ALGEBRAIC NUMBER THEORY 2019-20
EXAMPLE SHEET 4

Hand in the answers to questions 4 and 6 (marked with t).
Deadline 12 noon Monday, Week 10 (2 December)

For questions about the example sheet, it is best to ask them on Moodle. Questions
must be asked before 5 pm on Friday to get an answer before the deadline.

1.

Let K = Q(v/—2). Show that O is a principal ideal domain. Deduce that
every prime p = 1, 3 (mod 8) can be written as p = 22+2y* with z, y € Z. (You
will need to use quadratic reciprocity from Introduction to Number Theory.)

. Compute the class groups of the following quadratic fields.

. Prove that the class group of Q(1/—30) is isomorphic to Z/2Z x Z/27Z.

t4.

Let K = Q(v/26). You may use without proof the following factorisations of
ideals in O = Z[v/26]:

e (2) = p? where py = (2,1/26) is a prime ideal of norm 2.

e (3) is a prime ideal in Ok.

e (5) = psqs where ps = (5,14+/26) and q5 = (5, —14/26) are prime ideals

of norm 5.

(i) Write a list of the quadratic residues (i.e. squares) mod 13. Use this to
show that ps is not principal.
(ii) Find the prime factorisation of (6 + v/26) in Ok.
(iii) Use the Minkowski bound to prove that Cl(K) = Z/27Z.

. Show that the cyclotomic field Q((s) has class number 1.

6.

Let d be a square-free composite positive integer such that —d = 2 or 3 mod 4.
Let p be a prime factor of d and let K = Q(v/—d).
(i) Prove that Ok contains no element of norm =+p.
(ii) By considering the prime factorisation of the ideal (p), prove that the class
number of K is even.

Let a, b be ideals of Ok such that there is no prime ideal which divides both a
and b. Suppose that

for some ideal ¢ C Ok and some positive integer n. Prove that there are ideals
a’, b’ C Ok such that



8. (i) Prove that the ring of integers of Q(v/—11) is a PID.
(ii) Prove that if x,y € Z satisfy 23 = y? + 11, then there exist u,v € Z such

that
u+ vy —11\3
(I
(iii) Show that the equation * = y* 4+ 11 has exactly four solutions in rational
integers. Verify that two of these solutions are (15, £58); find the other
two.

9. Prove that the only integer solutions to the equation x® = y? + 2 are (3, £5).

10. (i) Using Minkowski’s theorem on ideal classes, prove that if K is a number
field of degree greater than 1, then |Ag| > 1.
(ii) Show that there are constants A > 1 and ¢ > 0 such that, for every number
field K, |Ag| > cA™

11. (i) Let C be a positive real number and s € N. Verify that the symmetric
convex set

S(5.C) = (W21, g ze) €R* g < 1, [ < O, b2 < Lhori =2, 5}
has volume 4757 1C.

(ii) Let A be a positive integer. Let K be a number field such that i = v/—1 €
K and ’AK| S A.
(a) Prove that K has signature (0, s) for some s.
(b) Let tx: K — R?® be the canonical embedding of K. Use Minkowski’s
theorem on lattices to prove that, for a suitable constant C' depending
only on s and A (but not on K), there is a non-zero element o € O
such that (x(a) € S(s,C).
(c) Label the embeddings of K as 01,77, ..., 0s,05. Observe that |o1(«)| <
V14 C? and |o;(a)| < 1 for i = 2,...,s. Obtain a bound for the
coefficients of the minimal polynomial of « over Q.
(d) By considering Nmg g(«), prove that |o1(«)| > 1 and hence o (a) #
oi(a) or o;(a) for i =2,...,s.
(e) Deduce that [K : Q(«)] < 2.
(f) Show that K = Q(i, ) (observe that if [K : Q(a)] = 2, then oy|g(a)
is a real embedding and use this to show that Q(i, a) # Q(«)).
(iii) Combining (c) and (f) above, show that there are only finitely many num-
ber fields K of degree 2s satisfying ¢ € K and |Ax| < A.
(iv) You may assume that for every number field L of degree n, |Apy| <
47|AL|? (if you are feeling adventurous, you could prove this). Use (iii
to show that there are only finitely many number fields L of degree n
satisfying |Ap| < A.

(v) Using Q10, show that for any A, there are only finitely many number fields
whose discriminant has absolute value at most A.



