
Algebraic Number Theory 2019-20
Example Sheet 4

Hand in the answers to questions 4 and 6 (marked with †).
Deadline 12 noon Monday, Week 10 (2 December)

For questions about the example sheet, it is best to ask them on Moodle. Questions
must be asked before 5 pm on Friday to get an answer before the deadline.

1. Let K = Q(
√
−2). Show that OK is a principal ideal domain. Deduce that

every prime p ≡ 1, 3 (mod 8) can be written as p = x2+2y2 with x, y ∈ Z. (You
will need to use quadratic reciprocity from Introduction to Number Theory.)

2. Compute the class groups of the following quadratic fields.

Q(
√

5), Q(
√
−6), Q(

√
7).

3. Prove that the class group of Q(
√
−30) is isomorphic to Z/2Z× Z/2Z.

†4. Let K = Q(
√

26). You may use without proof the following factorisations of
ideals in OK = Z[

√
26]:

• 〈2〉 = p22 where p2 = 〈2,
√

26〉 is a prime ideal of norm 2.
• 〈3〉 is a prime ideal in OK .
• 〈5〉 = p5q5 where p5 = 〈5, 1+

√
26〉 and q5 = 〈5,−1+

√
26〉 are prime ideals

of norm 5.

(i) Write a list of the quadratic residues (i.e. squares) mod 13. Use this to
show that p2 is not principal.

(ii) Find the prime factorisation of 〈6 +
√

26〉 in OK .
(iii) Use the Minkowski bound to prove that Cl(K) ∼= Z/2Z.

5. Show that the cyclotomic field Q(ζ5) has class number 1.

†6. Let d be a square-free composite positive integer such that −d ≡ 2 or 3 mod 4.
Let p be a prime factor of d and let K = Q(

√
−d).

(i) Prove that OK contains no element of norm ±p.
(ii) By considering the prime factorisation of the ideal 〈p〉, prove that the class

number of K is even.

7. Let a, b be ideals of OK such that there is no prime ideal which divides both a
and b. Suppose that

ab = cn

for some ideal c ⊆ OK and some positive integer n. Prove that there are ideals
a′, b′ ⊆ OK such that

a = (a′)n, b = (b′)n.
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8. (i) Prove that the ring of integers of Q(
√
−11) is a PID.

(ii) Prove that if x, y ∈ Z satisfy x3 = y2 + 11, then there exist u, v ∈ Z such
that (u+ v

√
−11

2

)3

= y +
√
−11.

(iii) Show that the equation x3 = y2 + 11 has exactly four solutions in rational
integers. Verify that two of these solutions are (15,±58); find the other
two.

9. Prove that the only integer solutions to the equation x3 = y2 + 2 are (3,±5).

10. (i) Using Minkowski’s theorem on ideal classes, prove that if K is a number
field of degree greater than 1, then |∆K | > 1.

(ii) Show that there are constants A > 1 and c > 0 such that, for every number
field K, |∆K | > cAn.

11. (i) Let C be a positive real number and s ∈ N. Verify that the symmetric
convex set

S(s, C) = {(y1, z1, . . . , ys, zs) ∈ R2s : |y1| < 1, |z1| < C, y2i +z
2
i < 1 for i = 2, . . . , s}

has volume 4πs−1C.

(ii) Let ∆ be a positive integer. Let K be a number field such that i =
√
−1 ∈

K and |∆K | ≤ ∆.
(a) Prove that K has signature (0, s) for some s.
(b) Let ιK : K → R2s be the canonical embedding of K. Use Minkowski’s

theorem on lattices to prove that, for a suitable constant C depending
only on s and ∆ (but not on K), there is a non-zero element α ∈ OK
such that ιK(α) ∈ S(s, C).

(c) Label the embeddings ofK as σ1, σ1, . . . , σs, σs. Observe that |σ1(α)| <√
1 + C2 and |σi(α)| < 1 for i = 2, . . . , s. Obtain a bound for the

coefficients of the minimal polynomial of α over Q.
(d) By considering NmK/Q(α), prove that |σ1(α)| > 1 and hence σ1(α) 6=

σi(α) or σi(α) for i = 2, . . . , s.
(e) Deduce that [K : Q(α)] ≤ 2.
(f) Show that K = Q(i, α) (observe that if [K : Q(α)] = 2, then σ1|Q(α)

is a real embedding and use this to show that Q(i, α) 6= Q(α)).

(iii) Combining (c) and (f) above, show that there are only finitely many num-
ber fields K of degree 2s satisfying i ∈ K and |∆K | ≤ ∆.

(iv) You may assume that for every number field L of degree n, |∆L(i)| ≤
4n|∆L|2 (if you are feeling adventurous, you could prove this). Use (iii)
to show that there are only finitely many number fields L of degree n
satisfying |∆L| ≤ ∆.

(v) Using Q10, show that for any ∆, there are only finitely many number fields
whose discriminant has absolute value at most ∆.


