
Algebraic Number Theory 2019-20
Example Sheet 3

Hand in the answers to questions 2, 4 and 8 (marked with †).
Deadline 12 noon Monday, Week 8 (18 November)

For questions about the example sheet, it is best to ask them on Moodle. Questions
must be asked before 5 pm on Friday to get an answer before the deadline.

1. Let K = Q(
√
−5). In OK = Z[

√
−5] let

a = 〈2, 1 +
√
−5〉, b = 〈3, 1 +

√
−5〉, b′ = 〈3, 1−

√
−5〉.

(i) Show that

a2 = 〈2〉, bb′ = 〈3〉, ab = 〈1 +
√
−5〉, ab′ = 〈1−

√
−5〉.

This shows that the Algebra II example of non-unique factorisation 6 =
2 · 3 = (1 +

√
−5)(1 −

√
−5) comes from grouping the ideal factorization

of 6 in two different ways: (a2) · (bb′) and (ab) · (ab′).
(ii) Show that a, b and b′ are non-principal.

(iii) Compute the norms of the ideals a, b, b′.

†2. Let K be a number field and let θ ∈ OK satisfy NmK/Q(θ) = ab, where a and
b are coprime rational integers. Prove that

〈a, θ〉〈b, θ〉 = 〈θ〉.
(You may want to prove the inclusion in each direction separately.)

Correction: This originally said θ ∈ K, but it should say θ ∈ OK .

3. You’re given that OQ(
√
d) is a principal ideal domain for d = 6, 7, 21. Exhibit a

generator for the following ideals.
(i) 〈3,

√
6〉, 〈5, 4 +

√
6〉 in OQ(

√
6).

(ii) 〈2, 1 +
√

7〉 in OQ(
√
7).

(iii) 〈3,
√

21〉 in OQ(
√
21).

†4. Let K = Q(
√

3). Use the Dedekind–Kummer theorem to factorise the ideal
〈11〉 into prime ideals of OK . For each prime ideal p which appears as in the
factorisation, show that it is principal by writing down an element π ∈ OK such
that p = 〈π〉.

5. Let K = Q(
√
−5). You may want to make use of Q1 while answering this

question.
(a) Find all ideals in OK of the following norms:

4, 6, 9.

(b) Find an integer N such that there are exactly 10 ideals of OK of norm N .

6. LetK = Q(i). Recall from Introduction to Number Theory that for any rational
prime p, −1 is a quadratic residue mod p if and only if p ≡ 1 mod 4. Use the
Dedekind–Kummer theorem to prove the following factorisations of ideals of
OK :
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(i) 〈2〉 = 〈1 + i〉2;
(ii) 〈p〉 is a product of two distinct prime ideals if p ≡ 1 mod 4;

(iii) 〈p〉 is a prime ideal if p ≡ 3 mod 4.

7. Let p be a rational prime and let K be a number field. We say that p is ramified
in K if, in the factorisation into prime ideals of OK :

〈p〉 = pe11 pe22 · · · perr ,
there is some i such that ei ≥ 2.

Let K = Q(
√
d) be a quadratic field. Use the Dedekind–Kummer theorem

to prove that p is ramified in K if and only if p divides the discriminant of K.
(You will need to consider the cases d ≡ 1, 2, 3 mod 4 separately.)

†8. Let α be a root of the polynomial f(X) = X3−X2−2X−8 and let K = Q(α).
You may use the following facts without proof:
• f is irreducible over Q.
• ∆(1, α, α2) = −2012.
• β = (α2 + α)/2 is an algebraic integer.

(i) Explain briefly how to show that {1, α, β} is an integral basis for K.
(ii) Why can we use the Dedekind–Kummer theorem (with the element α) to

factorise 〈3〉 and 〈5〉 in OK , but not 〈2〉?
(iii) Factorise the ideals 〈3〉 and 〈5〉 in OK , and determine the norm of each

prime ideal in their factorisations.
(iv) Verify that αβ = 4 + 2β.
(v) Let a = Z.2 + Z.α + Z.2β. You may use without proof the facts that a is

an ideal in OK , and that β2 = 6 + 2α + 3β.
By considering (1+α+β)β, or otherwise, show that a is not a prime ideal.

9. This question is a continuation of Q8.
(i) Verify that p = Z.2 + Z.α + Z.β, q = Z.2 + Z.α + Z.(β + 1) and r =

Z.2 + Z.(1 + α) + Z.β are ideals in OK .
(ii) Use change-of-basis matrices to show that Nm(p) = Nm(q) = Nm(r) = 2.

(iii) Deduce that p, q, r are prime ideals and 〈2〉 = pqr.
(iv) By comparing this factorisation with the Dedekind–Kummer theorem, prove

that OK 6= Z[γ] for any γ. (How many monic irreducible polynomials of
degree 1 are there modulo 2?)

10. Let R be the ring Z[
√
−3] (recall that this is not equal to OK , where K =

Q(
√
−3)). Let p be the ideal 〈2, 1 +

√
−3〉 of R.

(a) Show that p2 = 〈2〉p.
(b) Compute the fractional ideal p−1 of R, and show that it is equal to OK .
(c) Show that pp−1 = p.

Note: in this question, p−1 means {x ∈ K : xp ⊆ R} (i.e. replace OK in the
definition from lectures by R). Similarly 〈2〉 means 2R not 2OK .

11. Let K be a number field. Let α, β be non-zero elements of OK .
(i) Show that 〈α〉−1 = 〈α−1〉.
(ii) Give an counterexample to the following claim: 〈α, β〉−1 = 〈α−1, β−1〉.


