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The wrinkling of thin elastic objects provides a means of gen-
erating regular patterning at small scales in applications rang-
ing from photovoltaics to microfluidic devices. Static wrinkle
patterns are known to be governed by an energetic balance
between the object’s bending stiffness and an effective sub-
strate stiffness, which may originate from a true substrate stiff-
ness or from tension and curvature along the wrinkles. Here,
we investigate dynamic wrinkling induced by the impact of a
solid sphere onto an ultrathin polymer sheet floating on water.
The vertical deflection of the sheet’s center induced by impact
draws material radially inward, resulting in an azimuthal com-
pression that is relieved by the wrinkling of the entire sheet.
We show that this wrinkling is truly dynamic, exhibiting fea-
tures that are qualitatively different to those seen in quasistatic
wrinkling experiments. Moreover, we show that the wrinkles
coarsen dynamically because of the inhibiting effect of the fluid
inertia. This dynamic coarsening can be understood heuristi-
cally as the result of a dynamic stiffness, which dominates the
static stiffnesses reported thus far, and allows control of wrinkle
wavelength.

dynamic wrinkling | impact | elastocapillarity | fluid-structure interaction

rinkling provides a means of reconfiguring slender struc-

tures (1, 2) and offers opportunities for characteriz-
ing materials through thin sheet metrology (3-5). Control of
mechanical properties also permits wrinkle orientation and
geometry to be tailored, providing a simple and robust pattern-
ing method that can produce periodic structures with regular
spacing that ranges from hundreds of nanometers to millimeters
(6, 7). This has proved particularly versatile at small scales as
an alternative to lithographic techniques: wrinkle formation on
soft surfaces has been used to fabricate close-packed nanoflu-
idic channels (8), surfaces with anisotropic wetting properties
(9), ordered arrays of self-assembled colloidal particles (10), and
optical phase gratings (11, 12).

The formation of wrinkles is induced by compression, with
the critical compression and the emergent wavelength of wrin-
kles depending on a balance between the resistance to bending
of the sheet and a stiffness that resists out-of-plane deforma-
tion [which may come from a substrate or tension and curvature
along the wrinkles (4, 13-15) as well as geometrical confinement
(16, 17)]. In applications, the wrinkle wavelength is often con-
trolled by changing the sheet thickness (e.g., through oxidation
of thin silica layers (8, 9, 11, 12)]. However, this wavelength is
then set once and for all and does not change significantly from
its value at onset (18); while the amplitude of wrinkles can be var-
ied by further compression, applications are somewhat limited by
this inability to generate different wavelength structures in the
same system.

A simple experiment that reveals some of the complexity of
wrinkling is the indentation of an ultrathin elastic sheet float-
ing at a liquid to air interface (5, 15, 19-21). Indentation draws
material radially inward, in the process creating compressive
stresses in the azimuthal direction. At a critical indentation,
this compression overcomes the base capillary tension in the
sheet (20), and radial wrinkles form (i.e., wrinkles with peaks
and valleys that lie along lines of increasing radius). Beyond
this wrinkling threshold, the sheet rapidly wrinkles everywhere,
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but the pattern of wrinkles varies in different regions of the
sheet: in a curved central portion, the wrinkle wavelength is
controlled by curvature, while beyond this region, the sheet is
flat, and the hydrostatic pressure in the liquid instead controls
the wrinkle wavelength. In contrast to the case of uniaxial com-
pression discussed above (where the wavelength does not vary
with increased confinement), the wrinkles in the central curved
portion of a poked sheet become more refined as the confine-
ment is increased by further indentation (15); ultimately, these
wrinkles form deep folds (19). In the flat portion, however,
the wrinkle wavelength remains constant as indentation pro-
gresses. This wavelength, Ao, is set by the balance between the
sheet’s bending stiffness, B, and a substrate stiffness K1, which

gives (13, 15)
1/4
)\0:27['<KBb) 5 [1]

where the substrate stiffness appropriate to a liquid bath is the
specific weight of the liquid (i.e., Ksub = pg with p being the
liquid density and g being the acceleration due to gravity). In
this article, we investigate how this static picture changes when
indentation is performed dynamically via impact.

Dynamic buckling instabilities have been investigated as a
route for inducing pattern formation in rigid objects (22, 23) and,
also, as a route to understanding plastic crumpling in impacts
(24) and brittle fragmentation (25-27). Impact on an elastic sheet
has been studied both for a sheet in freefall (27) and a sheet
floating on the surface of water (28, 29). In both cases, a lon-
gitudinal tensile wave propagates outward from the point of
impact at the speed of sound, stretching the sheet, and is fol-
lowed by a transverse wave that propagates through the stretched
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domain. A coupling between these 2 waves leads to an azimuthal
compression, which gives rise to wrinkling as expected from the
static case. In the flat region outside the transverse wave, the
wrinkle wavelength is fixed and is explained using the dynamic
beam equation, with uniform imposed strain leading to a con-
stant compressive force. Here, we use a similar experimental
setup but are able to create wrinkles that evolve dynamically dur-
ing the course of the experiment, departing from observations in
both static indentation experiments and previous dynamic impact
experiments.

We investigate dynamic impact on ultrathin polymer sheets
subject to an applied background stress (provided by sur-
face tension) (Fig. 1 and Movie S1). The experimental setup
is illustrated in Fig. 24. Polystyrene (PS) sheets of thick-
ness 150 nm < h <530 nm, Young’s modulus E =3.46 GPa,
and Poisson’s ratio v = 0.33 were created by spin coating a PS-
in-toluene solution onto glass slides (4). The resulting sheets
were cut to have radii 5.5 mm < Ry <22.7 mm and floated on
water, with surface tension 7, =73mNm~' and density p=
1,000 kgm™3.* Steel spheres of radii 0.5 mm < R, <5.0 mm
and density ps = 7,720 kgm ™ were used as impactors, posi-
tioned above the center of the sheet in a guiding tube (to
ensure that the impact occurred vertically), and released using
an electromagnet. The impact and resulting sheet deforma-
tion were imaged from below using a high-speed camera. The
impact speed 0.6 ms™ < V <2ms~! was measured by imag-
ing the fall of the sphere from the side. Here, we focus on
the deformation of the sheet that occurs at sufficiently early
times that the velocity of the sphere is not noticeably affected
by impact.t

The images of Fig. 1 show 2 key dynamic features of impact.
First, the gross vertical deflection of the sheet (i.e., the shape on
which the wrinkles are superimposed) takes the form of a radi-
ally propagating transverse wave. This wave is analogous to the
ripple observed when a stone is dropped into a pond. Second,
wrinkles form in the flat region ahead of the transverse wave,
and their wavelength gradually increases—the wrinkles coarsen
(Figs. 1 and 2B). This is qualitatively different from static inden-
tation experiments (15), which show that wrinkles maintain a
constant wavelength with increasing sheet deformation in the
flat portion of such a sheet. We note 2 additional departures
from static behavior: in static indentation experiments, wrinkles
are initially confined to a narrow annulus (5, 20) and reach the
edge at indentation depths ~ 300 um (21), while folds appear at
depths ~ 600 pm-2 mm (15, 19). Both of these features
appear at impact depths smaller by an order of magnitude
(Vt~100 pm) in our dynamic experiments (Fig. 2B). In this
paper, we will focus on explaining and quantifying wrinkle coars-
ening in the flat portion of the sheet during impact; to do so, we
must first address the transverse wave that drives compression
and, hence, wrinkling in the sheet.

Quantitative results for the propagation of the transverse wave
are shown in Fig. 34. While the ripples created by dropping
a stone into a pond are known to progress according to the
inertia to capillary scaling 7, oc t2/2 (29, 30) (black crosses in
Fig. 34), we see that, in the presence of an ultrathin elastic sheet,
T o< t'/2 instead. This scaling is reminiscent of the impact of a
sphere into a liquid in the absence of surface tension, for which
the contact point between the liquid and solid 7, = v/3(R, Vt)'/?
(31, 32). However, the behavior observed here is distinct from
this impact phenomenology since, for example, the experimen-

*Note that 1 experiment was performed with a water to glycerol mix with ~;, =
68mNm~" and p = 1,130 kg m—3 to test the role of liquid viscosity.

T Materials and Methods has details of the experimental procedure, and S/ Appendix has
details of image processing techniques and information about Movies S1 and S2.

20f6 | www.pnas.org/cgi/doi/10.1073/pnas.1905755116

Fig. 1. A steel sphere (radius R; = 1.25 mm) impacts a PS sheet (thickness
h =350 nm, radius R; = 17.15 mm, floating at a water to air interface) at
speed V=0.72ms~"'. Impact draws the outer edge of the sheet inward
by a distance —u,(R¢, t), compressing the sheet even in regions where it
remains flat [beyond the propagating transverse wave at r =rp(t)l. The
number of radial wrinkles in the sheet decreases with time (i.e., with increas-
ing impact depth Vt), in contrast to the static indentation of a floating
sheet (15, 19).

tally measured prefactor in the scaling is dependent on the sheet
radius Ry (Fig. 34, Inset). To explain this scaling, we consider the
behavior at very early times when vertical deflections are small
and the effect of gravity on the fluid may be neglected. Since the
fluid is initially at rest and the impact is fast (the Reynolds num-
ber Re=p VR, /1~ 10%), we assume that the fluid velocity u=
V¢ for some velocity potential . The speed of sound in both the
solid and liquid is O(10®) ms™" so that the timescale for sound
waves to traverse the diameter of the sheet is tsouna = Ry/c~
10 us. We consider timescales ¢ > tsouna SO that the fluid is
incompressible and

Vip=0. [2]

At the deformed interface z = w(r,t), we impose a kinematic

condition,
Op _Ow

9z Ot

o dw

or or’ 3]

together with a dynamic boundary condition relating the stresses
oy and oge in the sheet to the pressure on the interface
p[r, w(r,t), t] via the membrane equation

H? 10
p:—Ung—Uee;%- [4]

The pressure p is, in turn, related to the velocity potential ¢
through Bernoulli’s equation:

aap 1 2 _
p(3t+2lvwl)+p—0- [5]

In writing Eq. 4, we have neglected both the bending stiffness and
the inertia of the sheet. The PS sheets used in our experiments
are very thin and therefore, highly bendable (14, 15, 20); bending
stiffness is negligible over the length scale of the transverse wave,
although we shall see below that it is important in selecting the
wrinkle wavelength.

Box et al.
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High-speed camera

Fig. 2.
R¢ = 17.40 mm) impacted by a sphere (radius Rs =1.75 mm, V =1.17ms™ ") and imaged from below. Note that wrinkles coarsen during the experiment,
trebling their mean wavelength in ~1.5 ms. Also highlighted in the images are the onset of folds, the propagation of a transverse wave (visible at radius
rm), and the retraction of the sheet edge (the initial position of which is shown as the dashed circle).

Highly bendable sheets cannot sustain compressive stresses.
Instead, wrinkles form very early on, relaxing the compressive
hoop stress so that |ogg| < 0. Our experiments focus on times
> tsounda, for which in-plane stresses are in equilibrium; there-
fore o & i, Ry /7 (14, 20) (distinguishing our experiments from
many previous studies of dynamic buckling [24-27] and espe-
cially ref. 29, where ¢ < tounda). From a scaling point of view,
Laplace’s equation (Eq. 2) suggests that the vertical length scale
over which the (infinite) bath of fluid feels the impact z. ~ 7y,.
The kinematic and dynamic boundary conditions (Egs. 3, 4, and
5) then suggest that @, ~ 7, V ~ vy, Ry V2 /(prS). Combining
these scalings, we find that

2\ 1/4
rmx(L};ft> , [6]

whereas the height of the wave scales with V¢. We emphasize
that the predicted scaling 7, o t'/? derives from the spatially
varying stress o, < 1/r and requires the sheet to be highly
wrinkled with the stresses in equilibrium. (By contrast, nonequi-
librium stresses generated by a concurrent tensile wave instead
cause the transverse wave to propagate as t/3 [29].)

o
|

t |s]

t = 0.2 ms

t = 1.8 ms

(A) Schematic of the experimental setup used to drop steel spheres onto floating PS sheets. (B) Time series of 1 quadrant of a sheet (h =450 nm,

While the impacted sheet might be expected to stretch, in fact
v/(ERh) ~107* < 1 so that the sheets are effectively inextensi-
ble. This preserves the length of radial lines (i.e., the radial strain
e~ 0) so that the edge retraction follows directly from the
vertical deflection: —u,(Rs)~ 3 ORf (Qw/dr)? dr ~ (V)2 /1m.
Using Eq. 6, this yields

2 P e 3/2

This scaling prediction is confirmed by experimental data
(Fig. 3B). We note that our assumption of inextensibility (and
hence, the calculation of radial retraction) is only valid because
the dominant tension arises from capillarity, which is in contrast
to the dynamic indentation experiments of ref. 29 where impact
induces significant stretching of the sheet. We also note that,
although the power laws predicted by Egs. 6 and 7 and illustrated
in Fig. 3 appear to be robust, there is some spread in the prefac-
tor; we show elsewhere (33) that this spread in prefactor is largely
accounted for by the size of the impactor.

The inward displacement of the sheet edge is crucial in
driving wrinkling: radial retraction of the sheet wu,(¢) leads

107!

—u, [mm]

Fig. 3. The propagation of the transverse wave and subsequent retraction of the sheet edge. (A) Measurements of the radial position of the capillary wave
front on a liquid-to-air interface with no elastic sheet (x) give r, o< t2/3, different from the behavior with that for an ultrathin PS sheet (colored points).
(Inset) Wave propagation depends on Rs (=5.51 mm for > and 13.30 mm for [J). (B) The sheet’s edge moves radially inward by an amount —u,(Ry) t3/2,
corresponding to negligible radial stretching. (Experimental parameters for the data in A and B are given in S/ Appendix, Tables S1 and S2, respectively.)
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to an azimuthal compression, which is relieved by the growth
of wrinkles that accommodate excess material. Experimentally,
we observe that the number of wrinkles in a material circle
increases approximately linearly with radial distance from the
point of impact (Fig. 44) so that the azimuthally averaged wave-
length A(¢) is approximately uniform in the outer region of
the sheet at each instant (Fig. 44, Inset). This breaks down in
the inner region of the sheet, where radial tension and cur-
vature from the transverse wave provide additional stiffnesses
(15). The dynamic evolution of A(¢) in the flat region of the
sheet is shown in Fig. 4B, and demonstrates that the aver-
age wavelength increases (or equivalently, that the number of
wrinkles decreases) with time and is smaller than the corre-
sponding static wavelength governed by the fluid’s hydrostatic
pressure (Eq. 1).

To understand wrinkle formation and coarsening, we consider
a material circle in the flat portion of the sheet ahead of the
transverse wave front. We develop a simplified model by consid-
ering wrinkling in this material circle driven by the compressive
stress arising from radial retraction and moderated by the bend-
ing stiffness B = Fh®/[12(1 — v?)] of the sheet and the inertia
of the underlying fluid. We only focus on large radial positions
so that the curvature of the sheet (associated with the transverse
wave) may be neglected and r > \. We emphasize that the previ-
ously neglected bending stiffness of the sheet and small residual
compressive hoop stress must both be accounted for over the
short length scale associated with wrinkling. We therefore model
a freely floating 1-dimensional sheet, which is subject to a com-
pressive force P(t) that mimics the compressive hoop stress
ooo(t) and evolves as a result of an imposed compressive dis-
placement of its ends A(¢). The wrinkle coarsening is the result
of the sheet being unable to move the liquid instantaneously, but,
unlike previous studies (34, 35), here the fluid flow is inertial, not
viscous.

We consider a sheet that lies along the z axis and model its out-
of-plane displacement, w(z, t), using the beam equation subject
to a linearized hydrodynamic pressure from Eq. 5. A balance

A 400 1 1 1
=03
350 -2 —
300 k <02 i
- 250 -
200 -
t =0.23ms
150 % t=0.31ms]|
$ t=0.38ms
100 | & t=046ms[]
t = 0.54ms
50 | 1 1
0.2 0.4 0.6 0.8 1

r/Ry

between the bending stress, compressive stress, and flow induced
by wrinkling gives

Op o*w 0w
_Pa—Bw‘FP(t)W’ (8]

The compressive force P(¢) is not known a priori and is
determined by imposing a confinement

/WT 9w\ 42 A (9]
e \ Oz = ’

which expresses that the sheet wrinkles without changing its
length. From a scaling point of view, the kinematic boundary
condition gives Op/dz ~ dw/It. A scaling analysis of Eq. 8 then

gives
1/5
Aa(§> s [10]

so that the wavelength is selected simply by a balance between
bending stiffness and a “dynamic substrate stiffness” (see below)
associated with fluid inertia. The scaling Eq. 10 gives a reason-
able account of our experimental data (Fig. 4B). We note that the
radial position r and confinement A(t) affect the wrinkle ampli-
tude through Eq. 9 but not the scaling argument Eq. 10, which
is derived from Eq. 8 only. Furthermore, the length constraint
Eq. 9 prevents the existence of an exact similarity solution of the
form Eq. 10; numerical solutions presented in ref. 33 demon-
strate that the scaling of Eq. 10 may have a logarithmic-type
correction.

We have studied the dynamic wrinkling of an ultrathin elastic
sheet floating on a liquid interface, highlighting several key fea-
tures of this motion. The motion 7, o ¢*/2 of the transverse wave
illustrates the large change in the state of stress caused by highly
developed wrinkling, while the evolution of the wrinkle pattern
is very different to that observed statically (15, 20): fluid inertia

B 10" e
: 2 :
o
~<
| g 8% !
10—1 L TR | L i
104 107 1072

t/\/Aop/B

Fig. 4. The instantaneous and dynamically evolving wrinkle wavelengths. (A) The number of wrinkles N increases approximately linearly with radial
distance from the point of impact, corresponding to an instantaneous average wavelength that is approximately uniform (/nset). Data points show
measurements at different times as indicated in the legend; solid lines indicate linearity and a fixed value (Inset). Here, h =450 nm, R; =13.3 mm,
R;=1.25 mm, and V=1.11ms~". (B) The mean wavelength X of the radial wrinkles in a fixed material circle, r(t) =0.8[Rs — u,(Ry, t)], increases
with time. X\ was measured by counting the number of wrinkles and averaging azimuthally; X is normalized with the static wavelength )\ given
by Eq. 1. Experimental parameters for B are given in S/ Appendix, Table S3. In B, the scaling of Eq. 10 is highlighted by the triangle. The error
bars represent the SD of measurements obtained in 10 intensity signals from neighboring pixel strips of an unwrapped image (A) or spatiotemporal
plot (B);/SZI Appendix has additional details. Here, the axes are scaled with the static wavelength Ao~ 1.5—1.7 mm and the corresponding timescale
(\3p/B)'/? ~0.7s.
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slows out-of-plane deformation of the sheet, selecting a dynam-
ically evolving but almost spatially uniform wrinkle wavelength.
Moreover, the effect of the fluid inertia can be understood as
the result of a dynamic substrate stiffness, Kayn, which supple-
ments the substrate-, tension-, and curvature-induced stiffnesses
that have been introduced for static wrinkle patterns (13-15).
In particular, Eq. 10 can be rewritten as A o< (B/Kayn)*/%, with
Kayn ~ p x A/t? arising from the hydrodynamic pressure asso-
ciated with accelerating liquid to accommodate increasing A:
by addressing a dynamic scenario, we effectively introduce a
source of stiffness that competes with the bending stiffness of
the sheet to control the wrinkle wavelength. We note that, at
sufficiently late times, this additional hydrodynamic pressure
will decrease below the typical hydrostatic pressure, ultimately
leading to quasistatic wrinkles governed by the usual static
stiffness Ko = pg.

A surprising feature of our main results (Eqgs. 6 and 10) is
that they do not have explicit dependencies on the impact veloc-
ity V. This is because V affects the magnitude of the vertical
displacement of the sheet but not how fast this disturbance prop-
agates: that speed is instead set by the intrinsic properties of
the sheet and liquid. Note, however, that the radial displace-
ment at the edge of the film (Eq. 7) does depend on V, since
it is induced by the vertical motion. Nevertheless, the wrinkle
wavelength X is independent of V, since the amount of com-
pression to be accommodated merely changes the amplitude of
wrinkles.

We expect the dynamic picture that we have presented here
to hold while the transverse wave is traveling across the sheet
(i-e., while 7, < Ry), which, in turn, requires ¢ < (pR}/7)"/>.
At the same time, we also need to ensure that the dynamic
wrinkle wavelength A < \o = (B/pg)*/*, which amounts to the
requirement that t < (\o/g)*/? (note that the data in Fig. 4B
all readily satisfy this constraint). Both of these results are inde-
pendent of the velocity of the impactor, V. The key point
that determines whether an impact is inertial in the sense
considered here is whether the vertical distance traveled dur-
ing this early time is large compared with the critical vertical
displacement at which wrinkling occurs in the static prob-
lem, 8. ~~/(Ehpg)*/? (20, 21). This comparison gives us that
the wrinkling of the sheet is governed by the inertia of the
fluid if

7\ v\
V>V.= (7) max ,)\71 210 mn
Eh-p (Rj?pg> 0

for the parameters typical of the floating PS sheets consid-
ered in our experiments, V. = O(1 mms™') so that the impacts
that we consider, with V = O(1 ms™!), all lie well within this
regime.

Our experiments suggest that a dynamic substrate stiffness
may provide a means of breaking away from the single static
wavelength that is selected by material properties alone, allow-
ing the wavelength to be altered without resorting to nonuni-
form substrates or coatings (36). This is a route for tunable
wrinkle formation that may prove to be a useful fabrication
technique in a range of engineering applications that require
regular patterned topographies (6, 37). In particular, we have
shown that this wavelength change can occur very quickly, with
a doubling of the mean wavelength in around 1 ms (Figs. 2B
and 4B).

The rapid coarsening of wrinkle wavelength that we have
presented occurs with wavelengths on the order of 100 pm, mak-
ing it readily observable. However, the underlying mechanism
is scale independent, provided that the Reynolds number of
the fluid flow remains sufficiently large that inertia dominates

Box et al.

viscosity. This mechanism might, therefore, be suitable for repro-
duction at similar scales but with still thinner sheets to obtain
wrinkles at smaller length scales. A key objective would be to
produce wrinkle wavelengths small enough for use in applica-
tions with visible light. For example, wrinkle wavelengths around
A~4.7 um were used in ref. 38 to focus light; our model
suggests that extremely thin (A ~7 nm) PS sheets (39) would
generate wrinkles with similar wavelengths over a fraction of a
millisecond. Many optical applications, including photonic mate-
rials (40) and Bragg gratings (41), require periodic structures
with period comparable with the wavelength of visible light. If
our impact protocol was implemented with monolayer graphene
floating on water [with bending rigidity B ~ 107" J (42)], our
theory predicts that the wrinkle wavelength would double from
A~ 400 nm to A ~ 800 nm (thereby transitioning from the wave-
length of blue light to beyond that of red light) on a timescale
of ~2 ps.

Applications of dynamic wrinkling would benefit from other
means of generating the rapid azimuthal compression required
for wrinkling. While high-speed indentation with a linear actu-
ator could replace impact, the negative thermal expansion
coefficient of graphene (43) could also be exploited; indeed,
contraction caused by ultrafast optical excitation can create a
compressive strain of magnitude 6 x 10=* within 100 ps (44).
This compressive strain would be sufficient to overcome the
isotropic tension caused by surface tension, /(Eh) 222 x 1074,
and it could, therefore, be used to induce dynamic wrinkling. The
practicalities of achieving such rapid wrinkling in ultrathin sheets
deserve further investigation.

Materials and Methods

Materials. PS sheets were created by dissolving PS powder (Goodfellow) in
toluene (anhydrous, 99.8%; Sigma-Aldrich) and spin coating the solution
onto glass slides (4) at 1,000 rpm for 60 s (spin coater Polos SPIN150i). Films
of different thicknesses, in the range 150 nm < h <530 nm, were created
by varying the concentration of the solution (from 2 to 4.5 g PS per 100 mL
toluene), and they were measured using a thin-film analyzer (F20; Film
Metrics). The resulting sheets were cut into circular disks using a diamond-
tipped cutting tool and floated on water, with reported surface tension
v~ 73mNm~", viscosity ;= 0.89 mPa s, and density p~ 1,000 kgm~3.
The resulting sheet radius was measured from images and was varied in the
range 5.5 mm < R < 22.7 mm.

Methods. Impact experiments were performed by dropping steel
spheres (Simply Bearings; radii 0.5 mm < R; <5.0 mm and density ps =
7,720 kg m—3) onto floating PS films. A schematic of the experimental setup
is shown in Fig. 2, with a video provided as Movie S1. Spheres were released
using a custom-built electromagnet positioned so that spheres impacted
the center of the sheet. A guiding tube was used to ensure that the impact
occurred vertically. The impact was imaged from below using a high-speed
video camera (Miro 310; Phantom), typically at a frame rate of 39,024 Hz
with 256 x 256 pixels and with a spatial resolution of 0.02 mm per pixel.
The impact speed 0.6ms~'<V<2ms~' was measured by imaging
the fall of the sphere at 1,000 Hz using a second camera (FinePix HS10;
Fujifilm).

The results presented correspond to approximately constant impact
velocities, with data only shown up to the time at which the predicted
contact radius becomes comparable with the sphere radius (33). The only
exception to this is in Fig. 3A, Inset, where we have displayed data over a
longer time interval to clearly illustrate the dependence on Ry.

We performed 1 impact experiment in which the underlying fluid
had a higher viscosity than water to assess the influence of liquid vis-
cosity. The liquid was a glycerol to water mixture (55:45% by volume)
with measured dynamic viscosity © =13 mPa s, surface tension coeffi-
cient v, =68 mN m~', and density p=1,130 kg m~3. The transverse
wave front data for this experiment are illustrated in Fig. 3A and high-
lighted with filled-in markers. The results are consistent both with the
other experiments and with the theoretical prediction, confirming that vis-
cosity does not play a significant role and validating our neglect of fluid
viscosity.

The measured values of the instantaneous wavelength were dis-
tributed around some mean value rather than being a single well-defined
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wavelength (SI Appendix); the average wavelength reported herein was
determined by counting visible wrinkles in images and averaging this num-
ber over the length of a particular material circle. We investigate the
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