ALGEBRAIC NUMBER THEORY 2019-20 EXAMPLE SHEET 4

Hand in the answers to questions 4 and 6 (marked with †). Deadline 12 noon Monday, Week 10 (2 December)

For questions about the example sheet, it is best to ask them on Moodle. Questions must be asked before 5 pm on Friday to get an answer before the deadline.

- 1. Let $K = \mathbb{Q}(\sqrt{-2})$. Show that \mathcal{O}_K is a principal ideal domain. Deduce that every prime $p \equiv 1, 3 \pmod{8}$ can be written as $p = x^2 + 2y^2$ with $x, y \in \mathbb{Z}$. (You will need to use quadratic reciprocity from Introduction to Number Theory.)
- 2. Compute the class groups of the following quadratic fields.

$$\mathbb{Q}(\sqrt{5}), \quad \mathbb{Q}(\sqrt{-6}), \quad \mathbb{Q}(\sqrt{7}).$$

- 3. Prove that the class group of $\mathbb{Q}(\sqrt{-30})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- †4. Let $K = \mathbb{Q}(\sqrt{26})$. You may use without proof the following factorisations of ideals in $\mathcal{O}_K = \mathbb{Z}[\sqrt{26}]$:
 - $\langle 2 \rangle = \mathfrak{p}_2^2$ where $\mathfrak{p}_2 = \langle 2, \sqrt{26} \rangle$ is a prime ideal of norm 2.
 - $\langle 3 \rangle$ is a prime ideal in \mathcal{O}_K .
 - $\langle 5 \rangle = \mathfrak{p}_5 \mathfrak{q}_5$ where $\mathfrak{p}_5 = \langle 5, 1 + \sqrt{26} \rangle$ and $\mathfrak{q}_5 = \langle 5, -1 + \sqrt{26} \rangle$ are prime ideals of norm 5.
 - (i) Write a list of the quadratic residues (i.e. squares) mod 13. Use this to show that \mathfrak{p}_2 is not principal.
 - (ii) Find the prime factorisation of $\langle 6 + \sqrt{26} \rangle$ in \mathcal{O}_K .
 - (iii) Use the Minkowski bound to prove that $\mathrm{Cl}(K)\cong \mathbb{Z}/2\mathbb{Z}.$
- 5. Show that the cyclotomic field $\mathbb{Q}(\zeta_5)$ has class number 1.
- †6. Let d be a square-free composite positive integer such that $-d \equiv 2$ or $3 \mod 4$. Let p be a prime factor of d and let $K = \mathbb{Q}(\sqrt{-d})$.
 - (i) Prove that \mathcal{O}_K contains no element of norm $\pm p$.
 - (ii) By considering the prime factorisation of the ideal $\langle p \rangle$, prove that the class number of K is even.
- 7. Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{O}_K such that there is no prime ideal which divides both \mathfrak{a} and \mathfrak{b} . Suppose that

$$\mathfrak{ah} = \mathfrak{c}^n$$

for some ideal $\mathfrak{c} \subseteq \mathcal{O}_K$ and some positive integer n. Prove that there are ideals $\mathfrak{a}', \mathfrak{b}' \subseteq \mathcal{O}_K$ such that

$$\mathfrak{a} = (\mathfrak{a}')^n, \quad \mathfrak{b} = (\mathfrak{b}')^n.$$

- 8. (i) Prove that the ring of integers of $\mathbb{Q}(\sqrt{-11})$ is a PID.
 - (ii) Prove that if $x, y \in \mathbb{Z}$ satisfy $x^3 = y^2 + 11$, then there exist $u, v \in \mathbb{Z}$ such that

$$\left(\frac{u+v\sqrt{-11}}{2}\right)^3 = y + \sqrt{-11}.$$

- (iii) Show that the equation $x^3 = y^2 + 11$ has exactly four solutions in rational integers. Verify that two of these solutions are $(15, \pm 58)$; find the other two.
- 9. Prove that the only integer solutions to the equation $x^3 = y^2 + 2$ are $(3, \pm 5)$.
- 10. (i) Using Minkowski's theorem on ideal classes, prove that if K is a number field of degree greater than 1, then $|\Delta_K| > 1$.
 - (ii) Show that there are constants A > 1 and c > 0 such that, for every number field K, $|\Delta_K| > cA^n$.
- 11. (i) Let C be a positive real number and $s \in \mathbb{N}$. Verify that the symmetric convex set
- $S(s,C) = \{(y_1, z_1, \dots, y_s, z_s) \in \mathbb{R}^{2s} : |y_1| < 1, |z_1| < C, y_i^2 + z_i^2 < 1 \text{ for } i = 2, \dots, s\}$ has volume $4\pi^{s-1}C$.
 - (ii) Let Δ be a positive integer. Let K be a number field such that $i = \sqrt{-1} \in K$ and $|\Delta_K| \leq \Delta$.
 - (a) Prove that K has signature (0, s) for some s.
 - (b) Let $\iota_K : K \to \mathbb{R}^{2s}$ be the canonical embedding of K. Use Minkowski's theorem on lattices to prove that, for a suitable constant C depending only on s and Δ (but not on K), there is a non-zero element $\alpha \in \mathcal{O}_K$ such that $\iota_K(\alpha) \in S(s, C)$.
 - (c) Label the embeddings of K as $\sigma_1, \overline{\sigma_1}, \ldots, \sigma_s, \overline{\sigma_s}$. Observe that $|\sigma_1(\alpha)| < \sqrt{1+C^2}$ and $|\sigma_i(\alpha)| < 1$ for $i=2,\ldots,s$. Obtain a bound for the coefficients of the minimal polynomial of α over \mathbb{Q} .
 - (d) By considering $\operatorname{Nm}_{K/\mathbb{Q}}(\alpha)$, prove that $|\sigma_1(\alpha)| > 1$ and hence $\sigma_1(\alpha) \neq \sigma_i(\alpha)$ or $\overline{\sigma_i}(\alpha)$ for $i = 2, \ldots, s$.
 - (e) Deduce that $[K : \mathbb{Q}(\alpha)] \leq 2$.
 - (f) Show that $K = \mathbb{Q}(i, \alpha)$ (observe that if $[K : \mathbb{Q}(\alpha)] = 2$, then $\sigma_{1|\mathbb{Q}(\alpha)}$ is a real embedding and use this to show that $\mathbb{Q}(i, \alpha) \neq \mathbb{Q}(\alpha)$).
 - (iii) Combining (c) and (f) above, show that there are only finitely many number fields K of degree 2s satisfying $i \in K$ and $|\Delta_K| \leq \Delta$.
 - (iv) You may assume that for every number field L of degree n, $|\Delta_{L(i)}| \leq 4^n |\Delta_L|^2$ (if you are feeling adventurous, you could prove this). Use (iii) to show that there are only finitely many number fields L of degree n satisfying $|\Delta_L| \leq \Delta$.
 - (v) Using Q10, show that for any Δ , there are only finitely many number fields whose discriminant has absolute value at most Δ .