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1 Introduction

The mechanics of the swimming of microorganisms in 
the natural world has fascinated researchers over the past 
70 years (Purcell 1977; Lauga and Powers 2009) since the 
work of Taylor (1951). Research interest in this area has 
expanded rapidly in recent years with the main focus on the 
design of micro-scale machines (Abbott et al. 2009; Erbas-
Cakmak et al. 2015) for drug delivery in medical applica-
tions (Nelson et  al. 2010). Two general approaches have 
emerged in this research. In one, models have been devel-
oped which mimic the natural world (Dreyfus et al. 2005; 
Elgeti et al. 2015; Benkoski et al. 2009, 2011; Cebers and 
Javaitis 2004) including important effects such as synchro-
nization (Golestanian et al. 2011), boundaries (Lauga et al. 
2006) and torque (Darnton et al. 2007). In the other, appar-
ently simple models containing three spheres have been 
proposed (Najafi and Golestanian 2004; Vladimirov 2013; 
Felderhof 2006, 2015) with the focus on investigating the 
basic mechanics of swimming at low Reynolds numbers. 
A physical model of a three-sphere swimmer has recently 
been investigated (Grosjean et  al. 2016) and it has been 
shown to be capable of self-propulsion on the surface of a 
fluid.

Our experimental investigations were concerned with 
the motion of fully submerged sets of coupled spheres in a 
Stokes flow. It is known that the inclusion of small amounts 
of fluid inertia is sufficient to generate motion (Klotsa 
et al. 2015) in coupled spheres, but our investigation con-
cerns Stokes flows where fluid inertial effects can safely be 
ignored. The couplings between the spheres were formed 
by thin struts which were either rigid or elastic. Similar 
systems have been studied previously using a few spheres 
(Farzin et al. 2012; Wang and Othmer 2015; Keaveny and 
Maxey 2008; Taghiloo and Miri 2013) or a large number of 
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spheres to mimic the ‘tail’ of a swimmer (Roper et al. 2006, 
2008; Gauger and Stark 2006). Our objective was rather 
different and addressed the question of how many interact-
ing spheres were required to generate net motion of the cen-
tre of mass of the body. This general question is addressed 
in other investigations of the motion of spheres in Stokes 
flows where it is shown that three interacting spheres will 
give rise to chaotic motion and collective movement of the 
centre of mass of the group (Jánosi et al. 1997; Mullin et al. 
2005; Segre et al. 2010).

A simple theoretical model which is capable of self-
propulsion is the three-linked-sphere model (Najafi and 
Golestanian 2004) which comprises three spheres linked 
by extendible rods. The middle sphere is an active element 
which changes the length of the connecting rods. A non-
zero phase difference in the continuous, periodic motion of 
the two rods means that the motion is non-reciprocal and 
thereby does not violate Purcell’s scallop theorem (Pur-
cell 1977; Pak and Lauga 2015), which is a consequence 
of the time-reversibility of Stokes flows (Taylor 1951; Hap-
pel and Brenner 1983). The non-reciprocal motion of the 
individual spheres results in global motion of the centre of 
mass and the basic principal has been explored numerically 
(Earl et al. 2007) in the three-sphere model and its variants 
(Avron et  al. 2005; Earl et  al. 2007; Montino and DeSi-
mone 2015). Indeed, a micro-scale realisation of the three-
sphere system, achieved using optical tweezers to control 
the motion of glycerol beads, has been used to demonstrate 
fluid pumping (Leoni et al. 2008) at the micro-scale. This 
result indicates that the configuration is capable of self-pro-
pulsion. However, to realize, such a swimmer in practice 
requires control of the motion of each of the two connect-
ing rods.

Our goal was to enable non-reciprocal motion of the 
swimmer using appropriate design of the geometry rather 
than individual control of the constituent elements. Our 
three-sphere swimmers comprised three rigid spheres 
linked by two soft, thin elastic struts. It is well established 
that an important ingredient of self-propulsion is internal 
torque generation (Darnton et al. 2007). We created torques 
using embedded permanent magnets and applied a modu-
lated uniform external field to induce motion. Magnetic 
fields have been used in the past to drive swimmers (Keim 
et al. 2012; Gilbert et al. 2011a, b; Ogrin et al. 2008), but 
they typically use ‘soft’ magnetic materials which rely on 
internal field generation. More generally, field gradients 
have also been used to guide swimming robots (Yesin et al. 
2006).

We used hard magnetic materials, so that the action is 
purely torque generation through alignment of the magnets 
with the applied field. The magnets do not break the sym-
metry of the system; instead, the asymmetry arises, because 
the struts are unequal in length. When the two end spheres 

were forced to rotate by the magnetic field, they caused the 
elastic struts to buckle, and interact with each other through 
a combination of elastic and fluid forces. On application 
of an oscillatory field, the asymmetry in the length of the 
‘arms’ of the swimmer resulted in non-reciprocal body 
motion which induced self-propulsion. We conducted our 
investigation at the macro-scale: the device was centime-
tres long and hence it was immersed in a very viscous oil 
to enable close approximation to Stokes flow. We chose to 
work in this way as it enabled detailed observation of the 
swimmer and any fluid motion.

We first outline the experimental apparatus and report 
results for devices comprising two and three linked spheres. 
We show that whereas the motion of a device containing 
two spheres is reciprocal and there is no net motion, that for 
a three-sphere model is non-reciprocal and self-propulsion 
is found. We conclude that the hydrodynamic and elastic 
interactions between the spheres in the swimmer are able 
to generate non-reciprocal body motion which leads to 
self-propulsion at low Reynolds number, which here we 
define to be Re = aumax∕𝜈 < 1, where a is the radius of the 
spheres, umax is the maximum velocity of the flow, and � 
is the kinematic viscosity of the fluid. This work, there-
fore, demonstrates the proof of concept that a driven array 
of three linked spheres can self-propel at low Reynolds 
numbers.

2  Experimental setup

The motion of linked spheres in a very viscous fluid was 
investigated experimentally. The linked-sphere systems 
comprised active spheres which contained small neodym-
ium magnets that were acted on by an external oscillatory 
magnetic field, and passive spheres that contained no mag-
netic material. Application of a spatially uniform magnetic 
field created a torque, but no net force, on the embedded 
magnets in the active spheres, as they rotated to align with 
the applied field.

A schematic diagram of the experimental system is 
shown in Fig.  1, and details of the experimental appara-
tus used for magnetic actuation and flow visualization are 
given in Box et  al. (2015). The connected spheres were 
in a viscous liquid inside a rectangular tank with internal 
dimensions of width 125 mm, length 115 mm, and height 
200 mm. All spheres used were 2a = 12.70 mm in diameter 
and made from polypropylene, with density 946  kg  m−3. 
In each configuration, there was at least one active sphere 
which contained a cylindrical neodymium magnet of 
length 3 mm and diameter 2.4 mm, and magnetic moment 
m = 0.0140 ± 0.0006  Am2, embedded within it. Hence, 
the magnet occupied <2% of the volume of each sphere. 
Further ballast in the form of 0.5  mm diameter, stainless 
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steel balls were glued to the surface to make the device 
neutrally buoyant. It was found that these smaller spheres 
had a negligible effect on the motion. Passive spheres had 
small strips of copper wire embedded within them, and 
again, small stainless steel balls were used to achieve neu-
tral buoyancy.

The fluid was silicone oil with a measured kine-
matic viscosity of � = 922 ± 1  mm2  s−1 and density of 
� = 975 ± 1 kg m2 at 20.0 °C. The kinematic viscosity and 
density of the silicone oil were calibrated as a function 
of temperature, using a suspended level viscometer and a 
hydrometer, respectively, so that variations in temperature 
between experiments could be accounted for. Furthermore, 
experiments were performed in a air-conditioned laboratory 
where the room temperature was maintained at 20.0 ± 1 ◦

C, and the mean recorded temperature inside the tank was 
found to be 19.89 ± 0.30 ◦C.

The applied magnetic field was generated using Helm-
holtz coils and was measured to be spatially uniform to 
within 1%. A Mumetal shield surrounded the apparatus to 
minimize the effects of background magnetic fields. The 
embedded magnets were initially set with their axes in 
a direction orthogonal to the applied field. As the exter-
nal field was increased, the embedded magnets became 
aligned with it, so that a torque acted on the magnets in the 
spheres. Experiments performed on pairs of linked spheres 
were conducted for a field strength of B = 1.5  mT and a 
frequency of f = 0.5 Hz, while experiments performed on 
three linked spheres were conducted for B = 1.1  mT and 
f = 0.5 Hz.

A measure of the ratio of viscous torque to magnetic 
torque acting on a magnetically actuated sphere in a fluid 
environment is provided by the dimensionless Mason 
number Mn = 8��a3�∕Bm, where � is the dynamic vis-
cosity of the fluid, a is the radius of the sphere, � = 2�f  
and B are the angular frequency and magnitude of the 
applied magnetic field, respectively, and m is the mag-
netic moment of the magnets embedded within the 
sphere. In the case of the two-sphere devices, Mn = 0.86, 
and in the case of the three-sphere device, Mn = 1.18. In 
both cases, magnetic forcing and viscous damping pro-
vided comparable contributions to the resultant motion 
of the devices. We may also calculate the Womersley 
number � = a(�∕�)1∕2 to compare the contributions of 
transient inertial forces to viscous shear forces. Here, we 
find that � = 0.37 which indicates that inertial effects are 
small compared to viscous effects.

The motion of the linked spheres was measured from 
a sequence of images captured on a Genie camera (HM-
1400, Teledyne DALSA, Canada) with a spatial resolution 
of 0.12  mm/pixel, at a rate of 50  Hz and with 640 × 640 
pixels. In the case of the three-linked spheres, Particle 
Image Velocimetry (PIV) measurements were also per-
formed to measure the induced flow field. A high-speed 
camera (pco.1200 hs, PCO AG, Kelheim, Germany) with 
a spatial resolution of 0.05 mm/pixel was used to image the 
region of interest. The camera was positioned orthogonal 
to the y-z plane. A continuous 50 mW laser sheet illumi-
nated the plane from above, whilst an Nd:YAG pulsed laser 
sheet lit the plane from below. The camera was synchro-
nised with the Nd:YAG laser using a pulse generator (BNC 
Model 500, Oxford Lasers Ltd., Oxon, UK) and imaged 
with 1280 × 1024 pixels at a rate of 15 Hz, the maximum 
pulse rate of the Nd:YAG laser, and with an exposure of 
between 10 and 20  ms. A low-pass filter was positioned 
between the tank and the camera to reduce background 
noise in the detected signal. A consequence of the maxi-
mum pulse rate of the laser was that PIV measurements 
were performed for a frequency of applied magnetic field 
of 0.15 Hz for which Mn = 0.35 and � = 0.20.

The pairs of linked spheres were connected either by 
glass or rubber links, as shown in Fig.  2a and b, respec-
tively. The glass rods were of circular cross section, of 
diameter 1.8 ± 0.1  mm and lengths l = 2.8 ± 0.1, 6.9 ± 0.1

, and 12.7 ± 0.1  mm. The elastic struts were made from 
silicone rubber, a linearly elastic material with a Young’s 
Modulus of ∼ 1 MPa (Singh et al. 2013; Tipton et al. 2012), 
with a 1.2 ± 0.1  mm square cross section, and lengths of 
l = 3.2 ± 0.1, 6.1 ± 0.1, 10.0 ± 0.1, 15.0 ± 0.1, 21.0 ± 0.1, 
and 25.2 ± 0.1 mm. The ends of each connector were glued 
to the surfaces of the spheres, such that the connector was 
approximately parallel to the axis of magnetic dipole of the 
active sphere.

Camera

FluidFilledTank

Linked spheres

Electromagnet

Fig. 1  Schematic diagram of the experimental apparatus. Systems 
of connected, near neutrally buoyant spheres in a viscous fluid filled 
tank were subject to a spatially uniform, oscillatory magnetic field 
applied using Helmholtz coils. The experimental system was con-
tained within a Mumetal canister to reduce the effects of extraneous 
fields
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The three-linked-sphere device comprised 
12.7 ± 0.01  mm spheres connected to each other by two 
thin, silicone rubber struts in the configuration shown 
in Fig.  2c. In practice, a perfectly symmetrical system is 
impossible to manufacture. Here, an asymmetry was delib-
erately introduced into the system using elastic struts of 
different lengths. Both elastic struts had a 1.2 ± 0.1  mm 
square cross section, one was 3.0 ± 0.2  mm long and the 
other 6.0 ± 0.2 mm, such that the total length of the swim-
mer was lb = 6a + l1 + l2 = 47.1 mm. Both the end spheres 
contained a single magnet with their dipoles set in oppo-
site directions, such that the torque induced by the external 
field created clockwise and anti-clockwise rotation in the 
spheres at either end of the device. The opposing torques 
bent the connecting struts attached to the passive central 
sphere.

Since it is known that nearby walls significantly affect 
the motion of swimmers (Lauga et  al. 2006; Berke et  al. 
2008), we considered the separation distance h between the 
swimmer and the walls of the tank. For spheres perform-
ing torsional oscillations near stationary boundaries, the 
viscous resistance introduced by the presence of a wall is 
negligible provided the separation distance is greater than 
the thickness of the viscous boundary layer on the wall, 
independent of the orientation of the rotational axis of the 
sphere with respect to the surface normal (Box et al. 2017). 
The thickness of the Stokes boundary layer � = (�∕�)1∕2, 
which gives a measure of the distance over which the 
amplitude of fluid motion decays to 1/e of the initial value, 

was estimated to be 2.69a for typical measurements and 
4.93a for the PIV measurements. In both cases, this was 
less than the minimum distance separating the swimmer 
from the walls of the tank 𝛿 < hmin = 6.13a, such that the 
confining boundaries can be considered to be sufficiently 
far away to have had negligible effect on the device. Exper-
iments on the swimming device were also performed in a 
circular tank of diameter 300 mm and height 200 mm, and 
the behaviour of the device was found to be quantitatively 
comparable in both cases.

3  Two linked spheres

Results are first presented from an investigation into the 
motion of pairs of spheres connected by thin connectors. 
In each case, one sphere was made active by embedding a 
neodymium magnet and driving it using an external oscil-
latory field, whilst the other was passive. Results from pairs 
of linked spheres are compared and contrasted where the 
connectors have different lengths and they were either rigid 
or flexible.

3.1  Glass connector

The simplest orbits were exhibited by the spheres con-
nected by rigid glass rods. The induced magnetic torque 
of the active sphere caused the system to pivot about its 
collective centre of mass which was located approxi-
mately half-way along the connecting rod. Hence, the two 
spheres performed a see-saw motion about this fulcrum, 
each sphere prescribing an arc-like orbit through the fluid. 
The qualitative shape of the trajectories of the spheres was 
found to be independent of the length of the connector con-
necting the spheres. The trajectories shown in Fig. 3 are the 
positions, in y-z coordinates, of the respective centres of 
mass of the active and the passive sphere through 8 peri-
ods of oscillation when connected by a glass rod of length 
l = 0.44a.

3.2  Elastic connector

The flexibility of the elastic connector resulted in the active 
and passive spheres prescribing trajectories that were quali-
tatively different for short and long connectors. For short 
connectors, the orbits are similar to the rigid connectors, 
as shown in Fig. 4, for an elastic strut of length l = 0.50a. 
For longer elastic connectors, the orbits become more com-
plex, as can be seen in Fig. 5. The increased flexibility of 
the strut permitted more bending. Hence, the applied torque 
bent the connector rather than displacing the spheres. As a 
result, the passive sphere had a smaller orbit and travelled a 

Fig. 2  Schematic diagram of the linked two-sphere systems compris-
ing two spheres linked by a a glass rod and b an elastic strut of length 
l. The active spheres contain a neodymium magnet that was actuated 
by the applied magnetic field, and the non-magnetic passive spheres 
were carefully weighted with copper to ensure near-neutral buoyancy 
of the system. c The swimmer comprised of three spheres connected 
by elastic struts of unequal length l2 > l1. Permanent magnets were 
embedded in the active, end spheres (I and III) and the passive, mid-
dle sphere (II) was weighted with copper wire. The dipoles of the 
magnets were aligned in the y-direction, and the external magnetic 
field was in the z-direction. The dipoles in sphere I and III were in the 
opposite directions. Observations were made by viewing the motion 
in the x-direction
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shorter distance in one cycle as the length of the connector 
increased.

The bending of the connector introduced a phase delay 
between the motion of the spheres, such that the orbit of 
the passive sphere lagged the driven sphere. However, 
the bending resistance introduced a restoring force which 
maintained the separation between the spheres.

3.3  Comparison of rigid and non‑rigid links

The distance travelled in one orbit by the individual 
active and passive sphere, D/a, measured as a function of 

connector length, l/a, is shown in Fig. 6 for both elastic 
and rigid connections. In both cases, the total distance 
travelled in one cycle by both the active and the passive 
sphere increased with decreasing length of connecting 
connector, which suggests that larger connectors are sub-
jected to greater viscous resistance. The increased flex-
ibility of the long elastic connections permitted increased 
bending of the connector which resulted in the passive 
sphere prescribing a smaller orbit.

Fig. 3  Orbits of the active (left) and passive (right) spheres, con-
nected by a rigid glass rod of length l = 0.44a, throughout 8 periods 
of oscillation

Fig. 4  Orbits of the active (left) and passive (right) spheres, con-
nected by an elastic strut of length l = 0.50a, throughout 8 periods of 
oscillation

Fig. 5  Orbits of the active (left) and passive (right) spheres, con-
nected by an elastic strut of length l = 3.97a, throughout 10 periods 
of oscillation

Fig. 6  Distance travelled by the individual active and passive sphere 
in one orbit, D/a, measured as a function of length of the connection 
l/a, between the two spheres for both rigid and flexible links (as indi-
cated in the legend)
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The displacement of the passive sphere connected by 
rigid glass is found to be approximately in antiphase with 
the torsional oscillation of the active sphere,1 independent 
of length of the connection. This implies that the active and 
passive spheres were in phase throughout a cycle. However, 
the flexibility of the elastic connections caused the response 
of the passive sphere to lag the torsional motion of the 
active sphere. Furthermore, the phase difference increased 
with increasing length of flexible connector, as shown in 
Fig. 7.

1 We have used the convention that a positive torsional oscillation is 
in the clockwise direction and positive displacement of the passive 
sphere is in the positive z-direction.

The motion of two connected spheres was reciprocal, 
independent of the type of link, as can be seen for rigid 
links in Fig. 8 and for flexible links in Fig. 9. This implies 
that the motion of two linked spheres would not result in 
self-propulsion at low Re Purcell (1977). Although it must 
be noted that if two spheres were connected by a sufficiently 
long and flexible connector then, on actuation of the active 
sphere, bending waves would propagate along the connec-
tor towards the passive sphere (Lauga 2007; Wiggins et al. 
1998; Yu et al. 2006). The non-reciprocal motion of such a 
connector, and the flow it could induce, may result in the 
propulsion of the configuration.

4  Swimmer

In this section, the understanding gained from studying the 
interaction of connected active and passive sphere pairs is 
used to provide insight into the locomotive mechanism of 
a magnetically actuated swimmer. The swimmer comprised 
an arrangement of active and passive spheres connected 
with elastic struts of unequal length and was observed to 
self-propel in a Stokes flow.

The magnetic-dipole axes of the two active, end spheres 
were aligned orthogonal to the applied field, and the dipole 
moments of the two magnets were set opposite, such that 
the torque induced by the applied field resulted in the rota-
tion of the end spheres in opposite directions. Rotation of 
the end spheres caused the middle sphere to be displaced 
vertically. However, the end spheres did not just perform 
rotary oscillations about a fixed point in the fluid. As a con-
sequence of hydrodynamic interactions between the three 
spheres and the restoring force of the connecting struts, the 
two end spheres prescribed trajectories in the fluid whilst 
simultaneously performing torsional oscillations. Further-
more, the inequality in length of elastic struts introduced a 
small phase difference between the response of the middle 
and end spheres.

The net effect of the motion of the two active end 
spheres and the displaced middle sphere was a buckling of 

Fig. 7  Phase delay, �, between the torsional oscillation of the active 
sphere and the displacement of the passive sphere as a function of the 
length of connection, l/a, for elastic connectors and rigid glass con-
nectors (as indicated in the legend)

Fig. 8  Five stages of the reciprocal oscillation cycle performed by 
two spheres connected by a rigid, glass rod of length l = 0.28a. The 
time interval between each stage of the oscillation cycle is � = 0.79

Fig. 9  Five stages of the reciprocal oscillation cycle performed by 
two spheres connected by a flexible, elastic strut of length l = 0.96a. 
The time interval between each stage of the oscillation cycle is 
� = 0.79

Fig. 10  Eight stages of the non-reciprocal buckling cycle of the 
swimmer are shown below. The large, white arrow in the centre of the 
images denotes the direction of the velocity of the swimmer
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the swimmer. The swimmer buckled periodically in a non-
reciprocal, spatially asymmetric manner which propelled 
the swimmer in the direction of the longest strut. The buck-
ling cycle is depicted in the sequence of images in Fig. 10. 
The white arrow in the centre of the image denotes the 
direction of travel.

The flow fields at three points, separated by �∕2, in the 
non-reciprocal buckling cycle are shown in Fig.  11. The 

top and bottom images correspond to the maximum buck-
ling of the swimmer body, and the middle image shows the 
swimmer in an intermediate state. The individual spheres 
are depicted by the grey circles and the longer strut con-
nects the middle sphere to the right-hand sphere, as in the 
schematic shown in Fig.  2. The black arrowed lines indi-
cate instantaneous flowlines and the magnitude of the fluid 
velocity is represented by the colour contours. The spatial 
asymmetry in the flow field is evident throughout the buck-
ling cycle of the swimmer. In the top and bottom images, in 
particular, more flowlines are directed towards the sphere 
connected by the longer strut (sphere III). Furthermore, the 
magnitude of the fluid velocity is consistently greater adja-
cent to the longer strut throughout the cycle.

A set of time-series of the applied magnetic field and 
the motion of each sphere in the horizontal and vertical 
direction are shown in Fig.  12. Following the convention 

Fig. 11  Flow visualization of the swimmer at �∕2 (top), � (middle), 
and 3�∕2 (bottom) in the buckling cycle. The spheres are depicted 
by the grey circles and the longer strut connects the middle sphere to 
the right-hand sphere. The black arrowed lines represent estimates of 
the flowlines and the colour contours represent the magnitude of the 
velocity, ũ = u∕a𝜔, which ranges from 0 to 3.6

Fig. 12  Time-series of the horizontal displacement (top) and verti-
cal displacement (bottom) of the three spheres. The motion of active 
sphere I is denoted by the blue circles, passive sphere II by the red 
squares, and active sphere III by the green triangles. Motion in the 
horizontal direction is non-dimensionalised by the length of the 
swimmer, lb, and vertical motion is non-dimensionalised by the radius 
of the spheres which comprise the swimmer, a. The non-dimensional 
applied magnetic field strength Bm∕�a3� is represented by the black 
line
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depicted in Fig. 2, the data for the spheres are denoted by 
the blue, red, and green points, respectively. The horizontal 
motion of the two active, end spheres are in antiphase (and 
delayed with respect to the applied field by ∼ �∕4) which 
suggests a longitudinal compression and relaxation of the 
swimmer about its centre.

A better understanding of the motion of the spheres can 
be obtained by examining their separation, as shown in 
Fig. 13. Here, we plot the horizontal separation ΔY  and the 
vertical separation ΔZ between the sphere I and sphere II, 
and between sphere II and sphere III, over the period T of 
a buckling cycle. The separation distance is normalised by 
the peak values, such that the maximum and minimum sep-
arations are given by 1 and −1, respectively, and the begin-
ning of the period of the buckling cycle is set, such that it 
corresponds to maximum buckling of the swimmer.

It can be inferred from these results that in the first half 
of the period, the swimmer straightens and the horizontal 
separation between spheres I and II reaches its maximum 
value before that of spheres II and III by approximately 
T� = 0.8�. Whereas, in the second half of the period, the 
swimmer buckles in the opposite direction and the reduc-
tion in horizontal separation between spheres I and II 
lags that of spheres II and III, although the lag is much 
smaller than in the first half of the period. Over the period 
of the buckling cycle, a compressive wave travels along 

the length of the swimmer in the direction of the longer 
strut and the longitudinal motion of the multi-body con-
figuration is non-reciprocal. It can also be inferred that 
there is no significant phase difference in the vertical 
direction, although there is an asymmetry in the verti-
cal motion of the end spheres. The vertical motion of the 
middle sphere is, however, approximately in antiphase to 
the other two spheres which confirms that the rotation of 
the end spheres drags the middle sphere through the fluid.

The resultant horizontal motion of the centre of mass 
of the swimmer is shown as a function of time in Fig. 14. 
The swimmer was observed to move with a non-dimen-
sional speed of ṽ = v∕lb𝜔 = 2.03 × 10−4 at Re ∼ 0.1 and 
for Mn = 1.18. The swimmer was also observed to self-
propel at Re ∼ 10−4 in a more viscous fluid of viscosity 
� ∼ 1.4 × 104  mm2  s−1. In this case, the propelling rate 
was ṽvisc = 9.01 × 10−6 and Mnvisc = 0.09. We find that 
2(Mn∕Mnvisc) ∼ ṽ∕ṽvisc which indicates that the rate of 
self-propulsion was governed by a balance between the 
induced magnetic torque and the viscous resistance to 
motion acting on the two end spheres, and that the loco-
motive mechanism was maintained when the configura-
tion was a closer approximation to a Stokes flow.

Finally, we note that attempts at fabricating a sym-
metrical swimmer, comprising three spheres connected 
by elastic struts of equal length, were made. Small asym-
metries in the configuration remained, as is inevitable in 
any physical system, and resulted in swimming but at a 
significantly reduced velocity.

Fig. 13  Normalised distance between spheres over one period, 
T = 2�∕�, of the buckling cycle of the swimmer. (Top) Horizontal 
distance between spheres I and II, ΔY = YI − YII, and spheres II and 
III, ΔY = YII − YIII. (Bottom) Vertical distance between spheres I and 
II, ΔZ = ZI − ZII, and spheres II and III, ΔZ = ZII − ZIII. The separa-
tion distance is normalised by the peak values, such that the maxi-
mum and minimum separations are given by 1 and −1, respectively, 
and T = 0 s is set, such that it corresponds to the maximum buckling 
of the swimmer. The data shown here are the same as those shown in 
Fig. 12

Fig. 14  Centre of mass of the swimmer ycm∕lb, non-dimensional-
ised by the length of the swimmer lb, measured as a function of time 
� = t�
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5  Summary and discussion

The results of an investigation into the effects of linking 
driven and passive spheres have been presented. Pairs 
of spheres connected by rigid links oscillated in phase 
throughout a cycle. However, the introduction of flexible 
connectors introduced a phase delay between the actua-
tion of the active sphere and the response of the passive 
sphere. The phase delay increased with increasing length 
of the connector. Longer connectors were also subject to 
more viscous resistance, and longer elastic connectors 
also bent more.

A swimmer, comprising three spheres connected by 
elastic struts of unequal length, was observed to deform 
in a non-reciprocal manner and propel itself through the 
viscous fluid in the direction of the longest strut. The spa-
tial asymmetry gives rise to non-reciprocality in the buck-
ling cycle of the swimmer. The inequality of strut length 
introduced a phase difference between the actuation of 
the two arms of the swimmer. Specifically, the middle 
sphere is influenced by the rotation of the sphere con-
nected by the shorter strut first. As in the Purcell three-
link swimmer (Purcell 1977) and the Najafi–Golestan-
ian three-sphere swimmer (Najafi and Golestanian 2004; 
Leoni et  al. 2008), the phase difference between the 
motion of the arms of the swimmer meant that the peri-
odic sequence of shapes displayed by the swimmer was 
not kinematically reversible.

A common feature of propulsion mechanisms at low-
Re is the propagation of a deforming wave along the body 
of a swimmer. Swimmers which move in the direction 
of wave propagation are referred to as pullers, whereas 
pushers move in a direction opposite to the direction of 
wave propagation (Pak and Lauga 2015). We found that 
a compressive wave propagated along the swimmer body 
from sphere I to sphere III, over the period of one buck-
ling cycle. The compressive wave propagated in the same 
direction as the self-propulsion of the swimmer. In an 
attempt to better understand the propulsion mechanism, 
we compare the swimmer to the far-field description of 
a puller, which is a negative Stokes dipole. This suggests 
that the swimmer drags itself through the fluid by draw-
ing in fluid from the ends, along the swimming direction, 
and ejecting fluid from the sides.

This novel approach to swimmer design enables the 
development of a range of multi-body configurations of 
oscillating spheres. Furthermore, as the actuation of the 
swimmer is controlled completely by the interaction of 
hard magnets and an external field, it will be possible to 
reproduce the swimmer at the micro-scale. Such a synthetic 
swimmer has potential for implementation in in vivo drug 
delivery (Gao et  al. 2012) and as pumps in microfluidic 
devices (Leoni et al. 2008).
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