Algebraic Number Theory 2019-20 Example Sheet 3

Hand in the answers to questions 2, 4 and 8 (marked with †).

Deadline 12 noon Monday, Week 8 (18 November)

For questions about the example sheet, it is best to ask them on Moodle. Questions must be asked before 5 pm on Friday to get an answer before the deadline.

1. Let $K = \mathbb{Q}(\sqrt{-5})$. In $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$ let

$$\mathfrak{a} = \langle 2, 1 + \sqrt{-5} \rangle, \qquad \mathfrak{b} = \langle 3, 1 + \sqrt{-5} \rangle, \qquad \mathfrak{b}' = \langle 3, 1 - \sqrt{-5} \rangle.$$

(i) Show that

$$\mathfrak{a}^2 = \langle 2 \rangle, \qquad \mathfrak{bb'} = \langle 3 \rangle, \qquad \mathfrak{ab} = \langle 1 + \sqrt{-5} \rangle, \qquad \mathfrak{ab'} = \langle 1 - \sqrt{-5} \rangle.$$

This shows that the Algebra II example of non-unique factorisation $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ comes from grouping the ideal factorization of 6 in two different ways: $(\mathfrak{a}^2) \cdot (\mathfrak{b}\mathfrak{b}')$ and $(\mathfrak{a}\mathfrak{b}) \cdot (\mathfrak{a}\mathfrak{b}')$.

- (ii) Show that \mathfrak{a} , \mathfrak{b} and \mathfrak{b}' are non-principal.
- (iii) Compute the norms of the ideals \mathfrak{a} , \mathfrak{b} , \mathfrak{b}' .
- †2. Let K be a number field and let $\theta \in \mathcal{O}_K$ satisfy $\operatorname{Nm}_{K/\mathbb{Q}}(\theta) = ab$, where a and b are coprime rational integers. Prove that

$$\langle a, \theta \rangle \langle b, \theta \rangle = \langle \theta \rangle.$$

(You may want to prove the inclusion in each direction separately.) **Correction:** This originally said $\theta \in K$, but it should say $\theta \in \mathcal{O}_K$.

- 3. You're given that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is a principal ideal domain for d=6, 7, 21. Exhibit a generator for the following ideals.
 - (i) $\langle 3, \sqrt{6} \rangle$, $\langle 5, 4 + \sqrt{6} \rangle$ in $\mathcal{O}_{\mathbb{O}(\sqrt{6})}$.
 - (ii) $\langle 2, 1 + \sqrt{7} \rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{7})}$.
 - (iii) $\langle 3, \sqrt{21} \rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{21})}$.
- †4. Let $K = \mathbb{Q}(\sqrt{3})$. Use the Dedekind–Kummer theorem to factorise the ideal $\langle 11 \rangle$ into prime ideals of \mathcal{O}_K . For each prime ideal \mathfrak{p} which appears as in the factorisation, show that it is principal by writing down an element $\pi \in \mathcal{O}_K$ such that $\mathfrak{p} = \langle \pi \rangle$.
- 5. Let $K = \mathbb{Q}(\sqrt{-5})$. You may want to make use of Q1 while answering this question.
 - (a) Find all ideals in \mathcal{O}_K of the following norms:

- (b) Find an integer N such that there are exactly 10 ideals of \mathcal{O}_K of norm N.
- 6. Let $K = \mathbb{Q}(i)$. Recall from Introduction to Number Theory that for any rational prime p, -1 is a quadratic residue mod p if and only if $p \equiv 1 \mod 4$. Use the Dedekind–Kummer theorem to prove the following factorisations of ideals of \mathcal{O}_K :

1

- (i) $\langle 2 \rangle = \langle 1 + i \rangle^2$;
- (ii) $\langle p \rangle$ is a product of two distinct prime ideals if $p \equiv 1 \mod 4$;
- (iii) $\langle p \rangle$ is a prime ideal if $p \equiv 3 \mod 4$.
- 7. Let p be a rational prime and let K be a number field. We say that p is **ramified** in K if, in the factorisation into prime ideals of \mathcal{O}_K :

$$\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_r^{e_r},$$

there is some i such that $e_i \geq 2$.

Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic field. Use the Dedekind–Kummer theorem to prove that p is ramified in K if and only if p divides the discriminant of K. (You will need to consider the cases $d \equiv 1, 2, 3 \mod 4$ separately.)

- †8. Let α be a root of the polynomial $f(X) = X^3 X^2 2X 8$ and let $K = \mathbb{Q}(\alpha)$. You may use the following facts without proof:
 - f is irreducible over \mathbb{Q} .
 - $\Delta(1, \alpha, \alpha^2) = -2012$.
 - $\beta = (\alpha^2 + \alpha)/2$ is an algebraic integer.
 - (i) Explain briefly how to show that $\{1, \alpha, \beta\}$ is an integral basis for K.
 - (ii) Why can we use the Dedekind-Kummer theorem (with the element α) to factorise $\langle 3 \rangle$ and $\langle 5 \rangle$ in \mathcal{O}_K , but not $\langle 2 \rangle$?
 - (iii) Factorise the ideals $\langle 3 \rangle$ and $\langle 5 \rangle$ in \mathcal{O}_K , and determine the norm of each prime ideal in their factorisations.
 - (iv) Verify that $\alpha\beta = 4 + 2\beta$.
 - (v) Let $\mathfrak{a} = \mathbb{Z}.2 + \mathbb{Z}.\alpha + \mathbb{Z}.2\beta$. You may use without proof the facts that \mathfrak{a} is an ideal in \mathcal{O}_K , and that $\beta^2 = 6 + 2\alpha + 3\beta$.

By considering $(1 + \alpha + \beta)\beta$, or otherwise, show that \mathfrak{a} is not a prime ideal.

- 9. This question is a continuation of Q8.
 - (i) Verify that $\mathfrak{p} = \mathbb{Z}.2 + \mathbb{Z}.\alpha + \mathbb{Z}.\beta$, $\mathfrak{q} = \mathbb{Z}.2 + \mathbb{Z}.\alpha + \mathbb{Z}.(\beta + 1)$ and $\mathfrak{r} = \mathbb{Z}.2 + \mathbb{Z}.(1 + \alpha) + \mathbb{Z}.\beta$ are ideals in \mathcal{O}_K .
 - (ii) Use change-of-basis matrices to show that $Nm(\mathfrak{p}) = Nm(\mathfrak{q}) = Nm(\mathfrak{r}) = 2$.
 - (iii) Deduce that $\mathfrak{p}, \mathfrak{q}, \mathfrak{r}$ are prime ideals and $\langle 2 \rangle = \mathfrak{pqr}$.
 - (iv) By comparing this factorisation with the Dedekind–Kummer theorem, prove that $\mathcal{O}_K \neq \mathbb{Z}[\gamma]$ for any γ . (How many monic irreducible polynomials of degree 1 are there modulo 2?)
- 10. Let R be the ring $\mathbb{Z}[\sqrt{-3}]$ (recall that this is not equal to \mathcal{O}_K , where $K = \mathbb{Q}(\sqrt{-3})$). Let \mathfrak{p} be the ideal $\langle 2, 1 + \sqrt{-3} \rangle$ of R.
 - (a) Show that $\mathfrak{p}^2 = \langle 2 \rangle \mathfrak{p}$.
 - (b) Compute the fractional ideal \mathfrak{p}^{-1} of R, and show that it is equal to \mathcal{O}_K .
 - (c) Show that $\mathfrak{pp}^{-1} = \mathfrak{p}$.

Note: in this question, \mathfrak{p}^{-1} means $\{x \in K : x\mathfrak{p} \subseteq R\}$ (i.e. replace \mathcal{O}_K in the definition from lectures by R). Similarly $\langle 2 \rangle$ means 2R not $2\mathcal{O}_K$.

- 11. Let K be a number field. Let α , β be non-zero elements of \mathcal{O}_K .
 - (i) Show that $\langle \alpha \rangle^{-1} = \langle \alpha^{-1} \rangle$.
 - (ii) Give an counterexample to the following claim: $\langle \alpha, \beta \rangle^{-1} = \langle \alpha^{-1}, \beta^{-1} \rangle$.