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A B S T R A C T

Elastic bulging occurs when an elastic material deforms through a small opening in a rigid boundary. This problem is complementary to the indentation problem
where displacement is applied to a small part of an elastic material. Understanding bulging is crucial in a number of applications related to swelling such as the
deformation of the brain following a decompressive craniectomy. In particular, it is known that large stresses develop close to the opening leading to potential
material damage. To alleviate this problem, it is conceivable to modify the shape of the edge to reduce stress increases. Here, we study edge effects during planar
bulging and show how an opening should be shaped to remove stress singularities.

1. Introduction

After a traumatic brain injury, intracranial pressure may increase [1]
and create long lasting brain damage unless it is quickly reduced. If the
intracranial pressure remains too large for an extended period of time, a
routine, but highly invasive, treatment is decompressive craniectomy [2]
where part of the skull is surgically removed [3] to allow the brain to
swell uninhibitedly, thereby relieving pressure [4–7]. This operation is
controversial because it creates potential axonal damage and local tissue
damage near the skull opening [8,9].

A potential solution to reduce stress build-up at the opening is to
insert a toric joint between the skull and the brain, which has the
consequence of curving the edge and the elastic material [10]. We
investigate the mechanical consequences of the implementation of a
toric joint by examining bulging through an opening and the effect of the
opening edges on the stress and strain inside a bulging elastic material.

Whereas indentation is the deformation of an elastic material due
to the displacement of a small part of its boundary, bulging is the
deformation of an elastic material through the opening of a rigid
boundary. Unlike the case of indentation that has been studied exten-
sively [11], bulging has received little attention in the literature and
was only recently introduced as a generic problem motivated by medical
concerns [12].

Here, we consider the bulging of a (linearly) elastic half-plane. For
small deformations and in a planar geometry, the exact solution is
derived from the theory of contact mechanics and we can explicitly
study the deformations resulting from a sharp-edge and a curved-edge
opening.

* Corresponding author.
E-mail address: goriely@maths.ox.ac.uk (A. Goriely).

1.1. Preliminaries

We consider an elastic half plane 𝛺 = {𝑥 ∈ R, 𝑧 > 0} subjected to a
distributed load from a curved lip at the boundary. Inside the domain,
the deformation is described by a displacement field 𝐮 = (𝑢𝑥, 𝑢𝑧) ∶
𝛺 → R2 such that a point originally at 𝐱 ∈ 𝛺 displaces to a point at
(𝐱 + 𝐮) ∈ R2. The (infinitesimal) strain tensor 𝐄 is

𝐄 = 1
2
(

∇𝐮 + (∇𝐮)𝖳
)

. (1.1)

As shown in Fig. 1, the boundary 𝛤 = 𝜕𝛺 is split into two subsets where
the elastic material is either in contact (𝛤c) or traction free (𝛤f = 𝛤 ⧵𝛤c).
On 𝛤𝑐 the vertical displacement of the elastic material is constrained
such that 𝑢𝑧(𝑥, 𝑧) = 𝑢0(𝑥), where 𝑢0 is directly related to the profile of
the plate. Note that apart from the curved edges, the plate is flat and
rigid so that 𝑢0 = 𝛿 is constant. At the boundary 𝛤f, outside of 𝛤c, the
material is traction free.

The material is assumed to be a compressible, isotropic, initially
unstressed, and linearly elastic solid with Young’s modulus 𝐸 and
Poisson’s ratio 𝜈. Let 𝐓 be the Cauchy stress tensor, then the constitutive
relationship between stresses and strains [13] is

𝐓 = 𝐸
1 + 𝜈

(

𝐄 + 𝜈
1 − 2𝜈

(tr 𝐄)𝟏
)

, (1.2)

where 𝟏 is the identity tensor.
For a given profile 𝑢0(𝑥), the bulging problem consists in finding the

displacement 𝐮 and the contact region 𝛤c, such that

div𝐓 = 𝟎, 𝐱 ∈ 𝛺, (1.3)
𝐓𝐧 = 𝟎, (𝑥, 0) ∈ 𝛤f, (1.4)
𝑢𝑧(𝑥) = 𝑢0(𝑥), (𝑥, 0) ∈ 𝛤c, (1.5)
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Fig. 1. An elastic material initially in a half-plane configuration is deformed
by the vertical displacement of a rigid flat plate with curved edges. Doing so,
it will develop a bulge. The contact zone and traction-free zone are indicated.
Note that the point at which the material loses contact needs to be determined.

𝐭 ⋅ 𝐓𝐧 = 0, (𝑥, 0) ∈ 𝛤c, (1.6)

where 𝐧 (resp. 𝐭) denotes the outward unit normal (resp. tangent) to 𝛺
on 𝛤 and the traction vector on 𝛤 is given by 𝐓𝐧. The last condition
represents the frictionless constraint on the contact region.

1.2. The Cerruti–Flamant solution

Before we consider the case of a distributed load, we recall the classic
Cerruti–Flamant solution for a half-space under a single normal point
load 𝑃 at the origin [14–16]. In this case, the radial stress is given

𝑇𝑟𝑟 ≡ 𝐞𝑟 ⋅ (𝐓𝐞𝑟) = −2𝑃
𝜋

sin 𝜃
𝑟

, (1.7)

for a point located at 𝑥 = 𝑟 cos 𝜃, 𝑧 = 𝑟 sin 𝜃 (and 𝐞𝑟 = (cos 𝜃, sin 𝜃)) (see
Fig. 1). This solution can be written in Cartesian coordinates as

𝑇𝑥𝑥 = −2𝑃
𝜋

𝑥2𝑧
(𝑥2 + 𝑧2)2

, (1.8)

𝑇𝑧𝑧 = −2𝑃
𝜋

𝑧3

(𝑥2 + 𝑧2)2
, (1.9)

𝑇𝑥𝑧 = 0. (1.10)

1.3. The Cerruti–Flamant solution as a Green’s function

Next, we assume that we have a distributed load. Since the contact
is assumed to be frictionless, we have 𝑝𝑥 = 0 which leads us to set
𝑝(𝑥) ≡ 𝑝𝑧(𝑥), and we only consider symmetric loads i.e. 𝑝(−𝑥) = 𝑝(𝑥) ∀𝑥.
Then, the Cerruti–Flamant solution for the point load problem can be
used as a Green’s function for a distributed normal force 𝑝(𝑥)d𝑥 on an
element d𝑥 at each point on the surface.

𝑇𝑥𝑥 = −2𝑧
𝜋 ∫

∞

−∞

𝑝(𝑠)(𝑥 − 𝑠)2

((𝑥 − 𝑠)2 + 𝑧2)2
d𝑠, (1.11)

𝑇𝑧𝑧 = −2𝑧3
𝜋 ∫

∞

−∞

𝑝(𝑠)
((𝑥 − 𝑠)2 + 𝑧2)2

d𝑠, (1.12)

𝑇𝑥𝑧 = −2𝑧2
𝜋 ∫

∞

−∞

𝑝(𝑠)(𝑥 − 𝑠)
((𝑥 − 𝑠)2 + 𝑧2)2

d𝑠. (1.13)

Using (1.1)–(1.2) at the surface 𝑧 = 0, the displacement field
(𝑢𝑥(𝑥), 𝑢𝑧(𝑥))
≡ 𝐮(𝑥, 0) is related to the pressure field 𝑝(𝑥) as follows

∀𝑥 ∈ R,
⎧

⎪

⎨

⎪

⎩

𝑢𝑥(𝑥) =
𝐵
2 ∫

𝑝(𝑠) sgn(𝑥 − 𝑠)d𝑠

𝑢𝑧(𝑥) = −𝐴∫
𝑝(𝑠) ln|𝑥 − 𝑠|d𝑠,

(1.14)

where  is the subset of R where contact is established ( = {𝑥 ∈
R|(𝑥, 𝑧) ∈ 𝛤c}) and

𝐴 = 2
𝜋
1 − 𝜈2

𝐸
, 𝐵 =

(1 + 𝜈)(1 − 2𝜈)
𝐸

. (1.15)

In the bulging problem,  is the union of two unbounded set  =
(−∞,−𝑎] ∪ [𝑎,∞). Further since the derivative of the sign function can
be expressed in the sense of distribution by Dirac’s delta: d sgn(𝑥)∕d𝑥 =
2𝛿(𝑥), differentiating (1.14) with respect to 𝑥 leads to the following
system of equations

∀𝑥 ∈ R,
⎧

⎪

⎨

⎪

⎩

d𝑢𝑥
d𝑥 = 𝐵𝑝(𝑥)

d𝑢𝑧
d𝑥 = −𝐴

(

∫

−𝑎

−∞
+∫

∞

𝑎

)

𝑝(𝑠)
𝑥 − 𝑠

d𝑠.
(1.16)

These relations directly connect the applied load to the surface displace-
ment gradient. If the displacements are specified at the surface, the
pressure needed to maintain this displacement is obtained by solving
this system of equations. Once the pressure is known, the system (1.11)–
(1.13) gives the stress at all points, from which the strains and displace-
ments can be obtained. Notice that if the material is incompressible
(i.e. 𝜈 = 1∕2), then 𝐵 = 0.

1.4. Calculations of the pressure and the displacement

Since 𝑢𝑧 = 𝑢0(𝑥) is known in the contact zone, we have
(

∫

−𝑎

−∞
+∫

∞

𝑎

)

𝑝(𝑠)
𝑥 − 𝑠

d𝑠 = − 1
𝐴

d𝑢0
d𝑥

(𝑥) ≡ 𝑓 (𝑥), |𝑥| ≥ 𝑎. (1.17)

Mathematically, the problem is then to solve
(

∫

−𝑎

−∞
+∫

∞

𝑎

)

𝑝(𝑠)
𝑥 − 𝑠

d𝑠 = 𝑓 (𝑥), |𝑥| ≥ 𝑎, (1.18)

for 𝑝. This is a singular integral equation of the first kind with a gap. This
is not a standard problem for which solutions are readily available. In
Appendix A, we use ideas from [17] to obtain the general homogeneous
solutions (in the case where 𝑓 (𝑥) = 0) and, in Appendix B, we show how
to obtain the solution for a particular 𝑓 (𝑥) corresponding to a curved
edge.

1.4.1. Sharp edges
We consider a uniform displacement 𝛿 in 𝛤𝑐 . Therefore 𝑓 vanishes

identically and the pressure is given by the even homogeneous solution
𝑝even of (1.18) as given in Appendix A.1:

𝑝(𝑠) = 𝑐𝐸
2

|𝑠|
√

𝑠2 − 𝑎2
, |𝑠| ≥ 𝑎, (1.19)

where 𝑐 > 0 is an arbitrary dimensionless constant (note that the
solution given in [12] contains typos that have been corrected here).
From 𝑝, we find the derivative of the displacement in the bulging area
i.e. outside of 𝛤𝑐 :

d𝑢𝑧
d𝑥

= −2𝐴𝑥∫

∞

𝑎

𝑝(𝑠)
𝑥2 − 𝑠2

d𝑠 = 𝐴𝑥𝑐𝐸
2

𝜋
√

𝑎2 − 𝑥2
, |𝑥| ≤ 𝑎 (1.20)

and the vertical displacement is therefore

𝑢𝑧(𝑥) = 𝛿 − 𝑐(1 − 𝜈2)
√

𝑎2 − 𝑥2, |𝑥| ≤ 𝑎, (1.21)

in which the constant 𝑐 is related to both the height ℎ = 𝑐(1 − 𝜈2)𝑎
and the area of the bulge 𝐴𝑏 = 𝜋𝑎ℎ∕2. We note that, remarkably, we
recover the same expression as for the axisymmetric case for the bulging
of a half-space [12] and that the shape of the bulge is an ellipse in two
dimensions and an ellipsoid of revolution in three dimensions. The vertical
displacement and the normal pressure at the surface are shown in Fig. 2
for 𝛿 = 0. Note that the pressure is infinite at the edges.
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Fig. 2. Bulge solution with sharp edges. Here we show the pressure 𝑝(𝑥) (blue online), and vertical displacement 𝑢𝑧(𝑥) (in orange, green and red online) for increasing
values of 𝑐. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1.4.2. Experiments
Bulging experiments were performed by compressing confined elas-

tic solids using a plate with a circular aperture. Under uniaxial compres-
sion, the soft solid bulged through the aperture permitting measurement
of the axisymmetric deformation profile. The material properties and
dimensions of the soft samples used in the experiments are detailed in
Appendix C.

We compare the solution (1.21) with the experimentation profile
for increasing bulging. For each experimental data set, we show the
corresponding analytical solution with the same height ℎ along the axis
as shown in Fig. 3. We see that the analytical solution captures correctly
most of the profile.

1.4.3. Curved edges
Next, we consider a plate with rounded parabolic edges defined in

the interval 𝑎 ≤ |𝑥| ≤ 𝑏. In this case the non-homogeneous term in (1.18)
is

𝑓 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, |𝑥| ≥ 𝑏
𝑥 − 𝑏
𝐴𝑅

, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑥 + 𝑏
𝐴𝑅

, −𝑏 ≤ 𝑥 ≤ −𝑎,

(1.22)

where 𝑅 is the radius of curvature of the edge at 𝑥 = 𝑏. The solution in
this case is computed explicitly in Appendix B:

𝑝(𝑠) = − 1
𝜋2𝐴𝑅

(

|𝑠| ln
|

|

|

|

|

|

𝑏2 − 2𝑎2 + 𝑠2 + 2
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)
𝑏2 − 𝑠2

|

|

|

|

|

|

+ 𝑏 sgn(𝑠) ln
|

|

|

|

|

|

𝑏 − 𝑠
𝑏 + 𝑠

𝑎2 + 𝑏𝑠 −
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)

𝑎2 − 𝑏𝑠 −
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)

|

|

|

|

|

|

)

.

(1.23)

This expression has two parameters: 𝑏 is given by the profile and 𝑎
is the point at which the solid loses contact. This is a one-parameter
family of solutions parametrized by 𝑎: for each value of 𝑎 in the interval
(𝑏 − 𝑅, 𝑏], we obtain a solution with a given height at 𝑥 = 0. Therefore,
the parameter 𝑎 plays the same role as the parameter 𝑐 in the previous
solution. As 𝑠 tends to infinity, the pressure does not depend on the
detailed profile of the edges. Hence, the two solutions can be related to
each other and 𝑎 satisfies the following equation

2
√

1 −
(

𝑎∕𝑏
)2 + ln

|

|

|

|

|

|

1 −
√

1 − (𝑎∕𝑏)2

1 +
√

1 − (𝑎∕𝑏)2

|

|

|

|

|

|

= −𝜋𝑐(1 − 𝜈2)𝑅
𝑏
,

𝑎 ∈ (𝑏 − 𝑅, 𝑏]. (1.24)

Notice that the parabolic approximation is only valid if 𝑎 > 𝑏 − 𝑅. The
vertical displacement is calculated numerically and plotted with the
normal pressure at the surface in Fig. 4 for 𝛿 = 0. Notice that at the
curved edges, the pressure is regularized.

In Fig. 5, we compare the resulting pressure in the case of straight
and curved edges for 𝑅∕𝑏 = 0.2. We notice that pressure in the curved-
edge case is lower at equal height than it is in the sharp-edge case. For
instance a bulge sticking to curved edges of radius 𝑅∕𝑏 = 0.2 till 𝑎 = 0.9𝑏
is subject to the same pressure as a bulge out of a sharp-edge opening
of height ℎ ≈ 0.1𝑎 while being 1.6 times as high.

The displacements in the two cases are compared in Fig. 6. For the
same height at 0, the profile of the bulge is almost identical in both
cases. Experimental results are shown in Fig. 7.

We also note that the bulging area is slightly bigger in the curved-
edge case since the material follows the edges before bulging out (for
𝑅∕𝑏 = 0.2, the difference is less than 9%). This trend is recovered in
the experiments where for a given aperture and swelling volume, the
height of the profile for a curved-edge aperture is always larger than for
the straight-edge case as shown in Fig. 8.

1.5. Calculations of the stresses

Since the normal surface pressure 𝑝 is known for all values of 𝑥, the
Cartesian components of the stress tensor 𝐓 can be calculated by using
expression (1.11)–(1.13).

1.5.1. Sharp edges
First, we rescale the variables through 𝜉 = 𝜉∕𝑎 for each variables 𝑠,

𝑥 and 𝑧. Moreover we introduce the new variables 𝑋, 𝑌 and 𝜌 in which
the expressions for 𝑇𝑖𝑗 are easily expressed:
{

𝑋 = 1 + �̄�2 − �̄�2

𝑌 = 2�̄��̄�
and 𝜌 =

√

𝑋2 + 𝑌 2. (1.25)

Finally, setting 𝐸′ = 𝑐
2
√

2
𝐸 we obtain the following expressions for 𝑥 ≥ 0

and 𝑧 ≥ 0:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑇𝑥𝑥
𝐸′ = −1

𝜌

(

�̄�
√

𝜌 −𝑋 + �̄�
√

𝜌 +𝑋
)

+ �̄�
𝜌3

(

𝑌
√

𝜌 −𝑋 −𝑋
√

𝜌 +𝑋
)

𝑇𝑥𝑧
𝐸′ = + �̄�

𝜌3

(

𝑋
√

𝜌 −𝑋 + 𝑌
√

𝜌 +𝑋
)

𝑇𝑧𝑧
𝐸′ = −1

𝜌

(

�̄�
√

𝜌 −𝑋 + �̄�
√

𝜌 +𝑋
)

− �̄�
𝜌3

(

𝑌
√

𝜌 −𝑋 −𝑋
√

𝜌 +𝑋
)

.

(1.26)
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Fig. 3. Bulge solution with straight edges. Comparison between the analytical solution and experimental bulging (parameters given in Appendix, all values on the
axes are in meters). Note that the analytical solution uses an aperture of 𝑎 = 0.014m rather than the aperture of 𝑎 = 0.015 m used in the experiment as it provides a
better fit to the data. This small discrepancy may be due to a small bending of the sample at the straight edge. The experimental data can be found in the supplemental
material file (ExpData_Fig3.csv).

Fig. 4. Bulge solution with curved edges. Here we show the pressure 𝑝(𝑥) (blue online), and vertical displacement 𝑢𝑧(𝑥) (green online) for a given parabolic profile
𝑢0(𝑥) (orange online) for 𝑅∕𝑏 = 0.2. The solid loses contact at 𝑎∕𝑏 = 0.9. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. Comparison of the pressure generated by a straight edge, 𝑝s (blue online) with the pressure generated with a curved edge 𝑝c (orange online). The singularity
for the straight-edge case is placed at 𝑏 and 𝑎∕𝑏 = 0.9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

We note that in the far field (for large value of 𝑥), the stress tensors
at the boundary (𝑧 = 0) tends to a hydrostatic field with 𝑇𝑥𝑥 = 𝑇𝑧𝑧 =
−𝑐𝐸∕2, necessary to maintain a uniform displacement of the plate. Close
to the contact, we are specifically interested in the shear stress 𝑇𝑥𝑧 as a
potential indicator of damage. In Fig. 9, we show the shear stress with
respect to the reference configuration. Close to the edges, we observe

typical drop-like regions of damage that have been experimentally
studied in [10]. Their shape is approximated by using the right-side
polar representation (𝑥 ≥ 0):
{

𝑥 = 𝑎 + 𝑟 cos 𝜃

𝑧 = 𝑟 sin 𝜃.
(1.27)
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Fig. 6. Comparison of the displacement generated by a sharp edge, 𝑢s (dashed) with the displacement 𝑢c (solid green online) generated by a curved edge 𝑢0(𝑥)
(orange online). Here 𝑎∕𝑏 = 0.9 and 𝑅∕𝑏 = 0.2. The values are chosen so that 𝑢s(0) = 𝑢c(0). We conclude that the displacements for a curved edge are very close to
those generated by a sharp edge of a slightly smaller radius. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Bulge solution with curved edges. Comparison between the analytical solution and experimental bulging (parameters given in Appendix, all values on the
axes are in meters). Note that since the profile with straight and curved edges are almost identical, the analytical solution shown here is the simpler straight edge
case.

Fig. 8. Profile height as a function of the uniaxial compression (corresponding to an increasing swelling volume) for curved-edge and straight-edge apertures. The
experimental data can be found in the supplemental material file (ExpData_Fig8.csv).

For 𝑟 ≪ 𝑎, shear stress is approximated at the lowest order in �̄� by

𝜎app
𝑥𝑧 = 𝑐𝐸

8
sin 𝜃
√

�̄�

(

cos 𝜃
√

1 + cos 𝜃 − sin 𝜃
√

1 − cos 𝜃
)

. (1.28)

We recover the well-known scaling law 𝑟−1∕2 of stress around the
singularity [18].

Let 𝜏crit be the critical value of shear stress past which damage occurs.
We introduce the dimensionless parameter 𝐾 = 𝑐𝐸∕8𝜏crit to measure the
extent of the damage zone. The shape of a damage drop is then defined
by the polar curve

�̄�(𝜃) = 𝐾2sin2𝜃
(

1 + cos 3𝜃
)

, 0 ≤ 𝜃 ≤ 𝜋, (1.29)
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Fig. 9. Contour plot of the shear stress 𝑇𝑥𝑧 in the flat case for 𝑎 = 1 and 𝑐𝐸 = 1.

shown in Fig. 10. The two damage drops are inclined with angles

𝛼± = 2 arctan

(

1
2

√

1
3

(

13 ±
√

145
)

)

≈ 111◦ and 32◦ (1.30)

Their area are

𝐴+ =
3
(

280𝜋 + 243
√

3
)

1120
𝑎2𝐾4 ≈ 3.48 𝑎2𝐾4

𝐴− =
3
(

140𝜋 − 243
√

3
)

1120
𝑎2𝐾4 ≈ 5.07 × 10−2 𝑎2𝐾4.

(1.31)

The relative growth of the total area of the four drops compared with
the area of the bulge is given by

2
𝐴+ + 𝐴−

𝐴𝑏
= 9

213
𝑐3

1 − 𝜈2

(

𝐸
𝜏crit

)4
≈ 1.10 × 10−3 𝑐3

1 − 𝜈2

(

𝐸
𝜏crit

)4
. (1.32)

At a given 𝜏crit, the drops area increase as 𝑐3 compared to the bulge area.
Thus, we expect these damage drops to grow quickly after initiation. For
instance, the largest bulge shown in Fig. 2 has a dimensionless height
ℎ∕𝑎 = 𝑐(1 − 𝜈2) = 1.5, for 𝜈 = 0.3 and 𝜏crit = 𝐸∕2. Its area is almost 9%
of the total bulge area.

1.5.2. Curved edges
For curved edges, the shear stress is calculated numerically (Fig. 11).

We note that for 𝑎∕𝑏 = 0.9, the damage drops are so small that the
smaller one is no longer visible and can be neglected. Therefore, we
restrict our attention to the bigger damage drops.

The big damage drops are plotted for increasing values of 𝑎 in Fig. 12.
Furthermore their areas 𝐴+ are numerically evaluated and fitted by a
polynomial. It is worth noticing that even the big damage drop is no
longer visible for 𝑎∕𝑏 < 0.8 at 𝐾 = 1.

1.6. Stretching

Another possible indicator of damage is the stretches of fibers
contained within a material (axons in the case of the brain). So far,
only stress-related damages have been studied. Nevertheless intense
stretching may also damage axons. In order to study the stretches, we
need to calculate the displacement field everywhere in the half space.
The strain and stress tensors respectively noted with components 𝑒𝑖𝑗 and
𝑇𝑖𝑗 are related by

𝐄 = 1 + 𝜈
𝐸

𝐓 − 𝜈
𝐸
(tr 𝐓) 𝟏. (1.33)

Although we have been working under the assumption that the material
is homogeneous and isotropic, it is only an approximation since brains
are made of axons. In the case of bulging, axons are likely to lean
towards the bulging direction which is vertical in the geometry studied
here. Thus, in order to study the damage caused to axons by stretching,
we further investigate the vertical stretch 𝜆𝑧 = 1 + 𝜕𝑧𝑢𝑧 which is given
by

𝜆𝑧 = 1 +
𝑇𝑧𝑧 − 𝜈𝑇𝑥𝑥

𝐸
. (1.34)

1.6.1. Sharp edges
In the sharp-edge case, the vertical stretch is given by

𝜆𝑧 =1 −
𝑐(1 − 𝜈)

2
√

2𝜌

(

�̄�
√

𝜌 −𝑋 + �̄�
√

𝜌 +𝑋
)

−
𝑐(1 + 𝜈)�̄�

2
√

2𝜌3

(

𝑌
√

𝜌 −𝑋 −𝑋
√

𝜌 +𝑋
)

.
(1.35)

The vertical strain 𝑒𝑧 = 𝜆𝑧 − 1 is plotted in Fig. 13.
As expected, the stretch takes minimal values close to the edges

with a singularity in 𝑟−1∕2 as for shear stress. Moreover, the stretch
takes maximal values on the symmetry line 𝑥 = 0 at the point 𝑧max =
𝑎
√

2𝜈∕(3 + 𝜈). In the incompressible limit 𝜈 → 1∕2 at which the stretch
is maximal , since 𝑐 = ℎ

𝑎(1−𝜈2) it is written on the symmetry line :

𝜆𝑧(0, 𝑧) = 1 + ℎ
3𝑎

𝑧
𝑎3∕2

2𝑎2 − 𝑧2

(𝑎2 + 𝑧2)3∕2
, (1.36)

with the maximal value

𝜆max = 1 +
4
√

2
27

ℎ
𝑎
. (1.37)

1.6.2. Curved edges
In the case of curved edges, the vertical strain is numerically

calculated and plotted in Fig. 14 in both cases for comparison. Unlike
the shear stress, for 𝑎∕𝑏 = 0.9, damage areas related to vertical stretching
are much larger with a curved-edge.

In the case of a curved edge, we find that in order to prevent large
stretching along the axis so that it is comparable to the sharp-edge case,
the ratio 𝑎∕𝑏 must be larger than 0.95 (Fig. 15). Since, we know that
in the particular case where 𝑅∕𝑏 = 0.2, the ratio 𝑎∕𝑏 is about 0.9 for
small bulges, we see that the radius of curvature must further decrease
in order to reduce the fiber stretch.
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Fig. 10. Shape of the damage drops close to the edge and comparison between the approximation (red) and the actual damage drops (black) for 𝜏crit = 𝐸∕2. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Contour plot of the shear stress for 𝑐𝐸 = 1 in the sharp-edge case with the singularity placed at 𝑏 = 1 (right) and in the curved-edge case for 𝑎∕𝑏 = 0.9 and
𝑅∕𝑏 = 0.2 (left).

2. Conclusion

We have investigated edge effects in material bulging. Our analysis
reveals that smoothing the edges decreases shear stresses in the material
and increase slightly the overall height of the bulge. Damage areas
related to both shear stress and stretching still exist but they are greatly
diminished as long as the radius of curvature of the edges is small
enough.

The results presented in this paper were obtained in the context
of linear elasticity. It is important to consider the limitations of such
results as it is well appreciated that soft tissues can operate in large
deformations where nonlinearities play an important role. At the theo-
retical level, the importance of nonlinear effects in contact mechanics
has been investigated by various authors [19–23]. In particular, it is
known [21] that a treatment in linear elasticity can generate self-
penetration in the solution and anomalous behaviors (such as the profile
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Fig. 12. Damage drops (left) and associated area 𝐴+ (fitted with a power law) for 𝐾 = 1 in the flat case (red dot online) and in the curved-edge case for
𝑎∕𝑏 ∈ {0.8, 0.9, 0.95, 0.99, 0.99999}. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Contour plot of the vertical strain for 𝜈 = 0.5 and 𝑐 = 1.5.

Fig. 14. Contour plot of the vertical strain for 𝜈 = 0.5 and 𝑐 = 1.5 in the sharp-edge case with the singularity placed at 𝑏 = 1 (right) and in the curved-edge case for
𝑎∕𝑏 = 0.9 and 𝑅∕𝑏 = 0.2 (left).
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Fig. 15. Vertical strain for 𝜈 = 0.5 and 𝑐 = 1.5 in the sharp-edge case (black dashed) and in the curved-edge case for 𝑎∕𝑏 ∈ {0.9, 0.92, 0.935, 0.95, 0.965, 0.98} (smaller
values lead to larger strains).

of the interface oscillating away from the contact). Yet, these effects
seem to be concentrated close to the contact boundary whereas the
profile away from it is mostly well described by the linear theory. The
unreasonable effectiveness of the linear theory in Hertz-like problem
is well known [24,25] but not yet understood. For our problem, in
previous papers we have shown that the linear theory for bulging
provides excellent agreement with finite-element simulations of non-
linear materials in planar, cylindrical, and spherical geometries [5–7].
Here, we also provide experimental validations showing that the linear
solution provides excellent predictions for displacement of the same
order as the radius of the opening (See Fig. 7).

Going back to the original motivation, it should be clear that de-
compressive craniectomy is an extremely complex physiological process.
Yet, basic physical ideas emerge from our highly idealized system and
we expect our results concerning the shape of the bulge, the singularities
of the stresses and the orientation of the damage drops to be generic for
any type of bulging problem. Importantly, large stresses are generated
at the opening, but, as shown here, these stresses can be partially
mitigated by curved edges. However, Fletcher et al. [10] showed that
in practice, the chaffer profile may not have much of an influence. A
possible physical process to further mitigate these high stresses would
be to employ a flexible toric joint that would extend the contact zone
while providing some elasticity.
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Appendix A. The homogeneous solution to the singular integral
equation

Consider the domain  = (−∞,−𝑎]∪[𝑎,∞) and an integrable function
𝑓 (𝑥) ∶ 𝑥 ∈  → R. We are interested in finding the general solution to
following singular integral equation with gap:
(

∫

−𝑎

−∞
+∫

∞

𝑎

)

𝑝(𝑠)
𝑥 − 𝑠

d𝑠 = 𝑓 (𝑥), |𝑥| ≥ 𝑎, (A.1)

We first look for homogeneous solutions when pressure 𝑝 is either an
even or odd function of 𝑥.

A.1. 𝑝 even

If 𝑝 is even, we can rewrite the integral in (A.1) as
(

∫

−𝑎

−∞
+∫

∞

𝑎

)

𝑝(𝑠)
𝑥 − 𝑠

d𝑠 = ∫

∞

𝑎
𝑝(𝑠)

( 1
𝑥 − 𝑠

+ 1
𝑥 + 𝑠

)

d𝑠

= 2𝑥∫

∞

𝑎

𝑝(𝑠)
𝑥2 − 𝑠2

d𝑠. (A.2)

Then the integral equation (A.1) is

∫

∞

𝑎

𝑝(𝑠)
𝑥2 − 𝑠2

d𝑠 =
𝑓 (𝑥)
2𝑥

, |𝑥| ≥ 𝑎. (A.3)

Following [26], we introduce new 𝑥2 = 𝑢 and 𝑠2 = 𝑣, so that (A.3) reads
now

∫

∞

𝑎2

𝑃 (𝑣)
𝑢 − 𝑣

d𝑣 = 𝐹 (𝑢), |𝑢| ≥ 𝑎2, (A.4)

where

𝑃 (𝑣) =
𝑝(
√

𝑣)
√

𝑣
and 𝐹 (𝑢) =

𝑓 (
√

𝑢)
√

𝑢
. (A.5)

From [17], we find that the solution of (A.4) is given by

𝑃 (𝑣) =
𝑐0

√

𝑣 − 𝑎2
+ 1

𝜋2 ∫

∞

𝑎2

√

𝑢 − 𝑎2

𝑣 − 𝑎2
𝐹 (𝑢)
𝑢 − 𝑣

d𝑢, (A.6)

where 𝑐0 is a real constant. Hence the pressure is

𝑝(𝑠) =
𝑐0𝑠

√

𝑠2 − 𝑎2
+ 2𝑠

𝜋2 ∫

∞

𝑎

√

𝑥2 − 𝑎2

𝑠2 − 𝑎2
𝑓 (𝑥)

𝑥2 − 𝑠2
d𝑥, 𝑠 ≥ 𝑎. (A.7)

In the case 𝑓 (𝑥) = 0, we extract from this last expression the even kernel

𝑝even(𝑠) =
𝑐0|𝑠|

√

𝑠2 − 𝑎2
, |𝑠| ≥ 𝑎. (A.8)

A.2. 𝑝 odd

We enforce the condition that 𝑝 is odd:
(

∫

−𝑎

−∞
+∫

∞

𝑎

)

𝑝(𝑠)
𝑥 − 𝑠

d𝑠 = ∫

∞

𝑎
𝑝(𝑠)

( 1
𝑥 − 𝑠

− 1
𝑥 + 𝑠

)

d𝑠

= −∫

∞

𝑎

𝑝(𝑠)
𝑥2 − 𝑠2

2𝑠d𝑠. (A.9)

Then (A.1) is rewritten

∫

∞

𝑎

𝑝(𝑠)
𝑥2 − 𝑠2

2𝑠d𝑠 = 𝑓 (𝑥), |𝑥| ≥ 𝑎. (A.10)

Using the same transformation 𝑥2 = 𝑢 and 𝑠2 = 𝑣, (A.10) becomes

∫

∞

𝑎2

𝑝(
√

𝑣)
𝑢 − 𝑣

d𝑣 = 𝑓 (
√

𝑢), |𝑢| ≥ 𝑎2. (A.11)

Its solution is [17]:

𝑝(
√

𝑣) =
𝑐1

√

𝑣 − 𝑎2
+ 1

𝜋2 ∫

∞

𝑎2

√

𝑢 − 𝑎2

𝑣 − 𝑎2
𝑓 (

√

𝑢)
𝑢 − 𝑣

d𝑢, (A.12)
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where 𝑐1 is a real constant. Hence the pressure is given by

𝑝(𝑠) =
𝑐1

√

𝑠2 − 𝑎2
+ 2

𝜋2 ∫

∞

𝑎

√

𝑥2 − 𝑎2

𝑠2 − 𝑎2
𝑥𝑓 (𝑥)
𝑥2 − 𝑠2

d𝑥, 𝑠 ≥ 𝑎, (A.13)

from which we extract the odd homogeneous solution:

𝑝odd(𝑠) =
𝑐1 sgn(𝑠)
√

𝑠2 − 𝑎2
, |𝑠| ≥ 𝑎. (A.14)

Appendix B. Non-homogeneous solutions to the singular integral
equations

The previous analysis provides a way to identify homogeneous
solutions to the singular integral equations. Expressions (A.7) and (A.13)
can also be used to find some non-homogeneous solutions. However,
these expressions do not capture all solutions. In particular in the case of
a curved edge, we notice that the non-homogeneous parts appearing in
both expressions vanish identically. Thus we must solve equation (A.1)
in a different way. Here, we use the following result from [17], valid for
an inhomogeneous term defined on a finite domain of the form:

𝑓 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, |𝑥| ≥ 𝑏
𝑥 − 𝑏
𝐴𝑅

, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑥 + 𝑏
𝐴𝑅

, −𝑏 ≤ 𝑥 ≤ −𝑎,

(B.1)

Then the pressure is

𝑝(𝑠) =
sgn(𝑠)

𝜋2
√

𝑠2 − 𝑎2

[

𝑐1 +
(

∫

−𝑎

−∞
+∫

∞

𝑎

)

𝑓 (𝑡)
√

𝑡2 − 𝑎2 sgn(𝑡)
𝑡 − 𝑠

d𝑡

]

=
sgn(𝑠)

𝜋2𝐴𝑅
√

𝑠2 − 𝑎2

×

[

𝑐1 + ∫

−𝑎

−𝑏

(−𝑡 − 𝑏)
√

𝑡2 − 𝑎2

𝑡 − 𝑠
d𝑡 + ∫

𝑏

𝑎

(𝑡 − 𝑏)
√

𝑡2 − 𝑎2

𝑡 − 𝑠
d𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼(𝑠)

]

,

(B.2)

where we recognize the odd homogeneous solution. The explicit evalu-
ation of this integral gives

𝐼(𝑠) = −
√

𝑠2 − 𝑎2
(

𝑠 ln
|

|

|

|

|

|

𝑏2 − 2𝑎2 + 𝑠2 + 2
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)
𝑏2 − 𝑠2

|

|

|

|

|

|

+ 𝑏 ln
|

|

|

|

|

|

𝑏 − 𝑠
𝑏 + 𝑠

𝑎2 + 𝑏𝑠 −
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)

𝑎2 − 𝑏𝑠 −
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)

|

|

|

|

|

|

)

+ 2𝑠

(

√

𝑏2 − 𝑎2 + 𝑏 ln 𝑎

𝑏 +
√

𝑏2 − 𝑎2

)

.

(B.3)

When adding the even kernel, we obtain the general solution

𝑝(𝑠)𝜋2𝐴𝑅 =
𝑐1 sgn(𝑠)
√

𝑠2 − 𝑎2
+ 2

|𝑠|
√

𝑠2 − 𝑎2

(

𝑐0 +
√

𝑏2 − 𝑎2 + 𝑏 ln 𝑎

𝑏 +
√

𝑏2 − 𝑎2

)

− |𝑠| ln
|

|

|

|

|

|

𝑏2 − 2𝑎2 + 𝑠2 + 2
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)
𝑏2 − 𝑠2

|

|

|

|

|

|

− 𝑏 sgn(𝑠) ln
|

|

|

|

|

|

𝑏 − 𝑠
𝑏 + 𝑠

𝑎2 + 𝑏𝑠 −
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)

𝑎2 − 𝑏𝑠 −
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)

|

|

|

|

|

|

.

(B.4)

Physically, we are looking for a non-divergent even solution. Therefore,
we choose 𝑐1=0 and 𝑐0 such that 𝑝(𝑎) = 𝑝(−𝑎) does not diverge:

𝑐0 +
√

𝑏2 − 𝑎2 + 𝑏 ln 𝑎

𝑏 +
√

𝑏2 − 𝑎2
= 0. (B.5)

Taken together, the solution for the pressure is

𝑝(𝑠) = − 1
𝜋2𝐴𝑅

(

|𝑠| ln
|

|

|

|

|

|

𝑏2 − 2𝑎2 + 𝑠2 + 2
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)
𝑏2 − 𝑠2

|

|

|

|

|

|

+ 𝑏 sgn(𝑠) ln
|

|

|

|

|

|

𝑏 − 𝑠
𝑏 + 𝑠

𝑎2 + 𝑏𝑠 −
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)

𝑎2 − 𝑏𝑠 −
√

(𝑏2 − 𝑎2)(𝑠2 − 𝑎2)

|

|

|

|

|

|

)

.

(B.6)

Appendix C. Experimental details

Bulging experiments were performed by compressing confined elas-
tic solids using a plate with a circular aperture. The solid is confined
on all faces except for a circular opening in the top plate. As the plate
is displaced (axial compression) the solid is free to expand through the
circular opening. Under this compression, the soft solid bulged through
the aperture permitting measurement of the axisymmetric deformation
profile.

The experimental sample, of 𝑅 = 45 mm and 𝐻=20.5 mm, was
fabricated from poly-vinyl siloxane (Elite Double 8, Zhermack). The
PVS sample was produced by mixing together a base polymer and
crosslinker in a ratio of 9:1, which resulted in soft solid with Young’s
modulus 𝐸 = 40 kPa and Poisson’s ratio 𝜈 = 0.5. After thorough mixing,
and while still liquid, the sample was degassed in a vacuum chamber
before being left to cure at room temperature inside a cylindrical
container, of radius 45 mm and height 30 mm, with no lid. Prior to
compressive testing the Young’s modulus of the sample was measured
by performing flat punch indentation experiments using a custom-built
structural testing machine. The sample was positioned on a precision
micro-balance (Pioneer PA64C Analytic Balance, Ohaus) and indented
by a cylindrical indenter, of diameter 2𝑟𝑖 = 1.25 mm, connected to
a linear actuator (M228.10S, Physik Instrumente) and driven by a
computer-controlled stepper motor. Simultaneous readings of both the
mass, 𝑚, and indentation, 𝛿𝑖 provided a stress–strain curve from which
the Young’s modulus, 𝐸, could be calculated via 𝐹 = 2𝑟𝑖𝐸∗𝛿𝑖, where
𝐹 = 𝑚𝑔, 𝐸 = 𝐸∗(1 − 𝜈2) and 𝜈 is the Poisson’s ratio of the material.

Confined inside the container, the soft solid was subject to axial
compression by a circular plate of radius 44 mm with a circular
aperture of radius 𝑏 = 15 mm located at its center. To investigate the
effect of edges on bulging, tests were performed with plates that had
apertures with straight edges and apertures with a radii of curvature
𝑅 = 2 mm and 𝑅 = 3 mm. The plates, and the container that
held the sample, were fabricated from ABS plastic using a 3D printer
(MakerBot) with a resolution of 0.2 mm. The plate was attached to
a computer-controlled linear actuator (M229.26S, Physik Instrumente)
with a precision of ±0.1 μm, that moved at 10 μm∕s, applying an axial
compression to the sample. Under compression, the soft solid bulged
through the central aperture and the axisymmetric deformation profile
was measured by imaging a line along the center of the sample. The line
was approximately 1 mm wide, made from the same material, and with
the same𝐸, as the bulk and colored using an oil-based dye to contrast the
rest of the sample. The line was imaged using a DSLR camera (D7000,
Nikon), with a spatial resolution of 0.02 mm/pixel, positioned at 45
degrees to the horizontal and orthogonal to the line, at a rate of 1 fps.
The line was detected in images using image processing techniques in
Matlab, and compared to an undeformed reference line obtained for
zero compression, resulting in measurements of the deformation profile
accurate to 0.1 mm. The profiles shown in this paper were obtained for
fixed values of axial compression in the range of 0.5 mm to 3.5 mm in
0.5 mm increments; in Fig. 7 for a curved-edge aperture of 𝑅 = 3 mm.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.ijnonlinmec.2018.07.004.
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