for comparison) in t−1/2 at late times
(here 	 = 10, H∞ = 2.5).

VI. DETACHMENT

Our equilibrium theory has shown that, from the perspective of maximizing the adhesive force,
it is beneficial to be in the contacting regime. Contact can be achieved either by decreasing the gap
width (decreasing H∞) until the membrane snaps to contact or by decreasing the tension sufficiently
(increasing 	). As shown in the last section, the larger forces associated with contact are moderated
by the caveat that the force approaches its higher contacting value relatively slowly, F∞ − F (t ) ∼
t−1/4. Nevertheless, the order of magnitude increase in adhesion force seen as contact is approached,
and the reasonable waiting times for significant attachment observed in Sec. IV D, suggest that
operating in the (	, H∞) parameter regime corresponding to contacting equilibria is still beneficial.

Having investigated adhesion to a substrate and seen the importance of being close to contact,
it is natural to then ask how one can detach from the surface efficiently. In particular, if one begins
close to contact, is there a best way to unstick? The key quantity of interest is the effective work of
separation, which we define to be the work done to separate the surfaces,

Wsep =
∫ ∞

H0∞
FdH∞ + �Uelast, (33)

where H0
∞ = H∞(t = 0) is the initial gap width and �Uelast is the change in elastic energy due to

stretching of the sheet. Note that the upper limit of integration in (33) is H∞ = ∞, since we want to
completely separate the surfaces.

In practice, we calculate the work of separation in the quasistatic case that follows from the
increase in the total equilibrium energy of the sheet. Here the energy input will be stored in two
different ways: elastic energy in the stretched sheet and surface energy at the interfaces. Ignoring
small terms the dimensionless energy, U , can be written as

	U = π

∫ 1

0
R

(
dH

dR

)2

dR − 2π	R2
M , (34)
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FIG. 13. Work of separation from different methods of detachment. (a) Pull directly away from the surface
(yanking), H∞ → ∞ with 	 fixed. The solution follows the equilibrium value (blue solid curves) and jumps
from contact to noncontact at the fold (ii). The work of separation is the integral

∫
F dH∞ and is illustrated by

the shaded dark gray area. (b) If we instead first increase the tension (decrease the deformability 	) at fixed H∞
and then yank, we expect that the work of separation may be significantly reduced. The different stages are (i)
initially decrease 	 (to green solution) before (ii) increasing H∞ to pull away through the snap-off transition.
The total work is the sum of the dark gray area and the work done to increase the tension in stage (i) and this
method of detachment will be preferable to yanking provided that the energy needed to stretch the membrane
in panel (b) stage (i) is less than the yanking energy saving compared to panel (a), illustrated by the light gray
region.

where we have nondimensionalized with the energy scale γ L2 cos θ . In dynamic scenarios, we focus
on the case where �Uelast = 0 and so omit a thorough definition of this term here.

A. Quasistatic detachment

We approach the problem of detachment by considering an initial condition corresponding to
a contacting equilibrium state (i.e., strong adhesion). The detachment problem is then to choose a
path in (	, H∞) space that minimizes the work of separation, Wsep.

A simple option is to pull directly away from the substrate at fixed tension: We term this
“yanking” and illustrate this path, together with the associated work of separation, in Fig. 13(a).
This requires working directly against the strong adhesion force of contact. However, we may also
vary the tension in the membrane and so another possibility is to increase the tension (decrease 	)
while keeping H∞ fixed (at least initially). We have already seen experimentally that decreasing
	 sufficiently results in the membrane peeling off the base (Fig. 7), losing contact at a smaller gap
separation H∞, i.e., without first pulling the membrane up. Once out of contact, the adhesion force is
smaller and so we might expect to then be able to increase H∞ with significantly less resistance than
if yanking without a tension change. This alternative mode of detachment is shown in Fig. 13(b),
together with a schematic of how much energy might be saved in this way. Of course, decreasing 	

itself has an energetic cost, �Uelast, and so we must consider the tradeoff between the work required
to increase the tension and the subsequent reduction in work done against adhesion due to this
tension change.
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contact possible
non contact

FIG. 14. Starting from an initial contacting state (	0, H0 ), there are many possible paths in parameter space
that result in detachment. The simplest of these is a direct pull off at constant tension (yanking, dashed path).
We investigate various quasistatic paths that involve decreasing 	 by �	 before taking H∞ → ∞ (solid path);
we find that the optimal (smallest work of separation) is to decrease 	 until contact is lost before pulling away
(dotted path). Note that here the area labeled contact possible contains the three-solution region seen in Fig. 4,
and we have omitted the region with no solutions for simplicity.

From a quasistatic perspective, the key piece of information is where in the parameter space the
path crosses the discontinuous jump from contact to noncontact. As this discontinuity is passed, the
system will lose energy that cannot be regained. We therefore need to consider separately the energy
change, calculated using (34), both before and after this jump to determine the energy required to
detach.

We consider paths where 	 is initially decreased (the tension is increased) by an amount �	,
before pulling away (H∞ → ∞) as illustrated in Fig. 14. Wsep is calculated from the change in
surface and stretching energy of the sheet. We find that increasing the tension results in an overall
energy saving. In fact, the best strategy is to increase the tension until contact is lost (at which
point the adhesion force is substantially lower) before pulling away (increasing H∞). Surprisingly,
however, the benefit of this change is relatively modest: In calculations the reduction in Wsep made
by increasing the tension first was typically in the region of 5–10%. While this is surprising, we
must also consider the effect of the rate of yanking on the work of separation: Since we saw that the
dynamics of adhesion significantly modify the equilibrium picture, it is natural to wonder whether
the same might be true of dynamic detachment.

B. Dynamic detachment

We performed numerical simulations in which the edge height H∞ is increased at a constant
pulling rate, Ḣ∞, while 	 is kept constant. These simulations show that the instantaneous adhesive
force at a given edge height has a significant rate dependence [Fig. 15(a)]: At high rates, viscous
forces become important and resist the separation of the membrane from the substrate, which is the
same mechanism as for so-called Stefan adhesion [2,13,32]. The peak adhesion force is increased,
and the force remains high over a larger range of gap widths H∞. We therefore expect that the work
of separation in this case, Wsep = ∫

F dH∞, will be significantly increased. An illustration of how
the work of separation increases with the rate of detachment is shown in Fig. 15(b) for a particular
choice of 	 and H∞(t = 0). Details of the numerical calculation of Wsep are given in Appendix D.
In this example, the work done against adhesion increases markedly when Ḣ∞ � 10 and by more
than a factor of two between Ḣ∞ = 1 and Ḣ∞ = 100.
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Dynamic yanking

Quasi-static yanking

Tension change

FIG. 15. (a) Pulling the membrane off at a faster rate results in a larger adhesion force over a wider range
of gap widths, H∞. (b) The energy required to detach (H∞ → ∞) when retracting at constant speed increases
with the retraction speed, Ḣ∞. Dynamic simulations (blue “x”) are performed at different constant retraction
rates and compared to the quasistatic change in energy at fixed 	 (black dashed) and the optimal quasistatic
strategy (red dash-dotted) in which 	 is decreased until contact is lost before pulling away at fixed 	. In both
figures, the initial condition for dynamic simulations is close to the contacting equilibrium with parameters
	 = 100, H∞ = 5.

We note that we compare dynamic yanking with the optimal quasistatic strategy (chang-
ing the tension in the membrane); this quasistatic model does not include dynamic effects
for several reasons. First, the stretching sheet always has a uniform tension, and this tension
therefore cannot do any work against the viscous shear force, and there is no rate depen-
dence in the varying tension model. (However, we note that in this scenario, the dynamics
of detachment may be nontrivial, as suggested by detailed studies of “peeling by pulling”
[33,34].) Second, although one might expect rate to have an effect once contact between the
membrane and base is lost and we switch to yanking, the rapid decay toward equilibrium and
the small adhesion force suggests that this contribution is negligible in determining the work of
separation.

We conclude that it is energetically favorable to detach at a slow speed when only yanking.
However, in applications for which detachment is required to occur within a shorter timescale, slow
pulling rates are impractical: In our experiments, the relevant timescale is 400 s. In such scenarios,
detachment within seconds would require a significant Ḣ∞ and hence a non-negligible increase
in the adhesion force (and work of separation) compared to the quasistatic case. This means that
the optimal strategy of first increasing the tension could have a substantial benefit over yanking in
scenarios such as our laboratory experiments; it may also be that this is a preferential method for
detaching quickly in other scenarios.

VII. DISCUSSION AND CONCLUSIONS

Using a simple theoretical model of a tense membrane that is attached to a rigid substrate by a
fluid droplet, we have studied some key features of elasto-capillary adhesion. Our model system
highlights that deformability can improve adhesive capabilities, with the coupling between the
surface tension and elasticity resulting in an increase in the adhesion force over the comparable
rigid case. As in similar scenarios [18,21], the capillary forces can deform surfaces sufficiently
that they form solid-solid contact. This contact can result in stronger adhesive forces, even without
accounting for additional adhesion between the two solid surfaces.

Two key parameters determine the equilibrium behavior of our system: the dimensionless gap
separation, H∞, and the membrane deformability, 	. These can be actively (and separately) con-
trolled via the clamp height, h∞ ∝ H∞, and the imposed membrane tension, T ∝ 	−1, respectively.
Crucially, we show that by a careful choice of these parameters we can switch the strong adhesion
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of contact on or off. However the dynamic approach to contact is found to be relatively slow: The
adhesion force obeys a scaling law F (t ) − F∞ ∼ t−1/4 at late times because fluid is trapped in a
dimple and must be squeezed outward through a narrow gap to allow contact. This slow squeezing
out of fluid complicates the use of this adhesive to lift loads: Adhesion is only maintained if the
surfaces are left together for a sufficient period of time. However, a quantitative understanding of
this effect is still lacking since, in practice, the adhesion fails via peeling from one edge, which is a
feature that cannot be reproduced by the axisymmetric theory presented here.

Active control of the two parameters H∞ and 	 allows us to develop different strategies to adhere
and detach effectively from the substrate, and we suggest that, from an energetic perspective, it is
better to peel off the base by increasing the tension than to yank by pulling directly against the
strong adhesion.

The relatively simple framework of this theory has allowed the exploration of some of the key
features of adhesion in elasto-capillary systems. However, our analysis neglects some important
aspects of surface deformation. For example, we require that the membrane is in close proximity to
the substrate so that membrane slopes are small and the droplet is sufficiently squashed that we can
ignore the effects of the circumferential meniscus curvature and the capillary line force. We also
assume for simplicity that the tension in the membrane dominates bending, additional stretching in
the membrane, and the surface tension acting at the meniscus. As well as understanding the effect of
lifting these restrictions, it would be interesting to see how adding extra effects, such as solid-solid
adhesion or surface roughness, would modify our results. A crucial feature that is present in insects,
but that is missing from our adhesive device, is significant adhesion in the presence of shear [1].

The experimental data that supports the plots within this paper and other findings of this study
are available in Ref. [35].
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APPENDIX A: NUMERICAL SCHEME

The free boundary problem (21)–(27) is transformed to a fixed domain problem using the change
of variables ξ = R/RM . Defining α(ξ ) = R2

MH then allows us to rewrite the governing PDE in the
form of a conservation equation ∂α/∂t + ∇ · Q̂ = 0, where the flux Q̂ = Q̂eξ is given by

Q̂ = − α3

R6
M

∂P̂

∂ξ
− ξαṘM

RM
, P̂ = −1

	R4
M

∇2
ξ α, (A1)

with the meniscus position evolving according to the equation

ṘM = −α(1)2

R5
M

∂P̂

∂ξ

∣∣∣∣
ξ=1

. (A2)

We solve this system numerically using the method of lines. The domain ξ ∈ [0, 1] is split into
concentric annuli ξi−1/2 < ξ < ξi+1/2 with uniform height αi and pressure P̂i (i = 1, 2, . . . n), where
ξ j = j/n. At the center, there is a circle of radius ξ1/2 about the origin of height α0 and pressure P̂0.
In our simulations, we typically used a discretization with n = 800.

The annuli (and circle) heights change due to the flux at the edges, Q̂i±1/2, giving evolution
equations for the αi in terms of the meniscus position RM and the neighboring αi and P̂i. The
meniscus position evolves due to the (discretized) pressure gradient there.
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The boundary conditions at ξ = 0 are accounted for by the discretization at the center, so we
need only consider the boundary conditions at ξ = 1. Applying these conditions fixes the value of
αn, which is calculated by adding an additional “ghost” annulus outside the meniscus with height
αn+1 and using central differences to discretize the two boundary conditions at each time step.

The solution to this series of ODEs in time, including the evolution of RM , is found numerically
from a given initial condition using MATLAB’s inbuilt solver ode15s.

APPENDIX B: LINEAR STABILITY

We consider small perturbations to a given equilibrium membrane shape, H̄ (R), and correspond-
ing meniscus radius, R̄, at fixed values of the parameters (	, H∞). We take a standard ansatz of the
form

H (R, t ) = H̄ (R) + ε f (R)eσ t , RM (t ) = R̄ + εeσ t , (B1)

where ε � 1 and σ is the growth rate of the perturbation.
The function f (R) and the growth rate σ are determined by linearizing (with respect to ε)

the evolution equation (21) and boundary conditions (23)–(27), as well as volume conservation
(13). The problem can be written in a more convenient form by introducing the function I (R) =∫ R

0 z f (z)dz, which measures the change in droplet volume within r < R. We then obtain a pair of
coupled ODEs for f (R) and I (R)

1

R

d

dR

[
RH̄3 d

dR

(
1

R

d

dR

[
R

df

dR

])]
+ σ	 f = 0, (B2)

dI

dR
= R f , (B3)

together with the six boundary conditions

f ′(0) = 0, f ′′′(0) = 0, I (0) = 0, I (R̄) = −R̄H̄ (R̄),

f ′(R̄) − f (R̄)

R̄ log R̄
= −2	

H̄ (R̄)
, f ′′(R̄) + f ′(R̄)

R̄
+ 2	 f (R̄)

[H̄ (R̄)]2
= −2	[H̄ (R̄) − H∞]

[H̄ (R̄)]2R̄ log R̄
. (B4)

These boundary conditions emerge from, respectively: symmetry at the origin, no radial flux at the
origin, definition of I , volume conservation, fixed position at the clamp with gradient matching at
the meniscus, and the curvature-imposed meniscus pressure.

The ODEs (B2) and (B3) are solved numerically subject to the boundary conditions (B4) using
MATLAB’s inbuilt boundary value problem solver bvp4c to find the growth rate σ , given (	, H∞)
and a valid equilibrium solution H̄ (R). The dashed lines in Fig. 9(a) have slope corresponding to
the growth rate determined in this way.

APPENDIX C: DIMPLE DRAINAGE CALCULATION

1. Similarity solution

We determine the prefactors in the scaling relations (29) by first finding a similarity solution for
the membrane shape in the neck region (region II in Fig. 11). We note that the decrease in volume
of the dimple controls the flux through this drainage region 2πC∞Q = −V̇dimple, and so from (28)
the shape in this region must obey

H3 ∂3H

∂X 3
= −	

4
C∞Ḣ0, (C1)

where we recall that X = R − C∞ is a local coordinate in the neck region.
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Far from this region, we match the solution to the curvature outside the dimple and the membrane
slope immediately inside the dimple

∂2H

∂X 2
→ 	
 as X → +∞,

∂H

∂X
→ −2H0

C∞
as X → −∞. (C2)

We look for a similarity solution in terms of a similarity variable

η = 	1/2
3/4

C1/2
∞

t1/4(R − C∞),

which is motivated by the scaling results (29). The similarity solution, f (η), is defined by

H = C∞

1/2

t−1/2 f (η)

and H0 = A 	1/2
1/4C3/2
∞ t−1/4 where A is a constant. Both A and f (η) are to be determined from

the solution of the boundary value problem

f 3 f ′′′ = A

16
, f ′ → −2A (η → −∞), f ′′ → 1 (η → ∞). (C3)

Note that it is known [30] that there is a unique solution g(z) to the problem g3g′′′ = 1 with
boundary condition g′ → −1 as z → −∞ and g′′ → k as z → ∞ for some k. The constant k is
found numerically to be k ≈ 1.21. We therefore seek to rescale our problem (C3) onto this classic
problem by seeking a solution of the form f (η) = αg(η/β ). We find that

A = (29k)−1/4 ≈ 0.20, α = 1

27A2
, β = 1

28A3
, (C4)

and thus we have found a similarity solution for the profile at the dimple edge. See Ref. [30] for a
plot of the similarity solution g(z).

2. Adhesion force evolution

To find the time dependence of the adhesion force, we must first determine how the meniscus
position and radius evolve. At leading order, the membrane shape outside the dimple will behave
quasistatically, changing due to a small influx in volume as the fluid dimple drains. Similarly to
the equilibrium contact solutions (16)–(18), we have three conditions relating the meniscus radius,
height, and the contact point, but we replace (18) by

1 − Vdimple = π	

HM

[
R4

M − C4

4
+ C2R2

M log
C

RM

]
. (C5)

From the dimple scaling analysis (30), we know that at a given time t the volume of the dimple
is approximately Vdimple ≈ π

2 A	1/2
1/4C7/2
∞ t−1/4, where A ≈ 0.20.

We expand the equations (16), (17), and (C5) as follows:

RM = R∞
M + δRM , HM = H∞

M + δHM , C = C∞ + δC,

with the leading terms (denoted with a super- or subscript ∞) obeying the equilibria equations
(16)–(18) and the corrections (denoted by δ) being small. Linearizing, we can write the resulting
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three linear equations for the first-order corrections in the form Mx = v, where the matrix M is

M =

⎛
⎜⎜⎜⎜⎝

	
(
R∞

M
2 − C2

∞
) −2R∞

M H∞
M −2	R∞

M C∞ log
(
R∞

M /C∞
)

	
(
R∞

M
2 − C2

∞ + 2R∞
M

2 log R∞
M

)
R∞

M

(
H∞ − 2H∞

M

) −2	R∞
M C∞ log R∞

M

2πR∞
M H∞

M
2 −1 π	C∞

[
R∞

M
2 − C2

∞
−2R∞

M
2 log

(
R∞

M /C∞
)]

⎞
⎟⎟⎟⎟⎠ (C6)

and the vectors x and v are

x =
⎛
⎝δRM

δHM

δC

⎞
⎠, (C7)

v = −π

2
A	1/2
1/4C7/2

∞ H∞
M t−1/4

⎛
⎝0

0
1

⎞
⎠. (C8)

From this formulation, we see that by knowing the equilibrium solutions, we can find the late-
time leading-order corrections to the radius and height of the meniscus, as well as the correction to
the position of the contact point.

We then calculate the correction to the adhesion force from the expression

F = 2π

	

HM − H∞
log RM

which, when linearized, gives the first-order force correction

δF = 2π
(
H∞ − H∞

M

)
	R∞

M

(
log R∞

M

)2 δRM + 2π

	 log R∞
M

δHM, (C9)

where F∞ is the equilibrium value of the force. Hence, we find that the leading-order correction to
the adhesion force is of size t−1/4.

APPENDIX D: CALCULATION OF THE DYNAMIC WORK OF SEPARATION

To calculate the dynamic work of separation numerically, we use the numerical scheme described
in Appendix A. These simulations begin with the membrane close to its equilibrium shape (the
initial condition used for Fig. 15 was found by evolving the system from the flat state H = H∞ for
a dimensionless time t = 103 with H∞ = 5, 	 = 100 both fixed). The value of the edge height H∞
is then increased at a given rate, Ḣ∞.

The integral that defines the work of separation Wsep involves integrating to H∞ = ∞; in practice,
the dynamic numerics is terminated at a separation H∗, which is chosen to satisfy two requirements:
(i) the adhesive force at H∗ should be within 1% of the corresponding equilibrium value and (ii) the
work of separation in moving from H∗/5 to H∗ is within 1% of the quasistatic work of separation
between these values of H∞. For H∞ � H∗, we therefore expect the adhesive force to remain very
close to the quasistatic value and account for the work of separation in moving from H∗ to ∞ as the
value of the equilibrium work of separation from H∗ to ∞. For the results presented in Fig. 15(b), a
typical value was found to be H∗ = 100.
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