
Algebraic Number Theory
Term 2, 2018–19

Martin Orr

1. Introduction

Gaussian integers.
The simplest example of what we will study in Algebraic Number Theory is the

Gaussian integers
{a+ bi : a, b ∈ Z}.

If you did Introduction to Number Theory, you will have seen these before, but
whether you have or not we will see them in this course as a special case of a much
broader theory.

The key points about the Gaussian integers:
(1) We can describe the irreducible Gaussian integers in terms of the ordinary

prime numbers (depending on whether a prime is 1 or 3 mod 4).
(2) Every Gaussian integer can be uniquely factorised as a product of irre-

ducible Gaussian integers.
Gaussian integers are an example of algebraic integers i.e. numbers which are a

root of a monic polynomial with integer coefficients. Algebraic Number Theory is
about doing number theory with other algebraic integers, for example describing
the primes in a ring of algebraic integers or deciding whether a ring of algebraic
integers has unique factorisation.

Usually, a ring of algebraic integers does not have unique factorisation. We
will define factorisation of ideals, instead of elements of the ring, and see that
this restores the uniqueness of prime factorisations. We will also define the “class
group” of an algebraic number ring, which measures how far it is away from having
unique factorisation of elements.

Practical information about the course.
The course involves a lot of down-to-earth calculation with examples e.g. deter-

mining how a prime factorises in a number field or computing the class group of
a number field. There is also a good deal of theory underpinning these calcula-
tions. Lectures will focus on the theory; example sheets and support classes on
the examples.

Assignments – four pieces, best 3 of 4 will count (15% of module mark)
Deadlines: Friday 2pm in weeks 3, 6, 8, 10

Example sheets and lecture capture will be available on Moodle.
My email address: martin.orr@warwick.ac.uk
Office hours: Fri 2-3, Zeeman C2.11
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Course outline.
(1) Number fields and embeddings
(2) Rings of integers
(3) Ideals and factorisation
(4) Class group
(5) Dirichlet’s unit theorem

Related courses.
MA249 Algebra 2 – prerequisite. Rings, fields, ideals and factorisation of

polynomials will be used throughout this course. We will also need quotient rings
and the First Isomorphism Theorem for rings. Revise this!
MA257 Introduction to Number Theory – not strictly a prerequisite, but

it will provide very helpful background.
MA3D5 Galois Theory – There is some overlap in the first 1–2 weeks, with

various definitions and lemmas related to field extensions. We shall go through
these again in this course.

Field extensions.
Our main object of study will be number fields. A number field is defined as a

finite extension of the field Q. Let’s unpack this definition.

Definition. Let K and L be fields. If K is a subfield of L, we say that L/K is a
field extension (often, we will just call it an extension).

e.g. C/R, R/Q, Q(i)/Q, C/Q(i) but not R/Q(i)
where Q(i) = {a+ bi : a, b ∈ Q}.

Definition. Let L/K be a field extension and α ∈ L. We say that α is algebraic
over K if there exists a non-zero polynomial f ∈ K[X] such that f(α) = 0.

e.g. i ∈ C, 4
√

7 ∈ R are algebraic over Q
πi is algebraic over R but not algebraic over Q

Lemma 1. Let α be algebraic over K.
(i) There exists a unique monic polynomial µK,α(X) ∈ K[X] of smallest degree

such that µK,α(α) = 0. (monic means that the leading coefficient is 1 – this
forces the polynomial to be non-zero.)

(ii) If f ∈ K[X] satisfies f(α) = 0, then µK,α divides f .
(iii) µK,α is irreducible.
(iv) If f ∈ K[X] is monic and irreducible and f(α) = 0, then f = µK,α.

Proof.
(i)+(ii) Let I = {f ∈ K[X] : f(α) = 0}. One can check that this is an ideal in K[X].

Recall from Algebra 2 that K[X] is a PID (principal ideal domain) so
I = (µK,α) for some µK,α ∈ K[X].

Since α is algebraic over K, I 6= {0} so µK,α 6= 0. Therefore we can
multiply µK,α by a scalar to ensure that it is monic.
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Clearly µK,α has the smallest degree of all polynomials in I, and it satisfies
(ii) by the definition of a principal ideal.

(ii) implies that there is no other monic polynomial in I with the same
degree as µK,α, i.e. it is unique.

(iii) Suppose µK,α = fg. Then f(α)g(α) = 0. Since L is a field, either f(α) = 0
or g(α) = 0. Without loss of generality, f(α) = 0. By (ii), µK,α divides f so
g must be a constant. Thus µK,α is irreducible.

(iv) Consequence of (ii). �

Definition. The polynomial µK,α from Lemma 1 is called the minimal polyno-
mial of α over K.

We will write µα instead of µK,α if the base field K is clear from the context.

But! K matters for determining the minimal polynomial! e.g. α = i+
√

2 ∈ C.
• Over K = C: the minimal polynomial is µC,α(X) = X − α.
• Over K = R: α 6∈ R, so the minimal polynomial has degree > 1. A
calculation shows that µR,α(X) = X2 − 2

√
2X + 3.

Question. What is the minimal polynomial of α = i+
√

2 over Q?
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2. Algebraic extensions

Example from last time.
• Over K = R: We have

(α−
√

2)2 = −1 so α2 − 2
√

2α + 3 = 0.
X2− 2

√
2X + 3 ∈ R[X] is irreducible over R because it is a quadratic with

no real roots. So µR,α(X) = X2 − 2
√

2X + 3.
• Over K = Q: α is algebraic over Q because

(α2 + 3)2 = (2
√

2α)2 = 8α2 so α4 − 2α2 + 9 = 0.
One can check that X4 − 2X2 + 9 ∈ Q[X] is irreducible over Q, so this is
µQ,α. We will see a quicker proof later (avoiding checking irreducibility by
hand).

Definition. Let α ∈ L be algebraic over K. The degree of α over K is the
degree of the polynomial µK,α.

e.g. i+
√

2 has degree 1 over C, 2 over R, 4 over Q.

Field generation.

Definition. Let L/K be a field extension and let S be a subset of L. The
extension of K generated by S is the smallest subfield of L containing both
K and S.

This means: the intersection of all subfields of L which contain both K and S.
Check that this intersection is a field!

Written K(S). If S is finite set {α1, . . . , αn}, we write K(α1, . . . , αn) as an
abbreviation for K({α1, . . . , αn}).

e.g. C = R(i)
If d is a non-square rational number, then

Q(
√
d) = {a+ b

√
d : a, b ∈ Q}.

This is a field because
(a+ b

√
d)(c+ e

√
d) = (ac+ bed) + (ae+ bc)

√
d

and
(a+ b

√
d)−1 = (a− b

√
d)/(a2 − db2)

(the denominator is non-zero because d is not the square of a rational number).
But! Q( 3

√
d) 6= {a+ b 3

√
d : a, b ∈ Q} because this is not closed under multiplica-

tion. We will soon see how to write down a basis for Q( 3
√
d).

In general, K(S) is the set of everything of the form f(α1, . . . , αr)/g(β1, . . . , βs)
where f, g are polynomials (in any number of variables) with coefficients in K,
α1, . . . , αr, β1, . . . , βs ∈ S and g(β1, . . . , βs) 6= 0.
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Algebraic and finite extensions.

Definition. An extension L/K is algebraic if every α ∈ L is algebraic over K.

e.g. Q(
√
d)/Q is algebraic since a+ b

√
d is a root of (X − a)2 − b2d ∈ Q[X].

R/Q is not algebraic.

Definition. If L/K is a field extension, then L is a K-vector space. The degree
of L/K, written [L : K], is the dimension of L as a K-vector space.

Definition. L/K is a finite extension if its degree is finite.

e.g. [Q(
√
d) : Q] = 2, [C : R] = 2.

Q(π)/Q has infinite degree, even though it is generated by the finite set {π},
because 1, π, π2, . . . are Q-linearly independent.

Lemma 2. If L/K is a finite extension, then it is an algebraic extension.

Proof. Let m = [L : K] < ∞. Let α ∈ L. Then 1, α, . . . , αm are m + 1 elements
in a K-vector space of dimension m, so they are K-linearly dependent. In other
words, there exist λ0, . . . , λm ∈ K, not all zero, such that

λ0 + λ1α + · · ·+ λmα
m = 0.

Thus α is the root of the polynomial λ0 + λ1X + · · · + λmX
m ∈ K[X], so it is

algebraic over K. �

The converse is false: the field of all algebraic numbers in C is an algebraic
extension of Q, but not a finite extension of Q (though we have not proved that
this is a field yet).

Tower law.
Often we build field extensions by stacking one on top of another. The following

theorem tells us how to calculate the degree of such an extension.

Theorem (Tower Law). Let M/L and L/K be two finite field extensions. Then
M/K is also a finite extension, and

[M : K] = [M : L][L : K].

Proof. Let r = [L : K] and s = [M : L]. Let {`1, . . . , `r} be a K-basis for L and
let {m1, . . . ,ms} be an L-basis for M .

One can check that {limj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} is a K-basis for M . �

e.g. M = Q(α) where α = i+
√

2, L = Q(
√

2), K = Q
We saw that

√
2 = α2 + 3

2α
so L ⊆M .

Now M = L(α). To prove this: certainly L and α are both contained in M , so
L(α) ⊆M . Furthermore, L(α) is a field which contains Q and α, so the definition
of Q(α) tells us that L(α) ⊇ Q(α) = M . Thus L(α) = M .
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In fact, L(α) = L(i) because i = α −
√

2 and
√

2 ∈ L (this is slightly simpler
than the argument I gave in the lecture, using the quadratic formula). Note that
i 6∈ L because L ⊆ R. We can show that [L(i) : L] = 2 for the same reason as
[Q(
√
d) : Q] = 2. Thus we get [M : L] = 2.

We also have [L : K] = [Q(
√

2) : Q] = 2.
So the Tower Law tells us that [M : K] = 2× 2 = 4.
The fact that µQ,α has degree 4 is not a coincidence! We will see how to relate

these facts (and thereby prove that µQ,α has degree 4) in the next lecture.
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3. Simple extensions and number fields

Simple extensions.

Definition. An extension L/K is simple if L = K(α) for a single element α ∈ L.

Note that a simple extension need not be finite, e.g. Q(π)/Q. But if it is
algebraic, then it is finite and we can describe the extension in terms of the
minimal polynomial of α:

Theorem 3. Let α be algebraic over K, with minimal polynomial µα ∈ K[X]. Let
n = deg(µα). Then:
(1) K(α) is isomorphic as a ring to K[X]/(µα). More precisely, the following is

a well defined isomorphism K[X]/(µα)→ K(α):
f(X) + (µα) 7→ f(α).

(2) K(α) has K-basis {1, α, . . . , αn−1}.
[K(α) : K] = n.

Proof. (1) Define φ : K[X]→ K(α) by φ(f(X)) = f(α).
One can check that this is a ring homomorphism.
From the proof of Lemma 1, we see that

ker(φ) = {f ∈ K[X] : f(α) = 0} = (µα).
Hence by the first isomorphism theorem, φ induces an isomorphism K[X]/(µα)→
im(φ). We just have to check that im(φ) = K(α).

Step 1. First we prove that 1, α, . . . , αn−1 span im(φ) as a K-vector space.
For any β ∈ im(φ), we have β = φ(f) for some f ∈ K[X]. By the division

algorithm for polynomials, we can write
f = qµα + r

where q, r ∈ K[X] and deg(r) < det(µα). Then
β = f(α) = r(α) = c0 + c1α + · · ·+ csα

s

where c0, c1, . . . , cs ∈ K and s = deg(r) < n. Thus β is in the span of 1, α, . . . , αn−1.

Step 2. We show that im(φ) is a field. This is just one of many possible proofs.
We know that im(φ) is a ring, so we just have to show that every x ∈ im(φ)\{0}

has a multiplicative inverse in im(φ).
Given x ∈ im(φ) \ {0}, define a K-linear map mx : im(φ)→ im(φ) by

mx(y) = xy.

This is injective because im(φ) ⊆ K(α) which is a field.
Therefore by the rank-nullity theorem, mx is surjective (this uses the fact that

im(φ), is finite-dimensional as a K-vector space, which follows from Step 1).
Therefore there exists y ∈ im(φ) such that mx(y) = 1 i.e. y = 1/x.

Thus im(φ) is a field.
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Conclusion of (1). im(φ) contains K and α = φ(X), so by the definition of K(α),
K(α) ⊆ im(φ). But also im(φ) ⊆ K(α). Thus im(φ) = K(α).

(2) We saw in Step 1 {1, α, . . . , αn−1} spans im(φ) = K(α) as a K-vector space.
We just have to show that 1, α, . . . , αn−1 are K-linearly independ

Suppose we have b0, . . . , bn−1 ∈ K such that

b0 + b1α + · · ·+ bn−1α
n−1 = 0.

Then g(X) = b0+b1X+· · ·+bn−1X
n−1 is a polynomial in K[X] such that g(α) = 0

and deg(g) ≤ n−1 < deg(µα) so the definition of minimal polynomial forces g ≡ 0
i.e. b0 = b1 = · · · = bn−1. �

e.g. We can immediately read off that {1,
√
d} is a Q-basis for Q(

√
d) (as we

saw already).
If d ∈ Q is not a cube, then X3−d is irreducible so it is the minimal polynomial

of 3
√
d. So [Q( 3

√
d) : Q] = 3 and

Q( 3
√
d) = {a+ b

3
√
d+ c

(
3
√
d
)2

: a, b, c ∈ Q}.

Returning to the example from the previous lecture: α = i +
√

2, M = Q(α).
Using the Tower Law, we proved that [M : Q] = 4. Therefore Theorem 3 tells us
that deg(µQ,α) = 4.

We also saw that α is a root of the polynomial g(X) = X4 − 2X2 + 9. Hence
µQ,α = g and g is irreducible over Q (by Lemma 1).

Theorem 3 tells us that a Q-basis for Q(α) is given by

{1, α, α2, α3} = {1,
√

2 + i, 1 + 2
√

2i,−
√

2 + 5i}.

We can get a different Q-basis for Q(α) from the proof of the Tower Law. Indeed,
Q(
√

2) has a Q-basis {1,
√

2} while Q(α) has a Q(
√

2)-basis {1, i} (follows from
the argument with the quadratic formula). Thus the proof of the Tower Law gives
us the following Q-basis for Q(α):

{1,
√

2, i, i
√

2}.

Number fields.

Definition. A number field is a finite extension of Q.

Lemma 4. Let K be a number field and let L/K be a finite extension. Then L
is also a number field.

Proof. This follows from the Tower Law. �

Definition. An algebraic number is an element of C which is algebraic over Q.

Lemma 5. If α1, . . . , αn are algebraic numbers, then Q(α1, . . . , αn) is a number
field.
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Proof. Let Ki = Q(α1, . . . , αi) for 1 ≤ i ≤ n. We prove that Ki is a number field
by induction on i.

The base case is that K0 = Q is a number field.
For i ≥ 1: Since αi is an algebraic number, it has a minimal polynomial µQ,αi

.
We have µQ,αi

(X) ∈ Q[X] ⊆ Ki−1[X], so αi is algebraic over Ki−1. Hence by
Theorem 3, Ki = Ki−1(αi) is a finite extension of Ki−1. By induction, Ki−1 is a
number field, so Lemma 4 tells us that Ki is a number field. �

This gives us a way to construct lots of number fields, of which we have already
seen several examples.

There is the following converse.

Lemma 6. If K is a number field, then K is isomorphic to Q(α1, . . . , αn) for
some algebraic numbers α1, . . . , αn.

It is easy to show thatK = Q(β1, . . . , βn) for some β1, . . . , βn which are algebraic
elements of the extension K/Q. But the definition of algebraic numbers requires
them to be in C. So the hard part of the theorem is showing that every number
field K can be embedded in C, even if it was constructed by some abstract method
which had nothing to do with C.
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4. Number fields and algebraic numbers

Lemma 6. If K is a number field, then K is isomorphic to Q(α1, . . . , αn) for
some algebraic numbers α1, . . . , αn.

In particular, every number field is isomorphic to a subfield of C.
Proof. Let β1, . . . , βn be a Q-basis for K. Then K = Q(β1, . . . , βn). By Lemma 2,
β1, . . . , βn are algebraic elements of the extension K/Q.

Let Ki = Q(β1, . . . , βi). We shall prove by induction that Ki is isomorphic to
a field of the form Li = Q(α1, . . . , αi) where α1, . . . , αn are algebraic numbers (in
particular, Li ⊆ C).

Base case: K0 = Q. There is nothing to prove.
For i ≥ 1: We have Ki = Ki−1(βi). Because βi is algebraic over Q, it is also

algebraic over Ki−1 (µQ,αi
∈ Q[X] ⊆ Ki−1[X]). Let µi be the minimal polynomial

of αi over Ki−1.
By induction, there is an isomorphism σi−1 : Ki−1 → Li−1 = Q(α1, . . . , αi−1) ⊆

C. Let νi ∈ Li−1[X] be the polynomial obtained by applying σi−1 to the coefficients
of µi. Then we can think of νi as a polynomial over C, and it is non-constant. By
the Fundamental Theorem of Algebra, νi has a root αi ∈ C. Since νi(αi) = 0 and
νi is monic and irreducible over Li−1, νi is the minimal polynomial of αi over Li−1.

By Theorem 3 (twice), we have isomorphisms
Ki = Ki−1(βi) ∼= Ki−1[X]/(µi) ∼= Li−1[X]/(νi) ∼= Li−1(αi) = L(α1, . . . , αi−1, αi).

�

The field of algebraic numbers.
Lemma 7. Let α, β ∈ C be algebraic numbers. Then α+ β, α− β, αβ and α/β
(if β 6= 0) are also algebraic numbers.
Proof. Q(α, β) is a number field by Lemma 5. Hence every element of Q(α, β) is an
algebraic number. But α+ β, α− β, αβ and α/β are all elements of Q(α, β). �

This is quite incredible! In a simple example, we had to do some work before to
show that i +

√
2 was algebraic (and more to find its minimal polynomial). For

example, if α is a root of
X10000 + 5X73 + 2X8 − 6X − 22

and β is a root of
X99999 + 777X2 − 5

then there is a polynomial with rational coefficients which has α + β as a root.
Finding this polynomial is a hard computation problem (can you guess what its
degree might be?) but the theorem tells us that it exists.
Definition. Q = {α ∈ C : α is an algebraic number}.
Corollary. Q is a field.
Proof. Immediate corollary of Lemma 7. �

Question. Why is Q not a number field?
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Quadratic fields.
The simplest example of a number field is Q. Indeed Q is the only number field

of degree 1. (Why?)
The next simplest examples are quadratic fields. We will use these a lot in this

course.
Definition. A quadratic field is a number field of degree 2.

We have already seen some examples: if d ∈ Q is not the square of a rational
number, then Q(

√
d) is a quadratic field. There is some redundancy here e.g.

Q(
√

2) = Q(
√

8) = Q(
√

18) = Q(
√

1/2) = Q(
√

9/8) = · · ·
We can eliminate this by insisting that d is always a square-free integer.
Definition. d ∈ Z is square-free if it is not divisible bym2 for any integerm > 1.
(Note: 1 is square-free, 0 is not.)

In fact all quadratic fields have this form.
Proposition 8. Let K be a quadratic field. Then K = Q(

√
d) for some square-free

integer d 6= 1.
Proof. Since [K : Q] = 2 > 1, we can pick α ∈ K which is not in Q. Then
{1, α, α2} are linearly dependent over Q i.e. there exist a, b, c ∈ Q such that

aα2 + bα + c = 0.
If a = 0 then α ∈ Q giving a contradiction. Thus a 6= 0 and the quadratic formula
gives

α = −b±
√

∆
2a , where ∆ = b2 − 4ac ∈ Q. (*)

Rearranging this, we see that
√

∆ = ±(2aα + b) ∈ K.
Now write

∆ = u

v
= 1
v2uv

where u, v ∈ Z. Then uv ∈ Z and
√
uv = v

√
∆ ∈ K.

Finally we can write uv = x2y where x is an integer and u is a square-free
integer (use the prime factorisation of uv). We get √y = 1

x

√
uv ∈ K.

Note that
√

∆ 6∈ Q (otherwise (*) would force α ∈ Q). Hence √y 6∈ Q. So
[Q(
√

∆) : Q] = 2.
By the Tower Law,

[K : Q(√y)] = [K : Q]/[Q(√y) : Q] = 1
so K = Q(√y). �

Furthermore, the square-free integer d such that K = Q(
√
d) is unique – this is

on example sheet 1.
Note that Proposition 8 does not generalise to higher-degree fields. For example

a cubic field (i.e. a field of degree 3) does not have to have the form Q( 3
√
d). We

will need some more theory before proving this.
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5. Primitive element theorem, norm and trace

Cyclotomic fields.

Definition. Let n be a positive integer and let ζn = exp(2πi/n). We call Q(ζn)
the n-th cyclotomic field.

Lemma 9. If n = p is prime, then the minimal polynomial of ζp is Xp−1 +Xp−2 +
· · ·+X + 1 and hence [Q(ζp) : Q] = p− 1.

Proof. This is on the example sheet. You will need to use Eisenstein’s criterion
from Algebra 2.

(Note that there was a typo on the first version of the example sheet: it said
Xp + · · ·+ 1 where it should be Xp−1 + · · ·+ 1.) �

If n is not a prime, then [Q(ζn) : Q] = ϕ(n) (the Euler ϕ-function). There is no
general formula for the minimal polynomial of ζn when n is not prime, so this is
harder to prove.

Primitive element theorem.
The primitive element theorem tells us that every extension of number fields is

a simple extension. For example, we saw that Q(i,
√

2) is a simple extension of Q:
it is equal to Q(i+

√
2).

Lemma 10. Let K be a number field contained in C. Let f ∈ K[X] be an
irreducible polynomial over K of degree d. Then f has d distinct roots in C.

Proof. By the Fundamental Theorem of Algebra, we know that f has d roots in C
counted with multiplicity. The problem is to show that f has no repeated roots.

Suppose for contradiction that α ∈ C is a repeated root of f .
Let f ′ denote the derivative of f , and note that it also has coefficients in K.

Since α is a repeated root of f , it is also a root of f ′. Hence X − α is a common
factor of f and f ′ in C[X]. It follows that HCF(f, f ′) is a non-constant polynomial.

Now HCF(f, f ′) has coefficients in K (we can calculate it using Euclid’s algo-
rithm, and f , f ′ both have coefficients in K). But HCF(f, f ′) is a factor of f , it
is non-constant, and

deg(HCF(f, f ′)) ≤ deg(f ′) = deg(f)− 1.
This contradicts the hypothesis that f is irreducible over K. �

The name of the lemma is because it is related to the notion of “separable field
extension” in Galois theory.

Note that Lemma 10 works only because number fields have characteristic zero –
this is needed to ensure that f ′ 6= 0. (Over a field of characteristic p, the derivative
of Xp is 0. Then the argument about the degree of the HCF would break down.)
If you have done Galois theory, this is related to the idea of a separable extension
(and the fact that every extension in characteristic zero is separable).

In order to prove the Primitive Element Theorem, we start with an extension
generated by adjoining two elements. We can then build up other extensions by
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induction on the number of elements we need to adjoin. The idea for K(α, β) is
motivated by the example of Q(i+

√
2): we try adjoining a linear combination of

α and β. Just taking α+ β does not always work so we have to be a little cleverer
about which linear combination we choose.

Lemma. Let L/K be an extension of number fields such that K = L(α, β). Then
there is some γ ∈ L such that L = K(γ).

Proof. Thanks to Lemma 6, we may assume that L (and hence also K) is a subfield
of C, allowing us to apply Lemma 10.

Let f , g be the minimal polynomials of α, β respectively over K. Let α1, . . . , αm
be the roots of f and let β1, . . . , βn be the roots of g in C. We may label the roots
so that α1 = α and β1 = β.

For any i and any j 6= 1, the equation

α + cβ = αi + cβj

has a unique solution c = cij ∈ C (this is just solving a linear equation for c).
Since K is infinite, we can choose c ∈ K different from all the cij (there are only
finitely many cij because 1 ≤ i ≤ m, 2 ≤ j ≤ n). Thus

α + cβ 6= αi + cβj (†)

for all i and for all j 6= 1.
Let γ = α + cβ. We shall show that L = K(γ). It is enough to show that

β ∈ K(γ) because then α = γ − cβ ∈ K(γ) (because c ∈ K).
Consider the polynomial h(X) = f(γ − cX) ∈ K(γ)[X]. Observe that h(β) =

f(α) = 0.
If β′ is any root of h other than β, we have f(γ − cβ′) = 0 and so γ − cβ′ = αi

for some i. The fact that c does not satisfy any of the equations (†) implies that
β′ 6= βj for any j = 2, . . . , n.

Thus the only common root of g and h is β. Looking at the factorisations of g
and h in C[X], we conclude that HCF(g, h) = (X − β)r for some r.

Because g is a minimal polynomial, it is irreducible over K. Therefore by
Lemma 10, g has no repeated roots in C, so in fact we must have HCF(g, h) =
X − β.

Since g and h both have coefficients in K(γ), so does HCF(g, h). Thus β ∈
K(γ). �

Theorem 11 (Primitive Element Theorem). Let L/K be an extension of number
fields. Then there is some γ ∈ L such that L = K(γ).

Proof. Write L = K(S) for some finite set S (this is always possible: for example,
let S be a K-basis of L). Induct on the size of S, applying the previous lemma to
reduce the size by 1 repeatedly. �
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Norm and trace.
Let K be a number field. We define two functions K → Q which can be helpful

in transforming questions about elements of K into questions about rational
numbers.

Recall that K is Q-vector space and for any α we can define a Q-linear map
mK,α : K → K by mK,α(β) = αβ.

Definition. The trace of α is Tr(mK,α) – written TrK/Q(α).
The norm of α is det(mK,α) – written NmK/Q(α).

The notation (subscript K/Q) reminds us that TrK/Q and NmK/Q are functions
K → Q.

Note that you could generalise this: instead of always having Q as the base
field, you could define TrL/K and NmL/K for any extension of number fields L/K.
These would be functions L→ K. The definition is essentially the same but we
won’t need this generalisation in the course.

e.g. Let K = Q(
√
d). We want to work out the norm and trace of α = a+ b

√
d.

To do this, we will write mK,α : K → K as a matrix with respect to the basis
{1,
√
d}. We get

mK,α(1) = a · 1 + b ·
√
d, mK,α(

√
d) = bd · 1 + a ·

√
d

so the matrix of mK,α (with respect to this basis) is(
a bd
b a

)
.

Thus
TrK/Q(a+ b

√
d) = 2a.

NmK/Q(a+ b
√
d) = a2 − b2d,
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6. Characteristic polynomial, embeddings

Lemma 12. The trace is additive and the norm is multiplicative. In other words,
for all α, β in K, we have

TrK/Q(α + β) = TrK/Q(α) + TrK/Q(β),
NmK/Q(αβ) = NmK/Q(α) NmK/Q(β).

Proof. Observe that mK,α+β = mK,α + mK,β and mK,αβ = mK,αmK,β. Thus the
lemma follows from the properties of trace and determinant of linear maps. �

Characteristic polynomials.
Let V be a Q-vector space and let f : V → V be a Q-linear map. Recall that

the characteristic polynomial of f is the polynomial

χf (X) = det(XI − f) ∈ Q[X].

This polynomial is monic of degree n = dim(V ). We can read off the determinant
and trace of f from the coefficients of the characteristic polynomial: if χf =
Xn + an−1X

n−1 + · · ·+ a1X + a0, then

Tr(f) = −an−1, det(f) = (−1)na0. (*)

According to the Cayley–Hamilton theorem, χf (f) = 0.
Consequently we can read off the norm and trace of α ∈ K from the character-

istic polynomial of mK,α, which we denote χK,α.

Lemma 13. Let K = Q(α). Then the characteristic polynomial of mK,α : K → K
is equal to the minimal polynomial of α over Q.

Proof. Let χK,α(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 denote the characteristic

polynomial of mK,α. By the Cayley–Hamilton theorem, χK,α(mK,α) = 0. In other
words,

mn
K,α + an−1m

n−1
K,α + · · ·+ a1mK,α + a0 = 0

(in the ring of Q-linear maps K → K). Applying both sides to 1 ∈ K, and noting
that mi

K,α(1) = αi, we get

αn + an−1α
n−1 + · · ·+ a1α + a0 = 0

or in other words χK,α(α) = 0.
Furthermore χK,α ∈ Q[X], χK,α is monic and deg(χK,α) = [K : Q] = deg(µQ,α)

(the latter holds because K = Q(α)). Hence by Lemma 1, χK,α = µQ,α. �

Note that the characteristic polynomial χK,α depends on K as well as α. The
following lemma tells us how.

Lemma 14. Let L/K be an extension of number fields and let α ∈ K. Let χK,α
and χL,α be the characteristic polynomials of mK,α : K → K and mL,α : L → L
respectively. Then

χL,α = χ
[L:K]
K,α .
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Proof. Let θ1, . . . , θr be a Q-basis for K and let MK,α be the matrix of mK,α with
respect to this basis. Let φ1, . . . , φs be a K-basis for L. By the Tower Law, a
Q-basis for L is given by

θ1φ1, θ2φ1, . . . , θrφ1, θ1φ2, . . . , θ2φr, . . . , θ1φs, . . . , θrφs.

We can calculate that
mL,α(θiφj) = αθiφj = mK,α(θi) · φj.

ThusmL,α(θiφj) lies in the Q-space spanned by θ1φj, . . . , θrφj (for fixed j), and the
coefficients needed to express mL,α(θiφj) as a combination of these basis vectors
are the same as the coefficients needed to express mK,α(θi) as a combination of
θ1, . . . , θr; in other words, they are entries of MK,α.

Consequently the matrix for mL,α with respect to the basis {θiφj} is block
diagonal with blocks that are copies of MK,α:

ML,α =


MK,α 0 · · · 0

0 MK,α · · · 0
... . . . ...
0 0 · · · MK,α


There is one block for each φj i.e. s blocks. This is consistent with the fact that
MK,α is an s× s matrix and ML,α is an rs× rs matrix.

The characterstic polynomial of a block diagonal matrix is the product of
the characteristic polynomials of the blocks (because the same thing holds for
determinants). Thus

χL,α(X) = χK,α(X)s. �

Corollary 15. Let L/K be an extension of number fields. If α ∈ K, then
TrL/Q(α) = [L : K] TrK/Q(α),

NmL/Q(α) = NmK/Q(α)[L:K].

Proof. Let r = [K : Q] and s = [L : K]. Write
χK,α(x) = Xr + ar−1X

r−1 + · · ·+ a1X + a0,

χL,α(x) = Xrs + brs−1X
rs−1 + · · ·+ b1X + b0.

By Lemma 14, we have χL,α = χsK,α. Expanding this out and comparing coeffi-
cients, we see that

brs−1 = sar−1, b0 = as0.

The corollary now follows from (*). �

By combining Lemmas 13 and 14, we can work out the characteristic polynomial
of an arbitrary α ∈ K in terms of the minimal polynomial:

χK,α = µ
[K:Q(α)]
Q,α

It can be useful to apply this in reverse: by choosing a basis for K, we can work
out the characteristic polynomial χK,α. This must be a power of an irreducible
polynomial, which will be the minimal polynomial of α.
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Embeddings of number fields.

Definition. Let K be a number field. An embedding of K is a field homomor-
phism σ : K → C.

Lemma 16. Any homomorphism of fields σ : K → L is injective.

Proof. The kernel of σ is an ideal in K. Since K is a field, its only ideals are 0
and K. But ker(σ) 6= K because σ(1) = 1 6= 0. �

Lemma 17. Let K be a number field and let σ : K → C be an embedding. Then
σ(a) = a for all a ∈ Q.

Proof. By the definition of a ring homomorphism, σ(1) = 1 and σ(0) = 0. For any
positive integer n, we have

σ(n) = σ(1 + · · ·+ 1) = σ(1) + · · ·+ σ(1) = 1 + · · ·+ 1 = n.

Furthermore σ(−n) = −σ(n) = n.
Finally, any rational number can be written as m/n where m,n ∈ Z, and

σ(m/n) = σ(m)/σ(n) = m/n. �
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7. Extending embeddings

Embeddings of quadratic fields.
We showed last time that any embedding of a number field must restrict to

the identity on Q. Hence, there is exactly one embedding σ : Q→ C, namely the
inclusion.

What are the embeddings of a quadratic field Q(
√
d)? Thanks to Lemma 17,

every embedding σ : Q(
√
d)→ C must satisfy
σ(a+ b

√
d) = a+ bσ(

√
d).

Hence the embedding is fully determined once we know σ(
√
d). This must satisfy

σ(
√
d)2 = d

so there are two choices: σ(
√
d) =

√
d or σ(

√
d) = −

√
d. Thus we get two possible

embeddings:
σ1(a+ b

√
d) = a+ b

√
d), σ2(a+ b

√
d) = a− b

√
d.

We should really check that both of these are field homomorphisms. This is not
hard by calculation, or it follows from Proposition 18 which we are about to prove.

Extending embeddings of number fields.

Definition. Let L/K be an extension of number fields. Let σ : K → C and
τ : L→ C be embeddings. We say that τ extends σ if τ|K = σ.

In order to state the next proposition about extensions of embeddings, we need
to introduce a piece of notation: If σ : K → L is a field homomorphism, then
it induces an injective ring homomorphism K[X] → L[X] which we also call σ,
defined by

σ(a0 + a1X + · · ·+ anX
n) = σ(a0) + σ(a1)X + · · ·+ σ(an)Xn.

Proposition 18. Let L/K be an extension of number fields of degree n. Let
σ : K → C be an embedding.

(1) There are exactly n embeddings L→ C which extend σ.
(2) Suppose that L = K(α). Let µα be the minimal polynomial of α over K

and let α1, . . . , αn be the roots of σ(µα) in C. Then for each i = 1, . . . , n,
there is a unique embedding τi : L→ C extending σ such that τi(α) = αi.

Proof. By the Primitive Element Theorem (Theorem 11), we can write L = K(α).
Let µα be the minimal polynomial of α over K

By Theorem 3, deg(µα) = n. Since µα is irreducible over K, by Lemma 10 tells
us that σ(µα) has n distinct roots in C, which we call α1, . . . , αn. Thus we can
use (2) to prove (1).

To prove (2) we have to prove two things:
(i) For each i = 1, . . . , n, there is an embedding τi : L → C extending σ such

that τi(α) = αi.
(ii) For each i = 1, . . . , n, there is only one such embedding.
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To deduce (1), we have to prove:
(iii) There are no other embeddings L → C extending σ, except those coming

from (2).

Proof of (i). Same method as the proof of Lemma 6. We have σ(µα) ∈ σ(K)[X],
σ(µα) is monic and σ(K)-irreducible and σ(µα)(αi) = 0. Hence σ(µα) is the
minimal polynomial of αi over σ(K). Therefore, using Theorem 3 twice, we have

L = K(α) ∼= K[X]/(µα) ∼= σ(K)[X]/(σ(µα)) ∼= σ(K)(αi) ⊆ C. (*)
The resulting homomorphism L→ C extends σ (because the middle isomorphism
in (*) is given by applying σ to the coefficients of the polynomials) and maps α
to αi (because the isomorphism from Theorem 3 maps α to X the first time, then
X to αi the second time), so this is the desired τi.

Proof of (ii). Let τ : L→ C be an embedding extending σ. Thank to Theorem 3,
we can write any β ∈ L in the form

β = b0 + b1α + · · ·+ bn−1α
n−1

for some b0, b1, . . . , bn−1 ∈ K. Then
τ(β) = σ(b0) + σ(b1)τ(α) + · · ·+ σ(bn−1)τ(α)n−1

Thus knowing τ(α) = αi uniquely determines τ .

Proof of (iii). Let τ : L→ C be an embedding extending σ. We have
σ(µα)(τ(α)) = τ(µα)(τ(α)) = τ(µα(α)) = τ(0) = 0.

Thus τ(α) is a root of σ(µα). In other words, it is one of α1, . . . , αn. �

Corollary. A number field L has exactly [L : Q] embeddings.

Proof. By Lemma 17, every embedding L → C extends the unique embedding
Q→ C. So it suffices to apply Proposition 18 to the extension L/Q. �

Real and complex embeddings.

Definition. Let σ : K → C be an embedding of a number field. We say that σ is
a real embedding if σ(K) ⊆ R and σ is a complex embedding if σ(K) 6⊆ R.

Note that complex embeddings come in conjugate pairs: if σ is an embedding
of K, then

σ̄(α) = σ(α)
is also an embedding of K (where the bar denotes complex conjugation). If σ is
a complex embedding, then σ and σ̄ are different. If σ is a real embedding, then
σ = σ̄.
Definition. The signature of K is (r, s) where r = number of real embeddings
of K, s = number of pairs of complex embeddings of K.

e.g. Signature of a real quadratic field is (2, 0)
Signature of an imaginary quadratic field is (0, 1)
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8. Conjugates, algebraic integers

Signature.
Let K be a number field with signature (r, s).
Counting up all the embeddings and applying the Corollary from the previous

lecture, we see that [K : Q] = r + 2s. (We have to multiply s by 2 because it
counts pairs of embeddings.)

We often label the embeddings a σ1, . . . , σr (the real embeddings), σr+1, . . . , σr+s,
σr+1, . . . , σr+s (the complex embeddings).

Conjugates.

Definition. Let α be an algebraic number. The conjugates of α are the roots
(in C) of µQ,α, the minimal polynomial of α over Q.

By Proposition 18, the conjugates of α are σ1(α), . . . , σn(α) where σ1, . . . , σn
are the embeddings of Q(α).

We can express the norm and trace in terms of the conjugates of α.

Lemma 19. Let σ1, . . . , σn denote the embeddings K → C. Then for any α ∈ K,

TrK/Q(α) =
n∑
i=1

σi(α),

NmK/Q(α) =
n∏
i=1

σi(α).

Proof. First suppose that K = Q(α). Let µα(X) ∈ Q[X] be the minimal polyno-
mial of α over Q. By Lemma 13, µα = χK,α = the characteristic polynomial of
mK,α. The roots of χK,α are the eigenvalues of mK,α.

Thus the eigenvalues of mK,α are the conjugates of α, that is, σ1(α), . . . , σn(α).
Furthermore there are no repeats among the roots of µα by Lemma 10.

Since there are no repeated eigenvalues, the trace of mK,α is the sum of its
eigenvalues and the determinant of mK,α is the product of its eigenvalues. Thus
we get

TrK/Q(α) =
n∑
i=1

σi(α),

NmK/Q(α) =
n∏
i=1

σi(α).

Now consider a field K 6= Q(α). Let s = [K : Q(α)] and r = [Q(α) : Q].
Thanks to Proposition 18, for each embedding of Q(α), there are s embeddings of
K extending it. Hence the values σ1(α), . . . , σn(α) consist of each of the conjugates
τ1(α), . . . , τr(α), repeated s times (where τ1, . . . , τr are the embeddings of Q(α)).
Thus

n∑
i=1

σi(α) = s ·
r∑
i=1

τi(α) = s · TrQ(α)/Q(α) = TrK/Q(α)
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where the second equality holds because we have already proved the lemma for
Q(α), and the third by Corollary 15.

The same argument works for norm, considering products instead of sums. �

Algebraic integers

Definition of algebraic integers.
We have finished understanding number fields as fields. But fields are not the

main thing we study in number theory - it is like we have been studying the
rational numbers, while number theory is really about integers. In fields, we
can’t say interesting things about primes and factorisation because every non-zero
element of a field divides every other element.

So we want to talk about a version of “integers” inside number fields, where
we will have interesting properties relating to factorisation and primes. We have
already seen one example: in Q(i), we have the Gaussian integers

Z[i] = {a+ bi : a, b ∈ Z}.
So maybe we could generalise this, and define the “integers” in Q(α) to be

Z[α] = {a0 + a1γ + a2γ
2 + · · · : ai ∈ Z}.

Unfortunately, this doesn’t work: it depends on α, even when the field Q(α) stays
the same. For example, Q(

√
2) = Q(

√
8) but Z[

√
2] 6= Z[

√
8] (and Z[

√
1
2 ] is worse!)

For quadratic fields, maybe
√
d where d is a square-free integer provides natural

choice of γ, but there is no analogue for higher-degree fields. (And Z[
√
d] turns

out not to always be the correct choice for quadratic fields either, as we shall soon
see.)

Definition. An algebraic number is an algebraic integer if its minimal polyno-
mial (over Q) has coefficients in Z.

e.g.
√
d (where d ∈ Z) is an algebraic integer because it is a root of X2 − d.

1+
√
−3

2 = ζ6 is an algebraic integer because its minimal polynomial is X2−X+1.
This one might be a little surprising, especially when you compare with 1+

√
3

2 which
is not an algebraic integer: the minimal polynomial of 1+

√
3

2 is X2−X− 1
2 6∈ Z[X].

Just as for algebraic numbers, which are defined as a root of any polynomial
with coefficients in Q, then shown to have a minimal polynomial, many books
define an algebraic integer to be a root of emphany monic polynomial with integer
coefficients. The following lemma shows that this is equivalent to the definition
above.

Lemma 20. An algebraic number is an algebraic integer if and only if it is a root
of some monic polynomial with coefficients in Z.

The word monic is essential in this lemma: any algebraic number is the root
of some polynomial with integer coefficients, because you can take a polynomial
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with coefficients in Q and multiply by a lowest common denominator, but that
might give you a leading coefficient which is greater than 1.

Before we prove this, we need to recall primitive polynomials and (a version of)
Gauss’s Lemma from Algebra 2.

Definition. Let f(X) = anX
n+an−1X

n−1+· · ·+a1X+a0 ∈ Z[X] be a polynomial
with integer coefficients. We say that f is primitive if HCF(a0, a1, . . . , an) = 1.

Lemma (Gauss’s Lemma). A primitive polynomial is irreducible in Z[X] if and
only if it is irreducible in Q[X].

(The key property that makes Gauss’s Lemma work is that Z is a unique
factorisation domain.)
Proof of Lemma 20. If α is an algebraic integer, then its minimal polynomial gives
an example of a monic integer polynomial which has α as a root.

The main thing we have to prove is the other direction. Let α be an algebraic
number which is the root of some monic polynomial with integer coefficients.

Choose f(X) to be a monic polynomial in Z[X] such that f(α) = 0, of smallest
degree.

Let µα(X) ∈ Q[X] be the minimal polynomial of α over Q. By Lemma 1, µα
divides f in Q[X]. Hence deg(f) ≥ deg(µα).

Assume for contradiction that deg(f) > deg(µα). Then the fact that µα di-
vides f shows that f is reducible in Q[X]. Since f is monic, it is primitive. Hence
by Gauss’s Lemma, f is reducible in Z[X], i.e.

f = f1f2 where f1, f2 ∈ Z[X] and deg(f1), deg(f2) < deg(f).
The leading coefficient of f is the product of the leading coefficients of f1 and
f2. Thus these are integers whose product is 1, so both f1 and f2 have leading
coefficient ±1. Changing the sign if necessary, we may ensure that f1 and f2 are
both monic.

Since f(α) = 0, either f1(α) = 0 or f2(α) = 0. Thus either f1 or f2 gives us a
monic polynomial in Z[X] with α as a root, contradicting the fact that f has the
smallest degree.

Thus in fact deg(f) = deg(µα). Since µα divides f and µα and f are both
monic, this implies that µα = f and so µα ∈ Z[X]. �
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9. Rings of integers

The algebraic integers form a ring.

Notation. We write Z = {α ∈ C : α is an algebraic integer}.
We want to prove that the algebraic integers form a ring. The method is similar

to the proof that the algebraic numbers form a field, but harder. The key point
there was that if α, β ∈ Q then α + β and αβ are contained in a finite extension
of Q, and hence are algebraic numbers. In the same way, instead of considering
the ring of algebraic integers all at once, we focus in on just two of them and
show that if α, β ∈ Z then α + β and αβ are contained in a ring which is finitely
generated as an abelian group.

The next lemma is the hard part of proving that Z is a ring. The idea of
“finitely generated as an abelian group” is the analogue of “finite extension” for
fields. In this lemma, it is important to distinguish between “generated as a ring”
and “generated as an abelian group.”
Lemma 21. Let α ∈ C. Then α is an algebraic integer if and only if Z[α] is
finitely generated as an abelian group.

Proof. First we assume that α is an algebraic integer. Let f(X) = Xn+an−1X
n−1+

· · ·+ a1X + a0 be the minimal polynomial of α over Q and let n = deg(f).
We claim that Z[α] is generated as an abelian group by {1, α, . . . , αn−1}. In

fact, we shall show by induction on m that αm ∈ Z.1 + Z.α + · · ·+ Z.αn−1.
Indeed, if m < n this is trivial. If m ≥ n, then since f(α) = 0, we get

αm = αm−nαn = αm−n(−an−1α
n−1 − · · · − a1α− a0).

(The fact that f is monic is crucial here!) Thus αm is a Z-linear combination
of smaller powers of α, and hence by induction it is a Z-linear combination of
1, α, . . . , αn−1.

Since the powers of α generate Z[α] as an abelian group by definition, we
conclude that 1, α, . . . , αn−1 generate Z[α] as an abelian group.

Conversely, suppose that Z[α] is finitely generated as an abelian group, say by
β1, . . . , βr. We can write each of the βi as

βi = bi0 + βi1α + · · ·+ βimi
αmi . (*)

Let n be the maximum power of α which appears in any of these expressions.
Then we can write

αn+1 = c1β1 + · · ·+ crβr
for some c1, . . . , cr ∈ Z. Substituting (*) into this equation, we get

αn+1 = anα
n + an−1α

n−1 + · · ·+ a1α + a0

for some a0, . . . , an ∈ Z. Thus α is a root of the monic polynomial
Xn+1 − anXn − an−1X

n−1 − · · · − a1X − a0 ∈ Z[X]
and so α is an algebraic integer. �

In order to prove that Z is a ring, we will use both directions of Lemma 21.
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Lemma 22. Z is a ring.

Proof. Let α, β ∈ Z. We have to show that α + β and αβ ∈ Z.
By Lemma 21, Z[α] and Z[β] are finitely generated as abelian groups. Let

θ1, . . . , θr be generators Z[α] and let φ1, . . . , φs be generators Z[β] as abelian
groups.

Write Z[α, β] for the smallest ring containing α and β, that is,

Z[α, β] =
{ m∑
i,j=0

cijα
iβj : m ∈ N, cij ∈ Z

}
.

Each αiβj is a Z-combination of θs multiplied by a Z-combination of φs. Thus it
is a Z-combination of θkφ`s. Hence {θkφ` : 1 ≤ k ≤ r, 1 ≤ ` ≤ s} generates Z[α, β]
as an abelian group (this is like the Tower Law, except that we are talking only
about generating sets, not necessarily about bases).

Thus Z[α, β] is finitely generated as an abelian group. Every subgroup of a
finitely generated abelian group is finitely generated, so in particular Z[α+β] and
Z[αβ] are finitely generated as abelian groups. Hence by the reverse direction of
Lemma 21, α + β and αβ are algebraic integers. �

We have the following simple property of algebraic integers, which says that
every algebraic number can be written as a “fraction” with an algebraic integer
as the numerator and a rational (ordinary) integer as the denominator. Always
having rational integers as denominators is convenient because it makes it easier
to do things like find a common denominator for several fractions.

Lemma 23. Let α be an algebraic number. Then there exists m ∈ Z, m 6= 0, such
that mα is an algebraic integer.

Proof. Let the minimal polynomial of α be f(X) = Xn+an−1X
n−1+· · ·+a1X+a0,

where a0, . . . , an−1 ∈ Q. Letm be the lowest common multiple of the denominators
of a0, . . . , an−1 (when we write them as fractions in lowest terms). Then
g(X) = mnf(X/m) = Xn +man−1X

n−1 +m2an−2X
n−2 + · · ·+mn−1a1X +mna0

is a monic polynomial with coefficients in Z. We have g(mα) = 0, and so mα is
an algebraic integer. �

Ring of integers of a number field.

Definition. If K is a number field, the ring of integers of K is Z ∩K, written
OK .

Since Z and K are both rings, so is their intersection OK .
e.g. The ring of integers of Q is Z, because the minimal polynomial of a ∈ Q is

X − a.
In order to avoid confusion with algebraic integers, we sometimes call an element

of Z a rational integer.

Lemma. If α ∈ OK, then NmK/Q(α) and TrK/Q(α) are rational integers.
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Proof. Let χK,α be the characteristic polynomial of mK,α. By Lemmas 13 and 14,
χK,α is a power of µQ,α so χK,α has integer coefficients.

NmK/Q(α) and TrK/Q(α) are coefficients of χK,α (multiplied by ±1) so they are
in Z. �

This can be a handy test for showing that a number is not an algebraic integer.
The converse is false, except when K is a quadratic field (we will prove that the
converse holds for a quadratic field next time).
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10. Discriminant of a basis

Ring of integers of a quadratic field.

Proposition 24. Let d 6= 1 be a square-free integer and let K = Q(
√
d). Then

OK =

Z[
√
d] if d ≡ 2, 3 mod 4

Z[1+
√
d

2 ] if d ≡ 1 mod 4.

(Note that d 6≡ 0 mod 4 because it is square-free.)

Proof. Any element of Q(
√
d) can be written as α = a + b

√
d with a, b ∈ Q. If

α ∈ Q (i.e. b = 0), then we know already that α is an algebraic integer if and only
if it is in Z.

Otherwise, K = Q(α) so the minimal polynomial of α over Q is the same as its
characteristic polynomial, i.e.

X2 − TrK/Q(α) ·X + NmK/Q(α) = X2 − 2aX + (a2 − db2).

In passing, we see that α is an algebraic integer if and only if TrK/Q(α) and
NmK/Q(α) are both in Z.

Hence if a+ b
√
d is an algebraic integer, then 2a ∈ Z. Also a2 − db2 ∈ Z, from

which we deduce that 4db2 ∈ Z. Since d is square-free, this implies that 2b ∈ Z.
Thus every element of OK must differ from an element of Z[

√
d] by one of{

0, 1
2 ,
√
d

2 ,
1+
√
d

2

}
. The minimal polynomials of 1

2 and
√
d

2 are X − 1
2 and X2 − d

4

respectively, so 1
2 and

√
d

2 are never algebraic integers.
Finally, the minimal polynomial of 1+

√
d

2 is X2−X+ 1−d
4 . So 1+

√
d

2 is an algebraic
integer if and only if d ≡ 1 mod 4.

Thus if d ≡ 2 or 3 mod 4, α ∈ OK ⇒ α ∈ Z[
√
d]. It is obvious that Z[

√
d] ⊆ OK ,

so in fact OK = Z[
√
d].

If d ≡ 1 mod 4, then we have shown that

α ∈ OK ⇒ α = a+ b
√
d+ c1+

√
d

2 with a, b ∈ Z, c ∈ {0, 1}.

To show that such an α is in Z[1+
√
d

2 ], we need to show that
√
d ∈ Z[1+

√
d

2 ]. This
is true because √

d = 2
(

1+
√
d

2

)
− 1.

Thus α ∈ OK ⇒ α ∈ Z[1+
√
d

2 ]. Meanwhile, 1+
√
d

2 ∈ OK and OK is a ring so
Z[1+

√
d

2 ] ⊆ OK , completing the proof. �

e.g. Since −1 ≡ 3 mod 4,OQ(i) = Z[i] i.e. the Gaussian integers, but since
−3 ≡ 1 mod 4, we have

OQ(
√
−3) = Z[1+

√
−3

2 ] = Z[ζ3]

(where ζ3 = −1+
√
−3

2 is a primitive cube root of unity).



27

Discriminant of a basis.
It is not so easy to calculate the ring of integers by hand for number fields of

degree greater than 2. The discriminant of a number field is a tool which we can
use to calculate the ring of integers, and for other practical calculations such as
the class group later in the course. It will also be important as a theoretical tool
in some of the proofs.

The discriminant is a number which measures the size of the ring of integers of
a number field (in a more refined sense than the degree). We begin by defining
the discriminant of a basis of a number field, which varies depending on the basis
we choose; we will subsequently pick a special kind of basis and use that to define
the discriminant of the number field itself.

There are two equivalent formulae for the discriminant of a basis. Here is the
first.

Definition. Let K be a number field with n = [K : Q]. Let σ1, . . . , σn be the
embeddings of K and let {α1, . . . , αn} be a Q-basis for K.

The discriminant of {α1, . . . , αn} is defined to be
∆K(α1, . . . , αn) = det(σi(αj))2

(usually we will just write ∆(α1, . . . , αn) with noK). In other words, ∆(α1, . . . , αn)
is the square of the determinant of the matrix with entries σi(αj) i.e.

σ1(α1) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

... ... ...
σn(α1) σn(α2) · · · σn(αn)

 .
(Note that there are [K : Q] embeddings by the Corollary to Proposition 18, so
this is indeed a square matrix and its determinant makes sense.)

Why is this a measure of “size”? This measures the “size” of the basis in the
following sense: The volume of the parallelepiped in Rn with edges v1, . . . , vn is
given by the determinant of the matrix which has v1, . . . , vn as columns (up to
sign). So if we think of the basis element αi ∈ K as being represented by the
vector (σ1(αi), σ2(αi), . . . , σn(αi)) ∈ Cn, then ∆(α1, . . . , αn) is the square of the
volume of the parallelepiped formed from these vectors. Thus in some way it
measures the “volume” of the basis.

Why do we need to square the determinant? Here are several reasons:
(1) If we swap two of the embeddings, or two of the αi, then that swaps two of

the rows or columns of the matrix, so it multiplies the determinant by ±1.
Thus squaring gives us something which is independent of the orderings.

(2) We have to square the determinant to match the second formula (which
we are about to give)!

(3) ∆(α1, . . . , αn) ∈ Q but det(σi(αj)) need not be in Q. This is not obvious:
the entries of the matrix are algebraic numbers so all we can immediately
see is that ∆(α1, . . . , αn) is an algebraic number. In order to prove that
∆(α1, . . . , αn) ∈ Q, we shall use the second definition of discriminant below.
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(If you did Galois theory, you might try to prove this directly from the first
definition.)

Example: if K = Q, we can calculate

∆(1,
√
d) = det

(
1
√
d

1 −
√
d

)2

= (−2
√
d)2 = 4d.

Due to Proposition 24, it might also be interesting to calculate the discriminant
of the basis {1, 1+

√
d

2 }. We have

∆(1, 1+
√
d

2 ) = det
(

1 1+
√
d

2
1 1−

√
d

2

)2

= (−
√
d)2 = d.

Lemma 25. Let K be a number field of degree n. Let {α1, . . . , αn} be a Q-basis
for K. Then

∆(α1, . . . , αn) = det(TrK/Q(αiαj)).
(Note that the determinant is not squared this time!)

Proof. Let M be the matrix with entries σi(αj). Then
∆(α1, . . . , αn) = det(M)2 = det(M t) det(M) = det(M tM)

The ij-th entry of M tM is
n∑
k=1

M t
ikMkj =

n∑
k=1

MkiMkj =
n∑
k=1

σk(αi)σk(αj) =
n∑
k=1

σk(αiαj) = TrK/Q(αiαj)

where the last equality is Lemma 19. �

One can check that calculating with Lemma 25 gives the same values when
applied to the bases of a quadratic field which we considered previously:

∆(1,
√
d) = det

(
Tr(1) Tr(

√
d)

Tr(
√
d) Tr(d)

)
= det

(
2 0
0 2d

)
= 4d,

∆(1, 1+
√
d

2 ) = det
(

Tr(1) Tr(1+
√
d

2 )
Tr(1+

√
d

2 ) Tr(1+d+2
√
d

4 )

)
= det

(
2 1
1 1+d

2

)
= d.
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11. More on discriminants

Last time, we proved that

∆(α1, . . . , αn) = det(TrK/Q(αiαj)).

Since TrK/Q(αiαj) is always in Q, this immediately tells us that ∆(α1, . . . , αn) ∈ Q.
Furthermore, if α1, . . . , αn are all in OK , then the traces TrK/Q(αiαj) are in Z and
so ∆(α1, . . . , αn) ∈ Z.

While we calculated the discriminant of a quadratic field using the first def-
inition last time, if you want to calculate the discriminant of a specific field it
is usually better to use the second formula. This is because the first formula
involves calculating the determinant of a matrix whose entries are algebraic num-
bers, usually quite a hard calculation, while for the second formula you begin by
calculating some traces and thereafter just have rational numbers to deal with.
The first definition of discriminant will more often be useful in proofs, where you
don’t have to calculate a specific example.

Discriminants and change of basis.
We said that the discriminant depends on the choice of basis of K. When we

change the basis, the discriminant gets multiplied by the square of the determinant
of the change-of-basis matrix.

Lemma 26. Let {α1, . . . , αn} and {β1, . . . , βn} be Q-bases for K. Let the change-
of-basis matrix from {β1, . . . , βn} to {α1, . . . , αn} be (cij) i.e.

βj =
n∑
j=1

cijαi

with cij ∈ Q. Then

∆(β1, . . . , βn) = det(cij)2 ∆(α1, . . . , αn).

Proof. We can prove this using either formula for the discriminant. Let’s use the
first definition.

Let A and B be the matrices with entries σi(αj) and σi(βj) respectively. Let C
be the matrix with entries cij. Then

Bij = σi(βj) = σi
( n∑
k=1

ckjαk
)

=
n∑
k=1

ckjσi(αk) =
n∑
k=1

Aikckj

(using the facts that σi is a field homomorphism, and that it restricts to the identity
on Q). Hence B = AC as matrices and so

∆(β1, . . . , βn) = det(B)2 =
(
det(A) det(C)

)2
= det(C)2 ∆(α1, . . . , αn). �

We can use this to prove an essential property of the discriminant.
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Lemma 27. For any Q-basis {α1, . . . , αn} of K, the discriminant ∆(α1, . . . , αn)
is non-zero.

Proof. We will prove this first for a special choice of basis. By the Primitive
Element Theorem, K = Q(α) for some α ∈ K. By Theorem 3, there is a Q-basis
for K of the form {1, α, . . . , αn−1}. Now ∆(1, α, . . . , αn−1) is the square of

det


1 σ1(α) · · · σ1(αn−1)
1 σ2(α) · · · σ2(αn−1)
... ... ...
1 σn(α) · · · σn(αn−1)

 = det


1 σ1(α) · · · σ1(α)n−1

1 σ2(α) · · · σ2(α)n−1

... ... ...
1 σn(α) · · · σn(α)n−1

 .
This is a special kind of matrix called a Vandermonde matrix and it is well-known
that its determinant is ∏

1≤i<j≤n
(σi(α)− σj(α)).

Thus
∆(1, α, . . . , αn−1) =

∏
1≤i<j≤n

(σi(α)− σj(α))2.

By Proposition 18, the σi(α) are pairwise distinct so this is non-zero.
Now consider an arbitrary Q-basis β1, . . . , βn of K. By linear algebra, we can

express this in terms of the basis {1, α, . . . , αn−1} as

βj =
n∑
i=1

cijα
i−1

where the matrix (cij) has non-zero determinant. Hence by Lemma 26,
∆(β1, . . . , βn) = det(cij)2 ·∆(1, α, . . . , αn−1) 6= 0. �

Note that we only defined the discriminant for a basis of K, but we could apply
the same formulae to any set of n elements {α1, . . . , αn} ⊆ K. (The proof that
the two formulae give the same value still works.) In fact, {α1, . . . , αn} forms a
basis of K if and only if ∆(α1, . . . , αn) 6= 0.

Integral bases.

Definition. LetK be a number field. An integral basis forK is a set of elements
α1, . . . , αm ∈ OK which form a Z-basis for the abelian group (OK ,+). In other
words, every element of OK can be written uniquely in the form x1α1 + · · ·+xmαm
with x1, . . . , xm ∈ Z.

Lemma 28. Let {α1, . . . , αm} be an integral basis for a number field K. Then
{α1, . . . , αm} is a basis for K as a Q-vector space. In particular, m = [K : Q].

Proof. Lemma 23 tells us that {α1, . . . , αn} spans K as a Q-vector space.
If {α1, . . . , αn} were Q-linearly dependent, then we could multiply up by a

common denominator to get a non-trivial Z-linear relation between them, contra-
dicting the fact that 0 can be written as a Z-linear combination of the integral
basis elements in only one way. �
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For example, Proposition 24 gives us an integral basis for Q(
√
d) where d is a

square-free integer:
• {1,

√
d} if d ≡ 2, 3 mod 4;

• {1, 1+
√
d

2 } if d ≡ 1 mod 4.
Note that if {α1, . . . , αn} is a Q-basis for K and α1, . . . , αn ∈ OK , this is

not enough to establish that {α1, . . . , αn} is an integral basis. For example, if
d ≡ 1 mod 4, then {1,

√
d} is a Q-basis for Q(

√
d) consisting of algebraic integers

but it is not an integral basis because 1+
√
d

2 ∈ OK but not in Z.1 + Z.
√
d. (If we

have a Q-basis for K consisting of algebraic integers, then the “uniquely” part of
the definition of integral basis is always satisfied. But, as here, the basis might
fail to generate OK over Z.)

It is not obvious that an integral basis exists for every number field: we will
prove this next lecture. It is worth pausing to reflect on why this is not obvious.
The structure theory of finitely generated abelian groups tells us that every torsion-
free finitely generated abelian group is isomorphic to Zn for some n and hence
possesses a Z-basis. The group (OK ,+) is torsion-free (because number fields have
characteristic 0). However it is not obvious that (OK ,+) is finitely generated –
this is true, but we will only discover it as a corollary of the existence of an integral
basis.

Z[1
2 ] ⊆ Q is an example of a subring of a number field which is not finitely

generated as an abelian group and so does not have an integral basis, demonstrating
that we are really going to have to use some properties of algebraic integers to
show that (OK ,+) is finitely generated.

One key property of algebraic integers was Lemma 21: if α is an algebraic
integer, then Z[α] is finitely generated as an abelian group. However we can’t
apply this to OK because OK need not be of the form Z[α] for any α (there is no
analogue for the Primitive Element Theorem for rings of integers).
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12. Discriminant and integral bases

CORRECTION. The proof of Lemma 29 in the original version of these notes
(and maybe in the lectures) contained a mistake: I used the matrices P and Q the
wrong way round. This should be fixed now.

Existence of an integral basis.
The following lemma refines Lemma 26 on discriminant and change-of-basis.

The proof is largely a revision of Algebra 1.

Lemma 29. Let {α1, . . . , αn} and {β1, . . . , βn} be Q-bases for K. Let cij ∈ Q be
such that

βj =
n∑
i=1

cijαi.

Let G = Z.α1 + · · ·+ Z.αn and H = Z.β1 + · · ·+ Z.βn.
Suppose that H ⊆ G. (In other words, β1, . . . , βn ∈ G.)
Then H has finite index in G and [G : H] = |det(cij)|. Consequently,

∆(β1, . . . , βn) = [G : H]2 ∆(α1, . . . , αn).

It is unfortunate that the notation [G : H] for the index of a subgroup clashes
with the notation [L : K] for the degree of a field extension. Both are very standard
notations. We will never want to talk about the index of a subgroup of a field
(in characteristic zero, the index of one field as a subgroup of another is always
infinite) so hopefully this will not cause confusion.
Proof. Since β1, . . . , βn ∈ G, cij ∈ Z for all i, j.

By a result from Algebra I, we can write
C = PAQ

where P,Q are unimodular (i.e. integer matrices with determinant ±1) and A is in
Smith Normal Form (i.e. A is diagonal A = diag(d1, . . . , dn) with di nonnegative
integers and di | di+1 for all i – we don’t care about the divisibility condition).

Let
α′j =

n∑
i=1

Pijαi.

Since P is unimodular, P and P−1 both have integer entries so in fact {α′1, . . . , α′n}
is another Z-basis for G. Similarly, if we let

β′j =
n∑
i=1

(Q−1)ijβi,

then {β′1, . . . , β′n} is a Z-basis for H.
Now β′j = ∑n

i=1Aijα
′
i = djα

′
j so

G/H ∼= Z/d1Z× · · · × Z/dnZ.
We also have

|det(C)| = |det(PAQ)| = |det(A)| = d1d2 · · · dn
since |det(P )| = |det(Q)| = 1. Since det(C) 6= 0, we deduce that di 6= 0 for all i.
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Thus G/H is finite and
[G : H] = d1d2 · · · dn = |det(C)|.

The final formula, relating the discriminants, follows by Lemma 26. �

Theorem 30. Every number field K possesses an integral basis.

Proof. First note that there exists a Q-basis of K consisting of algebraic integers.
Indeed, if we take any Q-basis of K, then by Lemma 23, we can multiply each of
the basis elements by a non-zero rational integer to obtain something in OK .

Choose a Q-basis {α1, . . . , αn} for K, consisting of elements of OK , such that
|∆(α1, . . . , αn)| is as small as possible. (Since |∆(α1, . . . , αn)| is always a positive
integer for α1, . . . , αn ∈ OK , this minimum value is attained.)

We shall show that this set {α1, . . . , αn} is an integral basis for K.
Suppose not. Since {α1, . . . , αn} is a Q-basis for K, α1, . . . , αn are certainly

linearly independent over Z. Hence the only way in which they can fail to be an
integral basis is if they do not generate (OK ,+). Thus there is some β ∈ OK such
that β 6∈ Z.α1 + · · ·+ Z.αn. Let

H = Z.α1 + Z.α2 + · · ·+ Z.αn,
G = Z.β + Z.α1 + Z.α2 + · · ·+ Z.αn.

G is a finitely generated abelian group, so by the structure theory of finitely
generated abelian groups, it is isomorphic to Zm for some m and hence has a
Z-basis β1, . . . , βm.

Now β1, . . . , βm span K as a Q-vector space because they generate α1, . . . , αn,
and they are linearly independent because they are a Z-basis. Hence {β1, . . . , βm}
is a Q-basis for K and m = n. (This is the same argument as in the proof of
Lemma 28.)

By Lemma 29, we have
∆(α1, . . . , αn) = [G : H]2∆(β1, . . . , βn).

Since β 6∈ H, [G : H] > 1 and so
|∆(α1, . . . , αn)| > |∆(β1, . . . , βn)|.

But {β1, . . . , βn} is a Q-basis of K consisting of algebraic integers (because each
βi is a Z-linear combination of β, α1, . . . , αn). Hence this contradicts the fact that
|∆(α1, . . . , αn)| is as small as possible. �

Discriminant of an integral basis.
An important observation is that all integral bases for a given number field have

the same discriminant.

Lemma 31. Let {α1, . . . , αn} and {β1, . . . , βn} be integral bases for K. Then
∆(α1, . . . , αn) = ∆(β1, . . . , βn).

Proof. From the definition of integral basis, we have
OK = Z.α1 + · · ·+ Z.αn = Z.β1 + · · ·+ Z.βn.
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Hence by Lemma 29,
∆(β1, . . . , βn) = [OK : OK ]2 ∆(α1, . . . , αn).

We are done because [OK : OK ] = 1. �

Consequently the following definition makes sense.
Definition. Let K be a number field. The discriminant of K, written ∆K , is
the discriminant of any integral basis of K.

The discriminant of K is always a non-zero integer.
e.g. according to calculations from lecture 10, the discriminant of Q(

√
d) (for

d 6= 1 a square-free integer) is as follows:
∆Q(

√
d) = ∆(1,

√
d) = 4d if d ≡ 2, 3 mod 4,

∆Q(
√
d) = ∆(1, 1+

√
d

2 ) = d if d ≡ 1 mod 4.

We have the following easy sufficient criterion for recognising an integral basis.
Lemma 32. Let {α1, . . . , αn} be a Q-basis for K such that α1, . . . , αn ∈ OK. If
∆(α1, . . . , αn) is square-free, then {α1, . . . , αn} is an integral basis for K.
Proof. Let H = Z.α1 + · · · + Z.αn. Let {β1, . . . , βn} be an integral basis for K
(which exists by Theorem 30). By Lemma 29,

∆(α1, . . . , αn) = [OK : H]2 ∆(β1, . . . , βn).
Here [OK : H]2 is a square and ∆(β1, . . . , βn) is an integer, while ∆(α1, . . . , αn) is
square-free, so [OK : H] = 1. Thus H = OK , and so α1, . . . , αn form an integral
basis. �

This is only a one-way implication. For example, we saw that if d is square-free
and congruent to 2 or 3 mod 4, then {1,

√
d} is an integral basis for Q(

√
d) but

∆(1,
√
d) = 4d is not square-free (because it is divisible by 4). Lemma 32 is only

useful when ∆K is itself square-free, which often doesn’t hold.

Finding an integral basis.
Suppose we have a basis {α1, . . . , αn} for K consisting of algebraic integers but

its discriminant is not square-free. We want to either find an element of OK which
is not in Z.α1 + · · · + Z.αn, thus showing that {α1, . . . , αn} is not an integral
basis (but getting us closer to finding an integral basis) or else prove that no such
element exists.

The following lemma, which we will prove next time, gives a finite list of elements
of K such that it suffices to check whether each element of the list is in OK .
Lemma. Let {α1, . . . , αn} be a Q-basis for K such that α1, . . . , αn ∈ OK. If
{α1, . . . , αn} is not an integral basis, then there exists a prime p and u1, . . . , un ∈ Z
such that p2 | ∆(α1, . . . , αn), 0 ≤ ui < p for all i, the ui are not all zero, and

u1α1 + · · ·+ unαn
p

∈ OK .



35

13. Finding an integral basis

We can give an algorithm based on the proof of Theorem 30 which allows us
to find an integral basis (and hence to calculate the discriminant and the ring of
integers) of any number field. The key ingredient is the following lemma.

Lemma 33. Let {α1, . . . , αn} be a Q-basis for K such that α1, . . . , αn ∈ OK. If
{α1, . . . , αn} is not an integral basis, then there exists a prime p and u1, . . . , un ∈ Z
such that p2 | ∆(α1, . . . , αn), 0 ≤ ui < p for all i, the ui are not all zero, and

u1α1 + · · ·+ unαn
p

∈ OK .

Proof. Let H = Z.α1 + · · · + Z.αn. Since {α1, . . . , αn} is not an integral basis,
H 6= OK so we can pick a prime p which divides [OK : H]. By Lemma 29,
∆(α1, . . . , αn) = [OK : H]2 ∆K and so p2 | ∆(α1, . . . , αn).

Now OK/H is a finite abelian group and p divides #OK/H. Cauchy’s theorem
states that OK/H contains an element of order p. (Cauchy’s theorem is a general
theorem about finite groups; in the case of abelian groups, it can easily be deduced
from the structure theory of finite abelian groups.) Thus we can choose β ∈ OK
such that β +H has order p in OK/H.

Then pβ ∈ H so pβ = x1α1 + · · · + xnαn for some x1, . . . , xn ∈ Z. Write
xi = pyi + ui where yi, ui ∈ Z and 0 ≤ ui < p, and let

β′ = u1α1 + · · ·+ unαn
p

.

Then β′−β = y1α1+· · ·+ynαn ∈ H ⊆ OK . Hence β′ ∈ OK . Finally β′+H = β+H
has order p in OK/H, so β′ 6∈ H. Thus u1, . . . , un are not all zero. �

Algorithm to find an integral basis.
(1) Pick a Q-basis {α1, . . . , αn} for K, such that α1, . . . , αn ∈ OK .
(2) Calculate ∆(α1, . . . , αn).
(3) List all primes p such that p2 | ∆(α1, . . . , αn).
(4) For each p in the list, and each number of the form

β = u1α1 + · · ·+ unαn
p

with 0 ≤ ui < p not all zero, check whether β is an algebraic integer.
(5) If some β is an algebraic integer, then find a Z-basis for the subgroup of
OK generated by α1, . . . , αn and β. You can do this as follows:
(a) By reordering the basis elements, assume that u1 6= 0.
(b) Let x, y ∈ Z be a solution to the equation u1x + py = 1 (possible

because ui and p are coprime).
(c) Let β1 = xβ + yα1.
(d) Now {β1, α2, α3, . . . , αn} form a Z-basis for the group generated by

α1, . . . , αn and β.
Go back to step 2 of the algorithm with this new basis. (Actually, you can
skip step 2 because ∆(β1, α2, . . . , αn) = ∆(α1, α2, . . . , αn)/p2 by Lemma 26.)
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(6) If you did not find any β which was an algebraic integer, then you have
found an integral basis (thanks to Lemma 33).

This algorithm is guaranteed to terminate because |∆(α1, . . . , αn)| gets smaller
each time round.

Shortcut using Eisenstein’s criterion.
Step 4 of the algorithm above can certainly be implemented on a computer, but

it is a lot of work to carry it out by hand. There is a shortcut which is often useful,
if K is generated by an element whose minimal polynomial satisfies Eisenstein’s
criterion, which we recall from Algebra 2.

Definition. Let f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 be a monic polynomial

in Z[X]. We say that f satisfies Eisenstein’s criterion at a prime p if p | ai
for 0 ≤ i ≤ n− 1 and p2 - a0.

Proposition 34. Let f(X) ∈ Z[X] be a polynomial which satisfies Eisenstein’s
criterion at a prime p. Let K = Q(α) where f(α) = 0 and let n = [K : Q]. Then:
(i) pn−1 divides ∆K.
(ii) u1α1+···+unαn

p
, for ui ∈ Z, 0 ≤ ui < p and ui not all zero, is never an algebraic

integer.

This proposition can be proved using the methods of this course but it is a bit
long so we will skip the proof (for part (ii), we already have the tools to prove it;
for part (i), the easiest proof uses the Dedekind–Kummer theorem which we will
study later). You need to know the statement of the proposition and be able to
use it to replace step 4 of the algorithm.

One example in which this shortcut is useful is cyclotomic fields. Let ζ =
exp(2πi/p) where p is an odd prime number and let K = Q(ζ). According to
example sheet 1 Q4, {1, ζ, . . . , ζp−1} is a Q-basis for K and one can calculate

∆(1, ζ, . . . , ζp−2) = (−1)(p−1)/2pp−2.

(This calculation is on example sheet 2.) The only prime factor is p and so by
Lemma 33, we only need to check whether

β = u0 + u1ζ + · · ·+ up−2ζ
p−2

p

is an algebraic integer for ui ∈ Z, 0 ≤ ui < p.
Let ω = ζ − 1. The minimal polynomial of ω satisfies Eisenstein’s criterion at p,

so we can apply Proposition 34 to the basis {1, ω, . . . , ωp−2}:
u0 + u1ω + · · ·+ up−2ω

p−2

p

is never an algebraic integer unless ui ≡ 0 mod p for all i. Since

Z.1 + Z.ζ + · · ·+ Z.ζp−2 = Z.1 + Z.ω + · · ·+ Z.ωp−2
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we can deduce that
u′0 + u′1ω + · · ·+ u′p−2ω

p−2

p
is never an algebraic integer unless u′i ≡ 0 mod p for all i.

Hence by Lemma 33, {1, ζ, . . . , ζp−2 is an integral basis and OK = Z[ζ].
Example sheet 2 Q7 takes you through a few steps which prove Proposition 34

for the cyclotomic case.
This ends the discussion about discriminants and integral bases. Next lecture we

will look at factorisation and ideals, starting with some more Algebra 2 revision.
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14. Factorisation in integral domains

We need to recall several definitions relating to factorisation from Algebra 2.

Units.

Definition. Let R be a ring. An element x ∈ R is a unit if there exists y ∈ R
such that xy = 1.

The set of units in R forms an abelian group under multiplication. We write
R× for this group. (That’s a “times” symbol in the superscript, because it’s a
group under multiplication. Some people call this group R∗.)

Lemma 35. Let OK be the ring of integers of a number field. An element x ∈ OK
is a unit if and only if NmK/Q(x) = ±1.

Proof. If x is a unit, then x, x−1 are both in OK so NmK/Q(x) and NmK/Q(x−1)
are both rational integers. Since

NmK/Q(x) NmK/Q(x−1) = NmK/Q(xx−1) = 1
we conclude that NmK/Q(x) = ±1.

Conversely, suppose that x ∈ OK and NmK/Q(x−1) = ±1. Assume that K ⊆ C
(which we can do by Lemma 6). Label the embeddings of K as σ1, . . . , σn such
that σ1 is the inclusion K → C. Let y = σ2(x)σ3(x) · · ·σn(x). Then

xy = σ1(x)σ2(x) · · ·σn(x) = NmK/Q(x) = ±1
by Lemma 19. Thus y = ±1/x ∈ K.

Also each σi(x) is an algebraic integer (they all have the same minimal polyno-
mial as x) and so y is an algebraic integer. The σi(x) are not necessarily in K,
but we have shown that y ∈ K, so y ∈ OK . Thus ±y is an inverse of x in OK , so
x is a unit in OK . �

Factorisation.
Let R be an integral domain.
Recall that “x | y” (“x divides y”) means that there exists z ∈ R such that

y = xz.

Definition. Elements x, y ∈ R are associates if there exists a unit z ∈ R× such
that x = yz.

An element x ∈ R is:
• irreducible if it is non-zero, not a unit and whenever we can write x = ab
with a, b ∈ R, then either a is a unit or b is a unit;
• prime if it is non-zero, not a unit and whenever x | ab with a, b ∈ R, either
x | a or x | b.

Definition. An integral domain R is a unique factorisation domain (UFD)
if, for every non-zero non-unit a ∈ R:
(i) a can be written in the form a = x1x2 · · · xn for some irreducible elements

x1, . . . , xn ∈ R;
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(ii) given another factorisation a = y1y2 · · · ym into irreducibles, we must have
m = n and after permuting y1, . . . , ym, each yi is an associate of the corre-
sponding xi.

The following facts were proved in Algebra 2.
Facts. In any integral domain, every prime element is irreducible.

In a UFD, every irreducible element is prime.
Every principal ideal domain (PID) is a UFD.
There are UFDs which are not PIDs, for example Z[X] (〈2, X〉 is a non-principal

ideal). However we will prove later that if the ring of integers of a number field is
a UFD, then it is a PID.

A classic example of an integral domain which is not a UFD is the ring of
integers of K = Q(

√
−5). The ring of integers is OK = Z[

√
−5]. We have two

factorisations of 6 in OK :
6 = 2 · 3 = (1 +

√
−5) · (1−

√
−5).

We can prove that 2, 3, 1 +
√
−5 and 1−

√
−5 are all irreducible by considering

their norms.
For example, NmK/Q(1 +

√
−5) = 6 so if 1 +

√
−5 = ab with a, b ∈ OK , then

either a, b have norms ±1,±6 or ±2,±3 (in some order). There are no elements
of OK of norm 2 (because the equation x2 + 5y2 = 2 has no solutions in rational
integers), so the norms of a, b must be ±1,±6. But by Lemma 35, if one of a, b
has norm ±1, then it is a unit in OK . This shows that 1 +

√
−5 is irreducible.

To show that our two factorisations of 6 in OK are truly different, observe that
NmK/Q(2) = 4 is not equal to NmK/Q(1 +

√
−5) = NmK/Q(1−

√
−5) = 6 so 2 is

not an associate of either 1 +
√
−5 or 1−

√
−5.

Thus Z[
√
−5] is not a UFD. Looking at the factorisation above, we see that

2, 3, 1 +
√
−5 and 1−

√
−5 are irreducible but not prime in Z[

√
−5].

Since Z[
√
−5] is not a UFD, it cannot be a PID. An example of a non-principal

ideal is I = 〈2, 1 +
√
−5〉. Indeed, if I = 〈a〉 then a divides both 2 and 1 +

√
−5.

Since 2 and 1 +
√
−5 are irreducible but not associates of each other, this forces

a to be a unit and so 1 ∈ I. However, one can check that every element of I has
the form x+ y

√
−5 with x ≡ y mod 2 so 1 + 0

√
−5 6∈ I.

Product of ideals.
It will turn out that while not all rings of integers are UFDs, they always have

unique factorisation of ideals. In order for this to make sense, we need to define
the product of ideals.

Let R be a ring and let a, b be ideals in R. The set {ab : a ∈ a, b ∈ b} is
not necessarily an ideal because it might not be closed under addition (to find
an example of this, you will need both a and b to be non-principal). Instead we
define

ab = {a1b1 + · · ·+ ambm : m ∈ N, a1, . . . , am ∈ a, b1, . . . , bm ∈ b}.
This is an ideal in R.
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If a = 〈a1, . . . , ar〉 and b = 〈b1, . . . , bs〉, then
ab = 〈aibj : 1 ≤ i ≤ r, 1 ≤ j ≤ s〉.

e.g. We will calculate the square of the ideal 〈2, 1 +
√
−5〉 in Z[

√
−5].

I = 〈2, 1 +
√
−5〉2 = 〈2 · 2, 2(1 +

√
−5), (1 +

√
−5)(1 +

√
−5)〉

= 〈4, 2 + 2
√
−5, −4 + 2

√
−5〉.

Now (2 + 2
√
−5) + (−4 + 2

√
−5) = −2 ∈ I so 2 ∈ I and hence 〈2〉 ⊆ I.

Meanwhile 2 divides all of 4, 2 + 2
√
−5, −4 + 2

√
−5 so I ⊆ 〈2〉.

Thus 〈2, 1 +
√
−5〉2 = 〈2〉.

We see that the square of a non-principal ideal can be principal. Of course it
doesn’t always happen that a product of ideals is principal, but it usually does
happen that after working out the products of all pairs of generators, you can
reduce down to a smaller number of generators by taking some combinations.
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15. Prime and maximal ideals

Prime and maximal ideals.
Yesterday we defined prime elements in an integral domain. Today we make

the analogous definition for ideals. I don’t think the following definitions were in
Algebra 2. (You might have come across them in Commutative Algebra.)
Definition. Let R be a ring. An ideal a ⊆ R is:

• prime if a 6= R and for all x, y ∈ R if xy ∈ a, then x ∈ a or y ∈ a;
• maximal if a 6= R and there is no ideal b satisfying a ( b ( R.

Observe that for a 6= 0, the principal ideal 〈a〉 is prime if and only if a is a prime
element. (It’s a historical quirk that the element 0 is defined not to be prime, but
the ideal 〈0〉 can be prime – in fact 〈0〉 is prime if and only if R is an integral
domain.)

These properties of ideals are closely related to properties of the quotient ring.
Lemma 36. Let R be a ring and let a ⊆ R be an ideal.
(i) a is a prime ideal if and only if R/a is an integral domain.
(ii) a is a maximal ideal if and only if R/a is a field.
Proof. (This proof is pure algebra and non-examinable.)

(i) Consider x+ a, y + a ∈ R/a. Then
(x+ a)(y + a) = 0 in R/a ⇔ xy ∈ a

and hence the definition of a being a prime ideal is equivalent
to

(x+ a)(y + a) = 0 ⇒ x+ a = 0 or y + a = 0
i.e. the definition of R/a being an integral domain.

(ii) The map b 7→ b/a is a bijection from {ideals of R containing
a} to {ideals of R/a}. Thus a is a maximal ideal of R if and
only if R/a contains no ideals except {0} and R/a itself. A
ring is a field if and only if its only proper ideal is {0}. �

Corollary. In any ring R, every maximal ideal is prime.
Proof. If a ⊆ R is a maximal ideal, then R/a is a field. Hence R/a is an integral
domain, so a is a prime ideal. �

Whenever we form a product of ideals ab, we have ab ⊆ a (because b ⊆ R.
Thus multiplying ideals makes them smaller as sets, so the following definition is
reasonable.
Definition. Let a, b ⊆ OK be ideals. We say that a divides b (written a | b) if
b ⊆ a.

As further justification for this definition, consider principal ideals. For any
α, β ∈ R, we have

α | β ⇔ 〈β〉 ⊆ 〈α〉 ⇔ 〈α〉 | 〈β〉.
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We can use this to give an alternative (equivalent) definition of a prime ideal
which looks much more like the definition of prime element.
Lemma 37. Let R be any ring and let p be a proper ideal in R. Then p is a prime
ideal if and only if, for all ideals a, b ⊆ R, whenever p | ab, then p | a or p | b.
Proof. (Again this purely algebraic proof is non-examinable.)

Let p be a prime ideal. Suppose for contradiction that p | ab but
p - a and p - b. Then a 6⊆ p so we can pick x ∈ a \ p. Similarly we
can pick y ∈ b \ p. Then xy ∈ ab ⊆ p. So the definition of prime
ideal tells us that x ∈ p or y ∈ p, which contradicts how we chose
x and y.

Conversely, suppose that p satisfies the condition of the lemma
and let x, y ∈ R satisfy xy ∈ p. Then p | 〈x〉〈y〉 so by the condition,
p | 〈x〉 or p | 〈y〉. Thus x ∈ p or y ∈ p i.e. p is prime. �

Ideals in the ring of integers of a number field.
Now we turn to properties which are special for the ring of integers of a number

field.
Lemma 38. Let K be a number field. Let a be an ideal in OK. If x ∈ a, then
NmK/Q(x) ∈ a.
Proof. This is similar to the proof that if NmK/Q(x) = ±1, then x is a unit.
Assume that K ⊆ C and label the embeddings of K as σ1, . . . , σn, so that σ1 is
the inclusion K → C. Let y = σ2(x)σ3(x) · · · σn(x). Then

xy = σ1(x)σ2(x) · · ·σn(x) = NmK/Q(x).
Since NmK/Q(x) ∈ Q and x ∈ K, we deduce that y = NmK/Q(x)/x ∈ K. Since
σ2(x), . . . , σn(x) are all algebraic integers, y is an algebraic integer. Hence y ∈ OK .
Since x ∈ a and a is an ideal in OK , we deduce that xy ∈ a. �

Consequence: if a is a non-zero ideal in OK , then it contains a non-zero rational
integer (pick any x ∈ a \ {0} and then NmK/Q(x) is a non-zero rational integer).
Lemma 39. Let K be a number field. Let a be a non-zero ideal in OK. Then
OK/a is finite.
Proof. Thanks to Lemma 38, a contains a rational integer N . Then 〈N〉 ⊆ a and
so OK/〈N〉 surjects onto OK/a.

Because of the existence of an integral basis, OK is isomorphic as an abelian
group to Zn. Hence OK/〈N〉 is isomorphic as an abelian group to Z/NZn and
this is finite. This implies that OK/a is finite. �

Lemma 39 is a very special property of subrings of a number field – very few
other integral domains have this property. (One example which does is F [X]
where F is a finite field. It turns out that you can do a lot of things very similar
to Algebraic Number Theory in F [X] or its finite extensions – called function field
arithmetic.)
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Definition. Let K be a number field and let a be a non-zero ideal in OK . The
norm of a, written Nm(a), is defined to be [OK : a] (meaning the index of a as
an abelian subgroup of (OK ,+)).

This definition makes sense because of Lemma 39, and Nm(a) is always a positive
integer.

We have now defined the “norm of an element of K” and the “norm of an ideal
in OK .” The definitions look completely different, but they are compatible in the
case of principal ideals, as the following lemma shows (except that the norm of an
ideal is always positive, while the norm of an element may be positive or negative,
so we need to take the absolute value).

Lemma 40. Let K be a number field and let α ∈ OK \ {0}. Then

Nm(〈α〉) = |NmK/Q(α)|.

Proof. Choose an integral basis β1, . . . , βn forK. Let C be the matrix (with entries
in Q) representing “multiplication by α” with respect to this basis. Thus

αβj =
n∑
i=1

Cijαi.

Then αβ1, . . . , αβn form a Z-basis for the ideal 〈α〉 and C is the the change-of-
basis matrix from {αβ1, . . . , αβn} to {β1, . . . , βn}. The argument from the proof
of Lemma 29 shows that

[OK : 〈α〉] = |det(C)|.
Meanwhile the definition of norm of an element says that

NmK/Q(α) = det(C). �

Prime and maximal ideals in a number field.
(There is no Lemma 41 because I skipped it out in the numbering during the

lecture.)

Lemma 42. A finite integral domain is a field.

Proof. (This proof is pure algebra, but it is fundamental to the properties of OK ,
so it is examinable.)

Let R be a finite integral domain and let x ∈ R \ {0}. The map mx : R → R
given by mx(y) = xy is injective because R is an integral domain. Since R is finite,
this implies that mx is a bijection R → R. Thus there exists y ∈ R such that
mx(y) = 1. In other words, y is a multiplicative inverse for x. �

Corollary 43. In the ring of integers of a number field, every non-zero prime
ideal is maximal.

Proof. Let a be a non-zero prime ideal in OK . By Lemma 39, OK/a is finite. Since
a is a prime ideal, OK/a is an integral domain. Hence by Lemma 42, OK/a is a
field and so a is a maximal ideal. �
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This property is not quite as special as Lemma 39. For example all rings K[X]
possess it where K is any field, but not the two-variable polynomial rings K[X, Y ].
From the perspective of Algebraic Geometry, this corollary can be interpreted as
saying that “OK is a one-dimensional geometric object” (in a very abstract sense).

Lemma 44. Every proper ideal in OK is contained in a maximal ideal.

Proof. Let a ⊆ OK be a proper ideal. Let S be the set of proper ideals of OK
which contain a. S is non-empty because a ∈ S. Since every non-zero ideal has
a norm which is a positive integer, we can choose an element b ∈ S of minimum
norm.

We claim that b is a maximal ideal. Indeed, if there is some ideal c such that
b ( c ( OK , then c is a proper ideal and a ⊆ b ⊆ c so c ∈ S. But because c ( b,
Nm(c) < Nm(b), contradicting the fact that b has minimal norm. �

This will be a proof strategy we will use several times: form a set of ideals,
pick an ideal in the set of smallest norm, then prove that actually there must
be an ideal of smaller norm in the set to get a contradiction. It is a bit of a
cheat to use ideal norms in this strategy: really we are using the fact that OK
is a Noetherian ring (which you may have encountered in Rings and Modules,
or maybe in Commutative Algebra) – but using ideal norms allows us to avoid
introducing the concept of Noetherian rings.
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16. Fractional ideals

Fractional ideals.
Our goal for the next two lectures will be to prove the unique factorisation of

ideals in the ring of integers of a number field. One of the key tools, both in
this proof and for the rest of the course, will be fractional ideals. Confusingly, a
fractional ideal is not necessarily an ideal!

Definition. Let K be a number field. A fractional ideal of OK is a subset
a ⊆ K satisfying the following conditions.
(a) if x, y ∈ a, then x+ y ∈ a;
(b) xa ⊆ a for every x ∈ OK ;
(c) there exists some non-zero x ∈ OK such that xa ⊆ OK .

Conditions (a) and (b) are the ordinary conditions from the definition of an
ideal of OK . However, a fractional ideal doesn’t have to be an ideal of OK because
it might not be contained in OK . (Also, it won’t be an ideal of K because K is
a field so its only ideals are 0 and K itself.) Condition (c) says that a fractional
ideal is not too far away from being contained in OK (for example, it implies that
K itself is not a fractional ideal).

e.g. For Z, 〈12〉 := 1
2Z is a fractional ideal which is not contained in Z.

More generally, for any number field K and any α ∈ K, we can form the
principal fractional ideal 〈α〉 := αOK . This will be an ideal of OK if and only if
α ∈ OK .

The following is clear.

Lemma 45. An ideal of OK is a fractional ideal.
A fractional ideal is an ideal of OK if and only if it is contained in OK.

The following lemma justifies the idea that “fractional ideals are fractions of
ideals.”

Lemma 46. A subset a ⊆ K is a fractional ideal if and only if there exist an ideal
b ⊆ OK and an element x ∈ OK such that a = 1

x
b.

Proof. It is clear that, if b is an ideal of OK and x ∈ OK , then 1
x
b is a fractional

ideal.
Conversely, if a is a fractional ideal then condition (c) gives us x ∈ OK such

that xa ⊆ OK . Thanks to conditions (a) and (b), b = xa is an ideal of OK and
we have a = 1

x
b. �

Thanks to Lemma 38, we can actually arrange that x ∈ Z in Lemma 46 (thus
we get an “ideal version” of Lemma 23).

We can define the product of two fractional ideals in the same way as the
product of two ideals: ab is the set of all finite sums a1b1 + · · · + ambm where
ai ∈ a, bi ∈ b. The product of fractional ideals is a fractional ideal (you can prove
this directly, or use Lemma 46).
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One of the benefits of working with fractional ideals instead of ideals is that the
non-zero fractional ideals form a group under this multiplication operation. We
will not be able to prove this until after we have proved unique factorisation of
ideals. For now, we define a fractional ideal which will ultimately turn out to be
the inverse of a.
Definition. Let a be a non-zero fractional ideal of OK . We define a−1 to be

a−1 = {x ∈ K : xa ⊆ OK}.
The notation suggests that a−1 should be an inverse to a, but that is not the

definition! So we have to be careful not to use a−1 as an inverse to a until we have
proved that it actually is an inverse.

e.g. if α ∈ K \ {0}, then
〈α〉−1 = {x ∈ K : x〈α〉 ⊆ OK} = {x ∈ K : xα ∈ OK}

= {x ∈ K : x ∈ 1
α
OK} =

〈
1
α

〉
.

Lemma 47. a−1 is a fractional ideal of OK, and a−1a ⊆ OK.
Proof. If x ∈ a−1 and y ∈ a, then the definition of a−1 shows that xy ∈ OK . Hence
a−1a ⊆ OK .

To show that a−1 is a fractional ideal: conditions (a) and (b) are clear. If we
pick any x ∈ a\{0}, then (from the previous paragraph) xa ⊆ OK so condition (c)
is satisfied. �

Factorisation of ideals.
We have seen that the ring of integers of a number field is not always a UFD.

One of the central results of this module is that it does have unique factorisation
of ideals into prime ideals.
Theorem 48. Let OK be the ring of integers of a number field and let a ⊆ OK
be a non-zero proper ideal. Then:
(i) there exist prime ideals p1, . . . , pr such that a = p1p2 · · · pr;
(ii) if we have another list of prime ideals q1, . . . , qs such that a = q1q2 · · · qs,

then r = s and q1, . . . , qs are a permutation of p1, . . . , pr.
Note that the uniqueness condition is simpler than for a UFD: because we are

talking about ideals instead of elements, we don’t need to mention associates (if
x, y are associates, then they generate the same ideal).

This looks a bit like primary decomposition, which you might encounter in
Commutative Algebra. However primary decomposition is much weaker, because
it involves intersection of ideals rather than products and primary ideals rather
than prime ideals. This allows primary decomposition to work in any Noetherian
ring, while Theorem 48 is a special property of rings of integers of a number field.

The proof of Theorem 48 goes through a number of steps. Several of these steps
will prove things which “obviously should be true” but each step depends on the
previous ones, often in quite a subtle way, so we have to be careful to prove them
in the right order.
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Step 1. Every non-zero ideal a ⊆ OK has the following property:
(*) there exist non-zero prime ideals p1, . . . , pr such that p1p2 · · · pr ⊆ a.

Proof. Suppose that the claim is false. So there exists at least one ideal which
does not have property (*).

We use the same strategy as for the proof of Lemma 44: among the non-zero
ideals of OK which do not have property (*), choose a so that its norm is as
small as possible. The minimum norm is attained because the norms of ideals are
positive integers.

Now a is not a prime ideal, otherwise we could just take r = 1, p1 = a. Also
a 6= OK , or we could just pick r = 1, p1 = any non-zero prime ideal.. Hence
(negating the definition of a prime ideal) we can pick x, y ∈ OK such that x, y 6∈ a
but xy ∈ a.

Let b = 〈a, x〉 and c = 〈a, y〉. Then
bc = a2 + xa + ya + 〈xy〉 ⊆ a.

Since a ⊆ b, we have a surjection OK/a→ OK/b. Since x 6∈ a, this surjection
is not injective. Hence Nm(b) < Nm(a). Because Nm(a) was minimal (among
non-zero ideals which do not have property (*)), b has property (*) i.e. there are
prime ideals p1, . . . , pr such that p1p2 · · · pr ⊆ b.

Similarly Nm(c) < Nm(a) and so c does not have property (*) i.e. there are
prime ideals q1, . . . , qs such that q1 · · · qs ⊆ c.

But now
p1 · · · prq1 · · · qs ⊆ bc ⊆ a

contradicting the fact that a does not have property (*). �

Aside: just as with Lemma 44, we could replace “pick an ideal of smallest norm
...” by the fact that OK is Noetherian. Thus Step 1 works for any Noetherian ring.
The subsequent steps in the proof of Theorem 48 will use more special properties
of the ring of integers of a number field.
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17. Proof of unique factorisation of ideals

We complete the proof of the unique factorisation of ideals in OK (Theorem 48).

Step 2. If p ⊆ OK is a non-zero prime ideal, then OK ( p−1.

Proof. Since p ⊆ OK , we have OK ⊆ p−1. The hard part is to prove that p−1 6=
OK .

We want to apply Step 1 but applying it directly to p is no use, because p is
already a prime ideal. Instead, pick a non-zero element α ∈ p and apply Step 1
to 〈α〉. We get non-zero prime ideals p1, . . . , pr such that

p1p2 · · · pr ⊆ 〈α〉.
Choose these prime ideals so that r is as small as possible.

Since 〈α〉 ⊆ p, this implies that
p1p2 · · · pr ⊆ p.

Since p is a prime ideal, Lemma 37 tells us that p contains one of the pi. WLOG
p1 ⊆ p. By Corollary 43, p1 is maximal ideal of OK and so p1 = p.

Since we chose p1, . . . , pr so that r is as small as possible,
p2p3 · · · pr 6⊆ 〈α〉.

Therefore we can choose β ∈ p2 · · · pr which is not in 〈α〉. But βp ⊆ pp2p3 · · · pr ⊆
〈α〉. Therefore α−1βp ⊆ OK i.e. α−1β ∈ p−1. But since β 6∈ 〈α〉, βα−1 6∈ OK . �

Aside: in Step 2, we used Corollary 43, so this no longer applies in an arbitrary
Noetherian ring.

The next step is a bit of a break from all these calculations with ideals – it is
more of a fact about algebraic integers than about ideals (and it definitely only
applies to rings of the form OK).

CORRECTION. In the original version of these notes (and probably in the
lectures), the proof of Step 3 said that Bv = βv when it should be BTv = βv.
Since B and BT have the same eigenvalues, this does not matter. It is now fixed.

Step 3. If a ⊆ OK is a non-zero ideal and β ∈ K is such that βa ⊆ a, then
β ∈ OK.

Proof. Assume that K is a subfield of C, by Lemma 6.
Since a is a subgroup of OK , it is a finitely generated torsion-free abelian group.

Hence it has a Z-basis {α1, . . . , αm}. Since βa ⊆ a, the matrix B of β with respect
to this basis has coefficients in Z i.e.

βαj =
m∑
i=1

Bijαi

where Bij ∈ Z.
Let v be the column vector (α1, . . . , αm)t ∈ Cm. Then

BTv = βv
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and so β is an eigenvalue of BT . Thus β is a root of the characteristic polynomial
of BT , which is a monic polynomial with integer coefficients. So β is an algebraic
integer. �

Now we can put the previous steps together. The next step looks like a small
strengthening of Step 2, but it is actually a big step forward because it uses Step 3
as well.

Step 4. If p ⊆ OK is a non-zero prime ideal and a ⊆ OK is a non-zero ideal such
that a ⊆ p, then a ( p−1a ⊆ OK.

Proof. Since 1 ∈ p−1, it is clear that a ⊆ p−1a. Since a ⊆ p, p−1 ⊆ a−1 and so
p−1a ⊆ OK .

The key point is proving that a 6= p−1a. Assume for contradiction that a = p−1a.
Then for every β ∈ p−1, we have βp ⊆ p. Hence by Step 3, β ∈ OK .

Thus p−1 ⊆ OK , contradicting Step 2. �

Now it is quite easy to prove that “p−1” means what we expect, at least for
prime ideals (the general case will come tomorrow).

Step 5. If p ⊆ OK is a non-zero prime ideal, then pp−1 = OK.

Proof. We know that pp−1 is a fractional ideal contained in OK , so pp−1 is an ideal
of OK . By Step 4, we have p ( pp−1. Since p is a maximal ideal, this implies that
pp−1 = OK . �

At last we can prove existence and uniqueness of factorisation of ideals.

Step 6 (Existence of factorisation into prime ideals). For any non-zero proper
ideal a ⊆ OK, there exist prime ideals p1, . . . , pr such that a = p1p2 · · · pr.

Proof. This strengthens Step 1 because a is equal to the product, rather than
containing it. The proof strategy will be the same as for Step 1, but making use
of all the steps we have proved since then.

Assume for contradiction that there exists some non-zero proper ideal of OK
which is not a product of prime ideals. Choose such an ideal a so that Nm(a) is
as small as possible.

By Lemma 44, a ⊆ p for some maximal ideal p.
By Step 4, p−1a is an ideal of OK which strictly contains a. Hence Nm(p−1a) <

Nm(a). Assume that p−1a 6= OK (we’ll return to the case p−1a = OK later). Then
because Nm(a) was as small as possible, p−1a is equal to a product of prime ideals
i.e.

p−1a = p1p2 · · · pr
for some prime ideals p1, . . . , pr. Multiplying on both sides by p and using Step 5,
we get

pp1p2 · · · pr = pp−1a = OKa = a.

This contradicts our assumption that a was not a product of prime ideals.
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We still have to deal with the case p−1a = OK . We do the same thing: multiply
on both sides by p and use Step 5 to get

p = pOK = pp−1a = OKa = a

so a is a product of prime ideals (of the single ideal p). �

Step 7 (Uniqueness of factorisation into prime ideals). Let a ⊆ OK be a non-zero
ideal and suppose that

a = p1 · · · pr = q1 · · · qs
where p1, . . . , pr, q1, . . . , qs are prime ideals. Then r = s and p1, . . . , pr form a
permutation of q1, . . . , qs.

Proof. We proceed by induction on r.
If r = 0, then a = OK and s = 0 so there is nothing to prove. (If you are

not comfortable thinking of OK as being the product of “the empty list of prime
ideals,” you can interpret this as meaning that the proof for r = 1 is the same as
the proof for r > 1.)

If r ≥ 1, since p1 | q1q2 · · · qr and the qi are prime ideals, by Lemma 37, we
must have p1 | qj for some j. WLOG p1 | q1. Since q1 is a maximal ideal, this
implies that p1 = q1. Hence using Step 5 twice,

p2 · · · pr = p−1
1 p1p2 · · · pr = p−1

1 a = q−1
1 a = q−1

1 q1q2 · · · qs = q2 · · · qs.
By induction, we conclude that r−1 = s−1 and that p2, . . . , pr are a permutation
of q2, . . . , qs. �

This completes the proof of Theorem 48.
Aside (non-examinable, for people with an interest in commutative algebra or

algebraic geometry):
Looking back over the proof of Theorem 48, the properties of OK which we used

were:
(1) OK is Noetherian (in Steps 1 and 6);
(2) every non-zero prime ideal is maximal (in Step 2);
(3) if α ∈ K is a root of a monic polynomial in OK [X], then α ∈ OK (this is

called “integral closedness” and is the property which makes Step 3 work).
An integral domain with these properties is called a Dedekind domain and
Theorem 48 works in any Dedekind domain. Besides OK , the other important
example are rings of the form K[X] where K is any field, and “finite extensions
of K[X]” which have a geometrical interpretation as “the ring of functions on a
smooth curve.”
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18. Properties of ideals of number fields

Group of fractional ideals.
We promised to prove that fractional ideals form a group. This is an easy

consequence of the unique factorisation of ideals.
First we extend Step 5 from prime ideals to all ideals.

Lemma 49. Let a ⊆ OK be a non-zero ideal. Then aa−1 = OK.

Proof. We can write a as a product of prime ideals: a = p1p2 · · · pr.
Let b = p−1

1 p−1
2 · · · p−1

r . By applying Step 5 repeatedly, we see that ab = OK .
Hence by the definition of a−1, we have b ⊆ a−1.

Using the facts that ab = OK (just proved) and a−1a ⊆ OK (Lemma 47), we
have

a−1 = a−1OK = a−1ab ⊆ OKb = b.

Thus b = a−1. �

Proposition 50. Let K be a number field. The set of non-zero fractional ideals of
OK forms an abelian group under the operation of multiplication, with 〈1〉 = OK
being the identity element. The inverse of a is a−1.

Proof. Associativity and commutativity and the fact that OK is the identity ele-
ment are obvious. Inverses is basically Lemma 49, but we have to check that it
works for fractional ideals as well as ideals in OK .

Let a be a non-zero fractional ideal. By Lemma 46, we can write a = 1
x
b for

some x ∈ OK and an ideal b ⊆ OK . We can see from the definition of a−1 that
a−1 = xb−1. Then by Lemma 49,

aa−1 = x−1bxb−1 = x−1x bb−1 = 1 · OK = OK . �

Recall that we defined a | b to mean b ⊆ a. This looks rather different from
the definition of divisibility of elements a | b which says “there exists c such that
b = ac.” We can now verify that our definition of a | b is actually equivalent to an
“ideal version” of the definition for elements.

Lemma 51. Let a and b be non-zero ideals of OK such that b ⊆ a (i.e. a | b).
Then there exists an ideal c ⊆ OK such that b = ac.

Proof. Let c = a−1b. Since b ⊆ a, we have c ⊆ a−1a ⊆ OK . Thus c is an ideal of
OK (not just a fractional ideal). By Lemma 49,

ac = aa−1b = OKb = b. �

Ideal norms are multiplicative.
Now we prove a much harder, but fundamental, fact about the norms of ideals:

when we multiply ideals, the ideals multiply. The analogous statement for elements
of a number field was immediate from the definition. But for ideals, we will have
to use unique factorisation – and even then it is non-trivial.

We begin with the case of multiplying by a prime ideal.
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Lemma 52. Let a ⊆ OK be a non-zero ideal and let p ⊆ OK be a prime ideal.
Then

[a : ap] = [OK : p].
Proof. Since p 6= OK and the fractional ideals form a group, a 6= ap. Hence we
can choose α ∈ a \ ap.

Let b = 〈α, ap〉. Then b is an ideal and ap ( b ⊆ a. Multiplying by a−1, we
get p ( a−1b ⊆ OK . Now p is a maximal ideal (Corollary 43), so this implies that
a−1b = OK i.e. a = b.

Define a group homomorphism (of the additive groups) φ : OK → a/ap by
φ(x) = xα + ap.

We want to apply the First Isomorphism Theorem to φ, in order to obtain an
isomorphism OK/p ∼= a/ap.
Claim: φ is surjective. Indeed, if y + ap ∈ a/ap, then we have

y ∈ a = b = 〈α, ap〉
so we can write y = xα + z where x ∈ OK and z ∈ ap. Then y + ap = φ(x), so φ
is surjective.
Claim: ker(φ) = p. Indeed,

ker(φ) = {x ∈ OK : xα ∈ ap} = OK ∩ α−1ap.

Now α−1ap is a fractional ideal, so OK ∩ α−1ap is an ideal in OK . (Note: it was
not obvious that ker(φ) was an ideal, because φ is only a group homomorphism
and not a ring homomorphism.)

Since α ∈ a, p ⊆ ker(φ). Since α 6∈ ap, φ(1) = α + ap 6= 0 + ap and so
ker(φ) 6= OK . Thus ker(φ) is an ideal and p ⊆ ker(φ) ( OK . Since p is a maximal
ideal, we must have ker(φ) = p.

Using both Claims, the First Isomorphism Theorem for groups tells us that
OK/p ∼= a/ap

as additive groups, and so [OK : p] = [a : ap]. �

Lemma 53. Let a ⊆ OK be a non-zero ideal and let a = p1 · · · pr be its factorisa-
tion into prime ideals. Then

Nm(a) = Nm(p1) Nm(p2) · · ·Nm(qr).
Proof. By induction on r. The case r = 1 is trivial.

When r > 1, let b = p1p2 · · · pr−1. Then
Nm(a) = [OK : a] = [OK : b][b : a]

(this follows from the Third Isomorphism Theorem for groups). By Lemma 52, we
have

[b : a] = [b : bp] = [OK : p].
Thus

Nm(a) = [OK : b][OK : p] = Nm(b) Nm(p)
and we conclude by induction. �
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Corollary 54. Let a, b ⊆ OK be non-zero ideals. Then
Nm(ab) = Nm(a) Nm(b).

Proof. Apply Lemma 53 to each of a, b and ab. �

Easy facts about norms of ideals.
We prove a few basic facts which don’t even require unique factorisation of

ideals.
We have already used this first lemma (whenever we said “pick an ideal a

of smallest norm, construct b ( a, then Nm(a) < Nm(b)), so really we should
have proved it earlier! Since the proof doesn’t use factorisation of ideals, this
doesn’t lead to a circular argument. It is pretty easy, but we include the proof for
completeness.

Lemma 55. Let a, b be non-zero ideals in OK. If a ⊆ b and Nm(a) = Nm(b),
then a = b.

Proof. Since a ⊆ b, we have
Nm(a) = [OK : a] = [OK : b][b : a] = Nm(b)[b : a].

Hence if Nm(a) = Nm(b), then [b : a] = 1 or in other words a = b. �

One reason for explicitly stating Lemma 55 is the following consequence:
If α ∈ a and |NmK/Q(α)| = Nm(a), then a = 〈α〉.
This will be valuable later for as a method of proving that an ideal is principal:

you just have to find an element of the ideal which has the correct norm.
This next lemma might remind you of Lemma 38 but it is not the same:

Lemma 38 tells us that the norm of any element of a is in a; now we prove
that the norm of the ideal itself is in a.

Lemma 56. Let a ⊆ OK be a non-zero ideal. Then Nm(a) ∈ a.

Proof. Since Nm(a) = #OK/a, Lagrange’s theorem for the additive group OK/a
tells us that Nm(a) · (1 + a) = 0 in OK/a. In other words Nm(a) ∈ a. �
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19. Dedekind–Kummer theorem

Prime ideals of a number field.
We have shown that ideals in OK have unique factorisation into prime ideals.

Now we want to describe the prime ideals in OK .

Definition. We shall use the phrase rational prime to mean a prime in Z (just
the usual meaning of prime number) – similar to how we sometimes say “rational
integers” to avoid confusion with algebraic integers. The purpose of this is to
avoid any possible confusion with “prime ideals in OK” (or even “prime elements
in OK”). Sorry if it causes more confusion!

Proposition 57. Let K be a number field. Let p be a non-zero prime ideal in
OK. Then Nm(p) = pn for some rational prime p and some positive integer n.
Furthermore, p | 〈p〉 and p - 〈q〉 for any rational prime q 6= p.

Proof. By Corollary 43, p is a maximal ideal so OK/p is a field. Furthermore
OK/p is finite by Lemma 39. By a result from Algebra 2, the order of any finite
field is a prime power. So

Nm(p) = #OK/p = pn

for some p and n.
By Lemma 56, we deduce that pn ∈ p. If n > 1, we write pn = p · pn−1 and use

the definition of prime ideal to deduce that either p ∈ a or pn−1 ∈ p. If pn−1 ∈ p,
then we can repeat the process; eventually we conclude that p ∈ p or in other
words p | 〈p〉.

Finally we want to show that there is no other rational prime q 6= p such that
p | 〈q〉. Assume for contradiction that such a prime exists. Then q ∈ p. By
Euclid’s algorithm, we can find x, y ∈ Z such that xp+ yq = 1. Since p, q ∈ p, we
deduce that 1 ∈ p and so p = OK . But this contradicts the fact that p is a prime
ideal. �

Dedekind–Kummer theorem: statement.
By Proposition 57, each non-zero prime ideal of OK divides exactly one rational

prime. Thus in order to determine the prime ideals of OK , we just have to
determine the prime ideals which divide each rational prime. Because 〈p〉 has a
unique factorisation into prime ideals of OK , there are finitely many prime ideals
dividing p.

The Dedekind–Kummer theorem tells us how to find these ideals. The statement
of the theorem may look rather long, but it gives a very clear recipe which we can
apply in practice.

Notation. If p is a rational prime, we write Fp for “the field with p elements” i.e.
Z/pZ. We use this notation to emphasise that it is a field (of course Z/pZ is only
a field when p is prime).
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Theorem 58 (Dedekind–Kummer). Let K = Q(α) be a number field where α is
an algebraic integer. Let p be a rational prime which does not divide [OK : Z[α]].

Let f(X) ∈ Z[X] be the minimal polynomial of α, and let f̄(X) ∈ Fp[X] denote
the reduction of f modulo p. Let the factorisation of f̄ into monic irreducible
polynomials be

f̄ = f̄ e1
1 f̄

e2
2 · · · f̄ er

r

where f̄1(X), . . . , f̄r(X) ∈ Fp[X] are pairwise distinct.
For each i, choose a polynomial fi(X) ∈ Z[X] such that f̄i = fi modulo p.
Let pi denote the ideal 〈p, fi(α)〉 in OK.
Then:
(i) the pi are distinct prime ideals of OK;
(ii) the pi are the only prime ideals in OK dividing 〈p〉;
(iii) Nm(pi) = pdeg(f̄i);
(iv) 〈p〉 = pe1

1 · · · per
r .

Most of the words of this theorem are just carefully defining notation for the
factorisation of f mod p.

There is one condition which it is important not to forget: p - [OK : Z[α]]. We
want to apply the Dedekind–Kummer theorem with OK = Z[α] whenever possible,
because then [OK : Z[α]] = 1 and so the condition p - [OK : Z[α]] is satisfied for
every prime p.

However, it is not always possible to choose α such that OK = Z[α] and then
we have to exclude the finitely many primes which divide [OK : Z[α]] when using
the Dedekind–Kummer theorem.

Example of the Dedekind–Kummer theorem.
K = Q(

√
−10)

Since −10 ≡ 2 mod 4, we have OK = Z[
√
−10]. so we can apply Dedekind–

Kummer with α =
√
−10 for every rational prime p. The minimal polynomial of√

−10 is f(X) = X2 + 10.
• p = 2: f(X) ≡ X2 mod 2.
In the notation of Theorem 58, we have r = 1, f1(X) = X, e1 = 2.
So the only prime ideal of OK dividing 〈2〉 is p1 = 〈2, f1(α)〉 = 〈2,

√
−10〉.

By (iii), Nm(〈2,
√
−10〉) = 2deg(X) = 21 = 2.

By (iv), 〈2〉 = 〈2,
√
−10〉2.

• p = 3: f(X) ≡ X2 − 2 mod 3. This is irreducible (because it is quadratic,
it suffices to check that it has no roots; it has no roots because 2 is not a
quadratic residue mod 3).
Thus in the notation of Theorem 58, we have r = 1, f1(X) = X2 − 2,
e1 = 1.
Hence the only prime ideal of OK dividing 〈3〉 is 〈3, α2 − 2〉 = 〈3,−12〉 =
〈3〉.
In fact, we could have deduced this without any calculations using (iv):
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since r = e1 = 1, (iv) tells us that 〈p〉 = pe1
1 = p1.

This gives us a general conclusion (valid for any p and K):
If f̄(X) is irreducible in Fp[X], then 〈p〉 is a prime ideal of OK.

• p = 5: 〈5〉 = 〈5,
√
−10〉2 (similar to p = 2).

• p = 7: f(X) ≡ X2 − 4 ≡ (X + 2)(X − 2) mod 7.
In the notation of Theorem 58, we have r = 2, f1(X) = X − 2, f2(X) =
X + 2, e1 = e2 = 1.
Since f(X) has two distinct irreducible factors, there are two prime ideals
of OK which divide 〈7〉, namely
〈7, f1(α)〉 = 〈7, 2 +

√
−10〉 and 〈7, f2(α)〉 = 〈7,−2 +

√
−10〉.

By (iv),
〈7〉 = 〈7, 2 +

√
−10〉 〈7,−2 +

√
−10〉.

(You can check this product by hand!)
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20. Proof of Dedekind–Kummer theorem

Another example of Dedekind–Kummer.
K = Q(

√
−7)

Since −7 ≡ 1 mod 4, we have OK = Z[α] where α = 1+
√
−7

2 . The minimal
polynomial of α is f(X) = X2 −X + 2.

For p = 2, we have f(X) ≡ X2 −X ≡ X(X − 1) mod 2.
Thus 〈2〉 = pq where p = 〈2, α〉 = 〈2, 1+

√
−7

2 〉 and q = 〈2, α− 1〉 = 〈2, −1+
√
−7

2 〉.
In fact, Nm(p) = 2deg(X) = 2 while NmK/Q(1+

√
−7

2 ) = (1
2)2 + 7(1

2)2 = 2 so

p =
〈1 +

√
−7

2
〉
.

Similarly, q = 〈−1+
√
−7

2 〉.
The Dedekind–Kummer theorem tells us that the ideals p and q are distinct.

We could also see this directly because if p = q, then this ideal would contain
α− (α− 1) = 1, contradicting the fact that it must be a proper ideal of OK .

We would have got the wrong answer if we tried to use α =
√
−7 instead of

1+
√
−7

2 ! The Dedekind–Kummer theorem is not valid for p = 2 and α =
√
−7,

because
[OK : Z[

√
−7]] = 2,

so this is not a contradiction. Rather it is a warning that the condition p - [OK :
Z[
√
−7]] is important (and that making sure you use the correct ring of integers

for a quadratic field is also important).
Indeed, the minimal polynomial of

√
−7 is X2 + 7 ≡ (X + 1)2 mod 2, so if we

(incorrectly) used Dedekind–Kummer for
√
−7 we would conclude that 〈2〉 is the

square of a prime ideal, but we saw that in fact p and q are distinct prime ideals.
Note that, if p 6= 2, then p - [OK : Z[

√
17]] so we can apply Dedekind–Kummer

either for α = 1+
√
−7

2 or for α =
√
−7 and both will give the right answer.

Proof of Dedekind–Kummer theorem.
This proof may look a bit intimidating because of its repeated use of the isomor-

phism theorems for rings and the heavy notation for elements in several different
rings, but it is actually shorter and simpler than the proof of unique factorisation
of ideals.

We recall the notation from the statement of Theorem 58:
Notation. Let K = Q(α) be a number field where α is an algebraic integer. Let
p be a rational prime which does not divide [OK : Z[α]].

Let f(X) ∈ Z[X] be the minimal polynomial of α, and let f̄(X) ∈ Fp[X] denote
the reduction of f modulo p. Let the factorisation of f̄ into monic irreducible
polynomials be

f̄ = f̄ e1
1 f̄

e2
2 · · · f̄ er

r

where f̄1, . . . , f̄r are pairwise distinct monic irreducible polynomials in Fp[X]. For
each i, let fi(X) ∈ Z[X] be a polynomial in Z[X] such that f̄i = fi modulo p.

Let pi denote the ideal 〈p, fi(α)〉OK
.
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Because we will need to work with ideals in several different rings, the notation
〈α〉 might get confusing – it means the ideal generated by α, but in which ring?
To avoid this confusion, we will often include the ring as a subscript: we will write
〈α〉R to mean “the ideal of the ring R generated by α.”

For simplicity, we shall assume that OK = Z[α] – in practice, this is usually the
situation in which we shall want to use the Dedekind–Kummer theorem. (Without
this assumption, it is not much harder – there is just an extra step showing that
OK/〈p〉OK

∼= Z[α]/〈p〉Z[α], which is where the hypothesis p - [OK : Z[α]] gets used.)
The goal of the first few steps is to obtain a ring isomorphism

Fp[X]/〈f̄〉Fp[X] ∼= Z[α]/〈p〉Z[α].

We do this by constructing two homomorphisms from Z[X] to the two sides of
this desired isomorphism, which both have the same kernel, and then applying
the First Isomorphism Theorem.

Let I = 〈p, f(X)〉Z[X].

Step 1. There is a ring homomorphism ψ1 : Z[X] → Fp[X]/〈f̄〉Fp[x] which has
kernel I and such that ψ1(X) = X + 〈f̄〉Fp[X].

Proof. Define ψ1(g) = ḡ + 〈f̄〉Fp[X] (where ḡ ∈ Fp[X] means “the reduction of g
mod p.”) Clearly ψ1(X) is what we want, and we can calculate

g ∈ ker(ψ1) ⇔ ḡ ∈ 〈f̄〉Fp[X]

⇔ ḡ = h̄f̄ for some h̄(X) ∈ Fp[X]
⇔ g ≡ hf mod p for some h(X) ∈ Z[X]
⇔ g = hf + pr for some h(X), r(X) ∈ Z[X]
⇔ g ∈ 〈p, f(X)〉Z[X] = I. �

Step 2. There is a ring homomorphism ψ2 : Z[X] → Z[α]/〈p〉Z[α] which has ker-
nel I and such that ψ2(X) = α + 〈p〉Z[α].

Proof. Define ψ2(g) = g(α) + 〈p〉Z[α]. Clearly ψ2(X) is what we want. The
calculation of the kernel is similar to Step 1, except with the roles of p and f(X)
swapped.

g ∈ ker(ψ2) ⇔ g(α) ∈ 〈p〉Z[α]

⇔ g(α) = ph(α) for some h(X) ∈ Z[X]
⇔ (g − ph)(α) = 0 for some h(X) ∈ Z[X]
⇔ g − ph ∈ 〈f(X)〉Q[X] for some h(X) ∈ Z[X] (defn of minimal poly)
⇔ g − ph ∈ 〈f(X)〉Z[X] for some h(X) ∈ Z[X] (Gauss’s lemma)
⇔ g ∈ 〈p, f(X)〉Z[X] = I. �
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Step 3. There is a ring isomorphism
φ : Fp[X]/〈f̄(X)〉Fp[X] → Z[α]/〈p〉Z[α]

such that φ(X + 〈f̄〉Fp[X]) = α + 〈p〉Z[α].

Proof. The homomorphisms ψ1, ψ2 from Steps 1 and 2 are both surjective (because
in each case the image of X generates the codomain as a ring). So by the First
Isomorphism Theorem, we get isomorphisms

φ1 : Z[X]/I → Fp[X]/〈f̄〉Fp[x],

φ2 : Z[X]/I → Z[α]/〈p〉Z[α].

Now φ = φ2 ◦ φ−1
1 is the desired isomorphism.

The claim about φ(X + 〈f̄Fp[X]〉) follows from what we know about ψ1(X) and
ψ2(X). �

Step 4. The pi are distinct prime ideals of OK, and they are the only prime ideals
of OK dividing 〈p〉.

Proof. By the Third Isomorphism Theorem for rings (twice) and using the isomor-
phism φ, we get bijections between the sets of ideals
{ideals in Fp[X] containing 〈f̄〉Fp[X]} ↔ {ideals in Fp[X]/〈f̄〉Fp[X]}

↔ {ideals in Z[α]/〈p〉Z[α]}
↔ {ideals in OK/〈p〉OK

}
↔ {ideals in OK containing 〈p〉OK

}.
(In the middle, we used our assumption that OK = Z[α].)

Using Lemma 36 and the third isomorphism theorem, we see that if R is a ring
and a, b are ideals such that a ⊆ b, then b is a prime ideal of R if and only if b/a
is a prime ideal of R/a. Hence the bijections above match prime ideals with prime
ideals, and we get a bijection
{prime ideals in Fp[X] containing 〈f̄〉} ↔ {prime ideals in OK containing 〈p〉}.
The right hand side is what we are interested in; we can describe the left hand

side by factorising f̄ in Fp[X].
Since Fp[X] is the polynomial ring over a field, it is a PID. Hence its prime

ideals are simply the ideals of the form 〈ḡ〉Fp[X] where ḡ(X) ∈ Fp[X] is (monic
and) irreducible. In particular,

{prime ideals in Fp[X] containing 〈f̄〉Fp[X]}
= {〈f̄i〉 : f̄i(X) ∈ Fp[X] is an irreducible factor of f̄}.

Because φ(X + 〈f̄〉Fp[X]) = α+ 〈p〉OK
, the sequence of bijections above map the

ideal 〈f̄i〉Fp[X] to
〈
fi(α) + 〈p〉OK

〉
OK/〈p〉OK

, and thence to 〈p, fi(α)〉OK
= pi. �
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21. The class group and end of proof of Dedekind–Kummer

End of proof of Dedekind–Kummer theorem.

Step 5. Nm(pi) = pdeg(f̄i).

Proof. Since 〈p〉OK
⊆ pi and 〈f̄〉Fp[X] ⊆ 〈f̄i〉Fp[X], we can use the Third Isomor-

phism Theorem for rings (twice) and the isomorphism φ to obtain

OK
pi
∼=
OK/〈p〉OK

pi/〈p〉OK

∼=
Fp[X]/〈f̄〉Fp[X]

〈f̄i〉Fp[X]/〈f̄〉Fp[X]

∼=
Fp[X]
〈f̄i〉Fp[X]

.

Hence
Nm(pi) = [OK : pi] = [Fp[X] : 〈f̄i〉Fp[X]].

The quotient Fp[X]/〈f̄i〉Fp[X] is an Fp-vector space with basis 1, X, . . . , Xdeg(f̄i)−1

(see Theorem 3). Thus it is a Fp-vector space of dimension deg(f̄i), so

[Fp[X] : 〈f̄i〉Fp[X]] = pdeg(f̄i). �

Step 6. 〈p〉 = pe1
1 · · · per

r in OK.

Proof. Since f̄1(X)e1 · · · f̄r(X)er = f̄(X), the product of ideals ∏r
i=1〈f̄i〉

ei

Fp[X] maps
to the zero ideal in the quotient Fp[X]/〈f̄〉Fp[X]. Applying φ from Step 3, we
deduce that ∏r

i=1 p
ei
i maps to the zero ideal in OK/〈p〉OK

. Thus ∏r
i=1 p

ei
i ⊆ 〈p〉OK

.
We compare norms. By Lemma 40 and Corollary 15,

Nm(〈p〉OK
) = |NmK/Q(p)| = p[K:Q].

Meanwhile by Lemma 53 and Step 5,

Nm(pe1
1 · · · per

r ) =
r∏
i=1

Nm(pi)ei =
r∏
i=1

pei deg(f̄i).

Finally because f̄(X) = ∏
f̄i(X)ei , we have

r∑
i=1

ei deg(f̄i) = deg(f̄) = deg(f) = [K : Q]

(the equality deg(f̄) = deg(f) is because f is monic, so its highest-degree term
does not vanish mod p). Thus p[K:Q] = ∏r

i=1 p
ei deg(f̄i) and so

Nm(〈p〉Fp[X]) = Nm(pe1
1 · · · per

r ).

Since we showed that ∏ pei
i ⊆ 〈p〉OK

, we are done by Lemma 55. �
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The class group.
The class group of a number field K is a finite abelian group which measures

“how badly unique factorisation fails in OK .”
Definition. Let K be a number field. Write:

• IK = the group of non-zero fractional ideals of K (under multiplication);
• PK = the group of non-zero principal fractional ideals of K (under multi-
plication).

The class group of K is the quotient group Cl(K) = IK/PK .
The elements of Cl(K) are called ideal classes. If a is a non-zero fractional

ideal of K, we write [a] for its class in Cl(K).
Observe that [a] = [b] if and only if a = γb for some γ ∈ K.
We showed that IK was a group in Proposition 50. PK is a subgroup of IK

because 〈α〉〈β〉 = 〈αβ〉 and 〈α〉〈α−1〉 = OK . The group IK is abelian because mul-
tiplication is commutative, and hence every subgroup of IK is a normal subgroup.
Therefore the quotient IK/PK is a group (indeed, an abelian group).

Observe that
Cl(K) = {1} ⇔ PK = IK ⇔ OK is a PID.

We said that Cl(K) is finite but this is far from obvious. Notice that IK and
PK are both infinite groups – indeed, they are non-finitely generated groups (by
unique factorisation of ideals, the set of all non-zero prime ideals forms a minimal
generating set for IK). Hence it is not at all obvious that their quotient is finite.
The finiteness of the class group is one of the deepest theorems of the course.

Minkowski’s theorem.
In order to prove the finiteness of the class group, we will use Minkowski’s

theorem. Minkowski’s theorem is also useful for calculating the class group of a
particular number field, because it gives us a way to find ideals which represent
every class in Cl(K).
Definition. Let K be a number field of signature (r, s) and degree n = r + 2s.
Let ∆K be the discriminant of K. The Minkowski bound of K is

BK =
( 4
π

)s n!
nn

√
|∆K |.

Theorem 59 (Minkowski’s theorem on ideal classes). Every ideal class in Cl(K)
has a representative a which is an ideal of OK (not just a fractional ideal) and
satisfies Nm(a) ≤ BK.

e.g. As an example, we will use Minkowski’s theorem to prove that OK = Z[
√

6]
is a PID, where K = Q(

√
6). The degree is 2, the signature is (2, 0) and ∆K =

4× 6 = 24 so the Minkowski bound is

BK =
( 4
π

)0 2!
22

√
24 = 1

2
√

24 =
√

6 < 3.

So by Theorem 59, every ideal class in Cl(K) has a representative of norm 1 or 2.
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The only ideal of norm 1 is OK itself.
An ideal of norm 2 must be a prime ideal dividing 〈2〉 (by Proposition 57). We

use Dedekind–Kummer to factorise 〈2〉. OK = Z[
√

6] and the minimal polynomial
of
√

6 is X2−6 ≡ X2 mod 2. So 〈2〉 = p2 where p = 〈2,
√

6〉. Thus p is the unique
ideal of norm 2 in OK .

Is p principal? We look for an element x+ y
√

6 ∈ OK with
NmK/Q(x+ y

√
6) = x2 − 6y2 = ±2.

x = 2, y = 1 gives a solution to this equation, and we can see that 2 +
√

6 ∈ p.
Thus p = 〈2 +

√
6〉 is principal.

We have shown that all ideals of norm < 3 in OK are principal. By Theorem 59,
this implies that the only ideal class in Cl(K) is the trivial class. In other words,
Z[
√

6] is a PID.
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22. Computing the class group

UFDs and PIDs.
The following lemma justifies the slogan that Cl(K) measures how badly OK

fails to be a UFD.

Lemma 60. Let K be a number field. Then Cl(K) = {1} if and only if OK is a
UFD.

Proof. From the definition of Cl(K), we saw immediately that
Cl(K) = {1} ⇔ OK is a PID.

Every PID is a UFD. So what we have to prove is: if OK is a UFD, then it is a
PID.

Since every proper ideal of OK is a product of prime ideals, it suffices to prove
that every prime ideal of OK is principal.

Let p be a non-zero prime ideal of OK and let α ∈ p \ {0}. Write
α = π1π2 · · · πr.

where π1, . . . , πr ∈ OK are irreducible elements.
In a UFD, irreducible elements are prime. In any integral domain, the ideal

generated by a prime element is a prime ideal. Hence the ideals 〈πi〉 are prime
ideals of OK .

In OK , every non-zero prime ideal is maximal. So 〈πi〉 are maximal ideals.
We have

p | 〈α〉 = 〈π1〉 · · · 〈πr〉.
By the definition of prime ideal, we deduce that p | 〈πi〉 for some i. In other words
〈πi〉 ⊆ p. Since 〈πi〉 is maximal, we conclude that p = 〈πi〉. �

Computing the class group.
Generalising our example for Q(

√
6), we can use Minkowski’s Theorem (Theo-

rem 59), together with the Dedekind–Kummer Theorem (Theorem 58), to compute
some more class groups.

Theorem 59 tells us that we only need to look at ideals of norm ≤ BK in order
to hit every class in Cl(K). In fact, we only need to look at prime ideals of norm
≤ BK : these don’t necessarily hit every ideal class, but they do generate Cl(K).
For convenience, we state this as a lemma.

Lemma 61. Let K be a number field. The group Cl(K) is generated by the classes
of prime ideals in OK of norm ≤ BK. Furthermore, any such prime ideal divides
〈pi〉 for some rational prime pi ≤ BK.

Proof. By Theorem 59, every class in Cl(K) has a representative a ⊆ OK such
that Nm(a) ≤ BK . We can write a as a product of prime ideals:

a = p1p2 · · · pr.
Because ideal norms are multiplicative, Nm(pi) ≤ BK for each i.



64

By Proposition 57, pi | 〈pi〉 for some rational prime pi, and Nm(pi) = pni
i for

some ni ∈ N. Hence pi ≤ Nm(pi) ≤ BK . �

Thus we have the following strategy for finding Cl(K):
(1) Calculate the Minkowski bound BK .
(2) For each rational prime p ≤ BK , use Dedekind–Kummer to factorise 〈p〉

into prime ideals of OK . (When we do this, some of the prime ideals we
obtain may have norm > BK . We can throw these away.)

(3) Check whether each of the prime ideals we have found is principal.
(4) For any non-principal ideals, look for relations between their ideal classes,

and eventually prove that we have found all the relations. This is an ad
hoc process – if we only found a single non-principal prime ideal, then it
is just a matter of finding the smallest power of that ideal which becomes
principal. If there are multiple non-principal prime ideals of norm ≤ BK ,
then this may require more tricks.

Class group examples.
K = Q(

√
−10)

Since −10 ≡ 2 mod 4, OK = Z[
√
−10] and ∆K = −40. The signature is (0, 1).

Thus the Minkowski bound is

BK =
( 4
π

)1 2!
22

√
|−40| = 2

π

√
40 < 2

3 × 7 < 5.

Thus by Lemma 61, Cl(K) is generated by prime ideals dividing 〈2〉 or 〈3〉.
We work out these prime ideals using the Dedekind–Kummer theorem with

α =
√
−10, f(X) = X2 + 10:
• p = 2: f(X) ≡ X2 mod 2 so 〈2〉 = p2

2 where p2 = 〈2,
√
−10〉.

• p = 3: f(X) ≡ X2−2 mod 3 which is irreducible since 2 is not a quadratic
residue mod 3, so 〈3〉 is a prime ideal of OK .

We can discard 〈3〉 because it has norm 9 > BK . Thus Cl(K) is generated
by [p2].

By Theorem 58(iii), Nm(p2) = 2deg(X) = 2. Thus to test whether p2 is principal,
we look for elements of OK of norm ±2. The equation Nm(x + y

√
−10) =

x2 + 10y2 = ±2 has no solutions in Z, so OK contains no elements of norm ±2.
Hence p2 is not principal.

On the other hand, from the Dedekind–Kummer calculation above, p2
2 = 〈2〉 is

principal. So [p2] 6= [1] in Cl(K) but [p2]2 = [〈2〉] = [1]. Thus [p2] has order 2, so
Cl(K) ∼= Z/2Z.

K = Q(
√
−14)

Since −14 ≡ 2 mod 4, OK = Z[
√
−14] and ∆K = −56. The signature is (0, 1).

Thus the Minkowski bound is

BK =
( 4
π

)1 2!
22

√
|−56| = 2

π

√
56 < 2

3 × 8 = 16
3 .
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This is only just over 5, and the inequality is quite weak because 56 is a long way
from 82 = 64. So it seems likely that BK < 5. It would be a shame to make extra
work for ourselves by having to factorise 〈5〉, so we get out the calculator and find

BK ≈ 4.76 < 5.
(You could also prove this by hand, by noting that 56 < 56.25 = 7.52.)

Thus by Lemma 61, Cl(K) is generated by prime ideals dividing 〈2〉 or 〈3〉.
Using the Dedekind–Kummer theorem with α =

√
−14, f(X) = X2 + 14:

• p = 2: f(X) ≡ X2 mod 2 so 〈2〉 = p2
2 where p2 = 〈2,

√
−14〉.

• p = 3: f(X) ≡ (X − 1)(X + 1) mod 3 so 〈3〉 = p3q3 where p3 = 〈3,−1 +√
−14〉 and q3 = 〈3, 1 +

√
−14〉.

Now Cl(K) is generated by [p2], [p3] and [q3]. Since p2
2 = 〈2〉 and p3q3 = 〈3〉 are

principal, we have
[p2]2 = [1], [p3][q3] = [1].

The latter implies that
[q3] = [p3]−1

so Cl(K) is generated by [p2] and [p3]. We still have to figure out if there is any
relation between [p2] and [p3].

We know that [p2]2 = [〈2〉] = [1] and [p3][q3] = [〈3〉] = [1] so [q3] = [p3]−1. But
we still have to figure out if there is any relation between [p2] and [p3].

One way to do this is to try looking for principal ideals whose norm is a product
of small powers of 2 and 3. You find that OK contains an element of norm 18:

Nm(2 +
√
−14) = 4 + 14 = 18.

(How did we find this? Maybe just by luck/intelligent guesswork. If I set this as a
question on an exam, there would be some sort of hint like: “Find an element of
OK of norm 18.”)

Let’s factorise the ideal 〈2 +
√
−14〉. Since its norm is a product of powers of 2

and 3,
〈2 +

√
−14〉 = pa2p

b
3q
c
3.

Comparing norms, and since Nm(2 +
√
−14) = 2× 32, we get a = 1 and b+ c = 2.

We can’t have b = c = 1 because then p3q3 = 〈3〉 divides 〈2 +
√
−14〉, but

3 - 2 +
√
−14. Finally 2 +

√
−14 ∈ 〈3,−1 +

√
−14〉 = p3. Thus

〈2 +
√
−14〉 = p2p

2
3.

In Cl(K), this tells us that
[p2][p3]2 = [1].

Since [p2] = [p2]−1, we deduce that
[p2] = [p3]2

and so [p3] generates Cl(K), with [p3]4 = [p2]2 = [1]. Thus Cl(K) ∼= Z/4Z.



66

23. Minkowski’s theorem

Recall Minkowski’s theorem on ideal classes.

Theorem (Theorem 59). Every ideal class in Cl(K) has a representative a which
is an ideal of OK (not just a fractional ideal) and satisfies Nm(a) ≤ BK, where

BK =
( 4
π

)s n!
nn

√
|∆K |.

Today we will use Minkowski’s theorem to prove the finiteness of the class group
(easy) and start the proof of Minkowski’s theorem (harder).

Finiteness of the class group.
Starting from Minkowski’s theorem on ideal classes, it is easy to prove that the

class group is finite. We just need a lemma about ideals.

Lemma 62. For any positive integer N , there are only finitely many ideals in OK
of norm N .

Proof. Let a ⊆ OK be an ideal of norm N . By Lemma 56, N ∈ a so 〈N〉 ⊆ a.
Hence by the Third Isomorphism Theorem, a/〈N〉 is an ideal in OK/〈N〉.

Thus a 7→ a/〈N〉 is an injective map
{ideals of OK of norm N} → {ideals of OK/〈N〉}.

Since OK/〈N〉 is a finite ring, it contains only finitely many ideals. �

Theorem 63. Let K be a number field. Then Cl(K) is finite.

Proof. Thanks to Lemma 62, OK has finitely many ideals of norm ≤ BK . Thus
we are done by Theorem 59. �

Definition. For any number field K, the class number of K is the size of Cl(K)
(it is often denoted hK).

Proof of Minkowski’s theorem.
The proof of Minkowski’s theorem on ideal classes (Theorem 59) relies on two

other theorems of Minkowski:

Minkowski’s theorem on ideal classes
⇑ (easy, examinable)

Minkowski’s theorem on ideals
⇑ (harder, non-examinable)

Minkowski’s theorem on lattices

We will next prove that Minkowski’s theorem on ideals implies the theorem on
ideal classes – this proof, and the statement of Minkowski’s theorem on ideals, are
examinable material for this module.

We will then spend the rest of this lecture and all of tomorrow’s lecture outlining
the proof that Minkowski’s theorem on lattices implies the theorem on ideals –
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this is non-examinable. A (slightly simplified) version of Minkowski’s theorem on
lattices was in Introduction to Number Theory, so we will skip the proof of the
lattice theorem altogether.

Theorem 64 (Minkowski’s theorem on ideals). Let K be a number field. Let a be
a non-zero ideal of OK. Then a contains a non-zero element α such that

|NmK/Q(α)| ≤ BK Nm(a).

Proof of Theorem 59. There is one subtle point to watch out for in this proof –
we apply Theorem 64 to a representative of the inverse of the ideal class we are
interested in!

Let C be an ideal class in Cl(K). Pick a fractional ideal b ∈ IK which represents
the inverse class C−1. Thanks to Lemma 46, we may assume that b is an ideal in
OK . By Theorem 64, we can find α ∈ b \ {0} such that |NmK/Q(α)| ≤ BK Nm(b).

Let a = αb−1. Then [a] = [b]−1 = C, a ⊆ OK because α ∈ b (by the definition
of b−1), and

Nm(a) = |NmK/Q(α)| · Nm(b)−1 ≤ BK . �

Lattices (non-examinable).
The proof of Minkowski’s theorem on ideals (Theorem 64) is quite long. Surpris-

ingly, it relies on geometry and analysis, even though we are proving a theorem
which appears algebraic! That’s how π appears in BK . This method is called
“geometry of numbers.”

First we need to define lattices in Rn.

Definition. A lattice in Rn is a subgroup of (Rn,+) which is generated by a
basis of Rn.

e.g. Zn is a lattice in Rn because it is generated by the standard basis.
Every lattice in Rn is isomorphic to Zn as a group, but it might be a different

subgroup of Rn.

Definition. Let L ⊆ Rn be a lattice, generated by the basis {v1, . . . , vn}. The
covolume of L is the volume of the parallelepiped

{x1v1 + · · ·+ xnvn : x1, . . . , xn ∈ R, 0 ≤ x1, . . . , xn ≤ 1}.

The prefix “co” is here because this is not the volume of the lattice itself (that’s
zero because it is a countable set of points!); rather it is the volume of the “spaces
in between the lattice.”

Note that any lattice has many bases, and the covolume is the same whichever
basis we choose. To prove this, we will use another way of defining the covolume:
if C is the matrix with v1, . . . , vn as columns, then

covol(L) = |det(C)|.
(This is just the formula for the volume of a parallelepiped.) If we have two bases
which generate the same lattice L, then the change-of-basis matrix between them
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has determinant ±1, proving that the covolume of L is independent of the choice
of basis.

Minkowski’s theorem on lattices (non-examinable).
Suppose we have a lattice L ⊆ Rn, and a compact set S ⊆ Rn. If we make S

big enough, can we guarantee that it contains an element of L? How big does it
need to be?

This is a trick question: you can make S as big as you want without ever
intersecting L by drawing a set which has holes round the lattice points! Even if
you insist that S is no holes (is simply connected), you still draw a set S which
wiggles in and out around the lattice points. We can rule this out by insisting
that S is convex.

Definition. A subset S ⊆ Rn is convex if for all x, y ∈ S and all t ∈ R with
0 ≤ t ≤ 1, we have tx+ (1− t)y ∈ S.

It turns out that this is not enough. We need one more condition on S.

Definition. A subset S ⊆ Rn is symmetric if for all x ∈ S, we have −x ∈ S.

Now it looks like we have gone too far: A convex symmetric set S automatically
contains 1

2x + 1
2(−x) = 0 for any x ∈ S, so S ∩ L is always non-empty. We will

ignore 0.
Thus the right question to ask is: if we make a convex symmetric set S large

enough, can we guarantee that it contains an element of L \ {0}? How large we
will need to make S obviously depends on how big the gaps between elements of
L are, i.e. on covol(L).

The following theorem answers this question.

Theorem 65 (Minkowski’s theorem on lattices). Let L be a lattice in Rn. Let
S ⊆ Rn be a compact, convex, symmetric set. If

vol(S) ≥ 2n covol(L),
then S contains a non-zero element of L.

In Introduction to Number Theory, you proved Theorem 65 for lattices which
are contained in Zn. One can reduce to that case by a linear transformation, so
we will omit the proof of Theorem 65.
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24. Proof of Minkowski’s theorem

(All of this lecture is non-examinable.)
We are aiming to prove Minkowski’s theorem on ideals:

Theorem (Theorem 64). Let K be a number field. Let a be a non-zero ideal of
OK. Then a contains a non-zero element α such that

|NmK/Q(α)| ≤ BK Nm(a).

In order to prove Theorem 64, we need to pick a lattice L and a compact,
convex, symmetric set S and calculate their volumes. Then we will be able to
apply Theorem 65.

Canonical embedding of a number field.
In order to obtain lattices related to a number field, we need to put K inside a

real vector space. K is isomorphic to Qn, so we can put it inside Rn. We will do
this in the following way, using the real and complex embeddings of K:

Definition. Let K be a number field of signature (r, s) and degree n = r +
2s. Label the real embeddings of K as σ1, . . . , σr and the complex embeddings
as σr+1, . . . , σr+s, σr+1, . . . , σr+s. The canonical embedding of K is the map
ι : K → Rn defined by

ι(α) = (σ1(α), . . . , σr(α), Reσr+1(α), Im σr+1(α), . . . , Reσr+s(α), Im σr+s(α)).

(Note that we couldn’t just use the embeddings of K directly i.e.

(σ1(α), . . . , σr(α), σr+1(α), σr+1(α), . . . , σr+s(α), σr+s(α))

because this has values in Cn, not Rn.)

Lemma 66. Let a be a non-zero ideal in OK. Then ι(OK) is a lattice in Rn with
covolume

2−s
√
|∆K |.

Outline proof. Let α1, . . . , αn be an integral basis for K. Let C ∈ Mn×n(R) be the
matrix with columns ι(α1), . . . , ι(αn).

We will calculate det(C). We will see that det(C) 6= 0, so ι(α1), . . . , ι(αn) form
a basis of Rn. Consequently the subgroup which they generate, namely ι(OK), is
a lattice. Furthermore the covolume is given by |det(C)|.

In order to calculate det(C), consider a different matrix B ∈ Mn×n(C) with
columns 

σ1(αi)
...

σn(αi)

 .
By the definition of discriminant, we have

∆K = det(B)2.
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To get from B to C, we multiply by a matrix of the form

1
. . .

1
1
2

1
2

−1
2i

1
2i . . .

1
2

1
2

−1
2i

1
2i


.

For each pair of complex embeddings, we have a block
(

1
2

1
2

−1
2i

1
2i

)
because

(
1
2

1
2

−1
2i

1
2i

)(
z
z̄

)
=
(

Re z
Im z

)
.

The determinant of
(

1
2

1
2

−1
2i

1
2i

)
is 1

2i so

det(C) = (1
2i)

s det(B).

Consequently

covol(ι(OK)) = |det(C)| = 2−s|det(B)| = 2−s
√
|∆K |. �

Since a is a finite-index subgroup of OK , ι(a) is also a lattice and to get its
covolume we just multiply by the index i.e. Nm(a):

covol(ι(a)) = 2−s
√
|∆K |Nm(a).

Proof of Minkowski’s theorem on ideals.
Now ι(a) is a lattice in Rn, and we have calculated its covolume. In order to

apply Theorem 65, we need to choose a compact, convex, symmetric set S. If
x ∈ S ∩ ι(a), then the fact that x ∈ ι(a) tells us that x = ι(α) for some α ∈ a. So
we want the fact that x ∈ S to tell us that NmK/Q(α) is bounded.

We extend NmK/Q from a function on K to a continuous function on Rn.
Define a function Nr,s : Rn → R≥0 by

Nr,s(x1, . . . , xr, y1, z1, . . . , ys, zs) = |x1| · · · |xr| (y2
1 + z2

1) · · · (y2
s + z2

s).

We have labelled the coordinates in this way in order to relate them to the canonical
embedding of K: the xis correspond to real embeddings of K, the yis to the real
part of complex embeddings, the zis to the imaginary part of complex embeddings.
This relation with the canonical embedding also explains why Nr,s involves factors
y2
i + z2

i which look like the norm of a complex number.
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The significance of this function Nr,s is that, for all α ∈ K, we have

Nr,s(ι(α)) = |σ1(α)| · · · |σr(α)| |σr+1(α)|2 · · · |σr+s(α)|2

= |σ1(α)| · · · |σr(α)| |σr+1(α)||σr+1(α)| · · · |σr+s(α)||σr+s(α)|

=
n∏
i=1
|σi(α)| = |NmK/Q(α)|.

(The final step is Lemma 19).
Let

Yr,s(T ) = {x ∈ Rn : Nr,s(x) ≤ T}.
We have to show that Yr,s(BK Nm(a)) contains a non-zero element of ι(a).

Unfortunately we cannot deduce this directly from Theorem 65 because the set
Yr,s(T ) is usually neither compact nor convex. In the lecture I drew pictures:

• for an imaginary quadratic field, n = 2, (r, s) = (0, 1),

Yr,s(T ) = {(y, z) ∈ R2 : y2 + z2 ≤ T}.

Thus Yr,s(T ) is a disc, which is compact and convex. (This is the easy
case!)
• for a real quadratic field, n = 2, (r, s) = (2, 0),

Yr,s(T ) = {(x1, x2) ∈ R2 : |x1||x2| ≤ T}.

This set is bounded by hyperbolae – it is the set A in Figure 10.1 of Stewart
and Tall, p. 175. It is neither compact nor convex.

We will choose a compact convex set inside Yr,s(T ), and apply Theorem 65 to
that. If we only want to prove the finiteness of the class group, we don’t need to
describe exactly which compact convex set we choose because we don’t need an
exact value for BK , just that there exists some BK – so we could just say that
when we make T large enough, we know that Yr,s(T ) will always contain a compact
convex set which is large enough for Theorem 65 to apply.

On the other hand, in order to calculate class groups via Minkowski’s theorem,
we need a value for BK . In order to get the best value we can, we choose the
largest compact convex set we can inside Yr,s(T ). In the real quadratic field case,
this will be set B in Stewart and Tall, Figure 10.1.

To define this new set, we define a new function φr,s : Rn → R≥0 by

φr,s(x1, . . . , xr, y1, z1, . . . , ys, zs) = |x1|+ · · ·+ |xr|+ 2
√
y2

1 + z2
1 + · · ·+ 2

√
y2
s + z2

s .

By the AM-GM inequality, we have

Nr,s(x)1/n ≤ 1
n
Tr,s(x).

Consequently, if we choose λ = n(BK Nm(a))1/n, then the set

Xr,s(λ) = {x ∈ Rn : Tr,s(x) ≤ λ}

is contained in Yr,s(BK Nm(a)).
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The set Xr,s(λ) is compact, convex and symmetric. All that remains is to
compute its volume. It turns out that

vol(Xr,s(λ)) = 2r
(π

2
)s 1
n! λ

n.

We will skip the calculation (which is quite fiddly, especially to get the correct
powers of 2) but broadly speaking: the 2r comes from integrating the xis, because
a bound on |xi| allows both positive or negative values of xi, the (π/2)s comes
from the circles defined by 2

√
y2
i + z2

i , and the 1/n! · λn comes from the fact that
when we integrate a constant n times we get 1/n! · tn.

Inserting our choice of λ into this formula, we get

vol(Xr,s(λ)) = 2r
(π

2
)snn
n! BK Nm(a) = 2r+s

√
|∆K |Nm(a) = 2n covol(ι(a)).

Hence by Theorem 65, Xr,s(λ) contains a non-zero element x ∈ ι(a). Write x = ι(α)
where α ∈ a. Since Xr,s(λ) is contained in (*), we have

|NmK/Q(α)| = Nr,s(x) ≤ BK Nm(a)
as required.

(End of non-examinable material)
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25. Mordell equation

One of the purposes of all this theory of algebraic numbers is to solve Diophantine
equations i.e. polynomial equations in ordinary integers. We will consider one
example: the so-called Mordell equation

y2 = x3 + k

where k ∈ Z.
Mordell proved that, for each k, this equation has only finitely many solutions

with x, y ∈ Z. We will not prove this, but we will look at a method which allows
you to find the integer solutions for a given value of k.

e.g. Consider the equation
y2 = x3 − 13.

We rearrange this to get
x3 = y2 + 13.

In order to factorise the right hand side, we will work in the field K = Q(
√
−13).

We get
x3 = (y +

√
−13)(y −

√
−13). (1)

If OK = Z[
√
−13] were a UFD, then we could say: y+

√
−13 and y−

√
−13 are

coprime and their product is a cube, so y+
√
−13 and y−

√
−13 must themselves

be cubes (at least up to multiplying by a unit).
Unfortunately, Z[

√
−13] is not a UFD. (We can use the Minkowski and Dedekind–

Kummer theorems to show that Cl(K) = Z/2Z.) However, it does have unique
factorisation of ideals, so we will try to follow a similar method using ideals instead.
Calculating the class group will allow us to deduce that certain ideals are principal,
and so turn equations of ideals back into equations of elements.

We will need the following lemma.

Lemma 67. Let a, b ⊆ OK be ideals which are coprime (have no common prime
ideal factors). Suppose that

ab = cn

for some ideal c ⊆ OK and some n ∈ N. Then there are ideals a′, b′ ⊆ OK such
that

a = (a′)n, b = (b′)n.

Proof. This is an easy consequence of the unique factorisation of ideals (Theo-
rem 48) – think about how you would prove the same result for rational inte-
gers. �

Equation (1) implies the following equation of principal ideals:

〈x〉3 = 〈y +
√
−13〉〈y −

√
−13〉. (2)

If we want to use Lemma 67 here, we have to show that the ideals 〈y +
√
−13〉

and 〈y −
√
−13〉 are coprime.
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Suppose p was a prime ideal which divides 〈y +
√
−13〉 and 〈y −

√
−13〉. Then

(y +
√
−13)− (y −

√
−13) = 2

√
−13 ∈ p.

Hence Nm(p) divides
NmK/Q(2

√
−13) = 4× 13 = 52.

Since Nm(p) is a prime power (by Proposition 57), it must be either 13 or a power
of 2.

If Nm(p) = 13, then 13 divides NmK/Q(y +
√
−13) = y2 + 13. Consequently

13 | y. But then x3 = y2 + 13 will be divisible by 13 but not by 132, which is
impossible for a cube. Thus Nm(p) 6= 13.

If Nm(p) = 2, then 2 divides NmK/Q(y +
√
−13) = y2 + 13. Hence y is odd, so

y2 ≡ 1 mod 8. Consequently x3 = y2 + 13 ≡ 6 mod 8. This forces x to be even,
but then 8 | x3 which gives a contradiction.

We deduce that there are no prime ideals of OK which divide both 〈y +
√
−13〉

and 〈y +
√
−13〉.

Therefore we can apply Lemma 67 with n = 3. The equation (2) implies that
there is an ideal a such that

〈y +
√
−13〉 = a3 (3)

(and similarly for 〈y −
√
−13〉, but we won’t need that).

Now we use the class group. Using the Minkowski bound and Dedekind–Kummer
theorem, we can calculate Cl(Q(

√
−13)) = Z/2Z. From equation (3), we get the

following equation in the class group:
[a]3 = [〈y +

√
−13〉] = [1].

Since the class group has order 2, [a]2 = [1] so we deduce that [a] = [1]. In other
words, a is principal, so we have

a = 〈u+ v
√
−13〉

for some u, v ∈ Z.
Substituting this into (3), we get

〈u+ v
√
−13〉3 = 〈y +

√
−13〉.

This implies that
(u+ v

√
−13)3 = α(y +

√
−13)

where α is a unit in Z[
√
−13]. The only units in Z[

√
−13] are ±1 (because a unit

must have norm ±1, and the only integer solutions to x2 + 13y2 = ±1 are (±1, 0)).
So we get

(u+ v
√
−13)3 = ±(y +

√
−13).

Multiplying u and v by −1 if necessary, we may assume WLOG that
(u+ v

√
−13)3 = y +

√
−13.

Expanding this out, we get
u3 + 3u2v

√
−13− 3× 13uv2 − 13v3√−13 = y +

√
−13. (4)
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Because {1,
√
−13} is a Q-basis for Q(

√
−13), we can group together the terms

to get
u(u2 − 39v2) = y, (5)
v(3u2 − 13v2) = 1. (6)

From (6), we deduce that v = ±1 (since u, v ∈ Z).
If v = +1, then 3u2 − 13 = 1 so 3u2 = 14 which has no integer solutions.
If v = −1, then 3u2 − 13 = −1 so 3u2 = 12 so u = ±2.
Substituting (u, v) = (±2,−1) into (5), we get

y = u(u2 − 39v2) = ±2× (4− 39) = ±70.
We could find x by substituting this back into the original equation:

x3 = y2 + 13 = 4913.
Of course, we could calculate 3

√
4913, but I don’t know 3

√
4913 off by heart!

With a little more manipulation of algebraic numbers, we can avoid calculations
involving big numbers. In fact, our original equation (1) can be rewritten as

x3 = NmK/Q(y +
√
−13).

Since norms are multiplicative, this becomes
x3 = NmK/Q(u+ v

√
−13)3.

Both sides of this equation are in Z, where the only cube root of 1 is 1 itself. Thus
we get

x = NmK/Q(u+ v
√
−13) = u2 + 13v2 = 4 + 13 = 17.

Hence the only integer solutions to y2 = x3 − 13 are
x = 17, y = ±70.

This equation has solutions which are rather large to find by manual brute force
search. Of course a computer could have found them quickly, but it could not
prove that they are the only solutions. This method allows us to do both – find
the solutions and prove that there are no more – entirely by hand.
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26. Dirichlet’s Unit Theorem

Our final topic will be to understand the units in OK . We have seen that
x ∈ OK is a unit if and only if NmK/Q(x) = ±1.

Out of laziness I might say “unit of K” to mean “unit of OK” (the true units
of K are not very interesting – just all the non-zero elements of K, because it is a
field).

The following lemma shows that the property “α is a unit in OK” doesn’t depend
on which number field K we choose to look at (providing α ∈ K of course).

Lemma 68. Let L/K be an extension of number fields and suppose that α ∈ K.
Then α ∈ O×K if and only if α ∈ O×L .

Proof. If α ∈ O×K , then α ∈ OK ⊆ OL and α−1 ∈ OK ⊆ OL so α ∈ O×L .
If α ∈ O×L , then α, α−1 ∈ OL so α, α−1 are both algebraic integers. We are

given that α ∈ K; since K is a field, this implies that α−1 ∈ K (note that α 6= 0
because α ∈ O×L ). Thus α, α−1 are both algebraic integers contained in K i.e. they
are both in OK . Hence α ∈ O×K . �

Roots of unity.

Definition. Let K be a number field. We write

µK = {ζ ∈ K : ζ is a root of unity}.

Lemma 69. µK ⊆ O×K.

Proof. Let ζ ∈ µK . Then ζ is a root of Xn − 1 for some n, so ζ is an algebraic
integer. Since ζ ∈ K, we deduce that ζ ∈ OK .

We have ζ−1 = ζn−1 ∈ OK (because OK is a ring) so ζ is a unit in OK . �

Indeed, roots of unity are elements of O×K of finite order w.r.t. multiplication;
conversely, any element of O×K of finite order is a root of unity.

Lemma 70. For any number field K, µK is a finite cyclic group under multipli-
cation.

Proof. It is clear that µK is closed under multiplication and under multiplicative
inverses, and contains 1, so µK is a group under multiplication.

To prove that µK is finite: let ζ be a primitive n-th root of unity (i.e. ζn = 1 but
ζm 6= 1 if 1 ≤ m ≤ n − 1). The minimal polynomial of ζ is the n-th cyclotomic
polynomial Φn(X), which has degree φ(n) (Euler’s totient function) – this was
proved in Algebra 2. Hence [Q(ζ) : Q] = φ(n). Furthermore, φ(n) ≥

√
n for

all n ≥ 3 (you can prove this using the formula for φ(n) in terms of the prime
factorisation of n).

So if ζ ∈ K, we must have

[K : Q] > [Q(ζ) : Q] ≥
√
n.
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Since K is a fixed number field, this means that there are only finitely many
possible values of n. In other words, there are only finitely many possible values
for the order n of a root of unity in K.

Furthermore for each n, there are only finitely many n-th roots of unity. Hence
K contains only finitely many roots of unity.

To show that µK is cyclic, we use another result from Algebra 2: any finite
subgroup of the multiplicative group of a field is cyclic. �

Lemma 71. If K has at least one real embedding, then µK = {±1}.

Proof. Let σ be a real embedding of K. For ζ ∈ µK , we have ζn = 1 for some n.
Then σ(ζ) ∈ R and σ(ζ)n = 1, which implies that σ(ζ) = ±1.

But of course σ(1) = 1 and σ(−1) = −1. Since σ is injective, we must have
ζ = ±1. �

On the other hand, if all the embeddings of K are complex, then there is no
shortcut to finding µK .

For imaginary quadratic fields, we can easily work out all the units.

Lemma 72. Let d be a square-free positive integer and let K = Q(
√
−d). Then

O×K = µK. More precisely,

O×K =


{±1,±i} if d = 1
{±1,±ζ,±ζ2} if d = 3, where ζ = exp(2πi/3) = −1+

√
−3

2
{±1} otherwise.

Proof. If d ≡ 1 or 2 mod 4, then OK = Z[
√
−d]. So any α ∈ O×K can be written

as x+ y
√
−d, with x, y ∈ Z and

NmK/Q(α) = x2 + dy2 = ±1.
Now x2 +dy2 is always positive, so there are no solutions to x2 +dy2 = −1. To get
a solution to x2 + dy2 = 1, we must have x2 = 1, dy2 = 0 (giving x = ±1, y = 0 –
this corresponds to the units ±1, which exist in every field) or else x2 = 0, dy2 = 1
(this is only possible if d = 1, in which case x = 0, y = ±1 so α = ±i).

If d ≡ 3 mod 4, then OK = Z[1+
√
−d

2 ]. So any α ∈ O×K can be written as x+y
√
−d

2 ,
with x, y ∈ Z. Since NmK/Q = (x2 + dy2)/4, we get

x2 + dy2 = ±4.
This implies that x2 ≤ 4 so we get three cases:

• x = 0. Then dy2 = 4. This forces d = 1, 2 or 4 but none of these are
≡ 3 mod 4.
• x = ±1. Then dy2 = 3. So we must have d = 3, y = ±1. Thus we get the
units ±1±

√
−3

2 = ±ζ,±ζ2.
• x = ±4. Then dy2 = 0 so y = 0. This gives the units ±1, in any field. �

Thus for imaginary quadratic fields, we see that O×K is finite.
For real quadratic fields, Lemma 71 tells us that µK = {±1}. But we shall

show that O×K is always infinite. For now, observe that this is true for K = Q(
√

2)
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because 1 +
√

2 ∈ OK and NmK/Q(1 +
√

2) = −1, so 1 +
√

2 ∈ O×K . But 1 +
√

2 is
not a root of unity (it is real and not in ±1) so the set {(1 +

√
2)n : n ∈ Z} is an

infinite set of units in Z[
√

2].

Dirichlet’s Unit Theorem.
Dirichlet’s Unit Theorem gives us a description of O×K as a group under multi-

plication. We have seen that the torsion elements are the roots of unity µK , which
form a finite cyclic group. The theorem tells us that the group O×K is the product
of µK with a finitely generated abelian group, and furthermore it tells us the rank
of that finitely generated abelian group in terms of the signature of K.

Theorem 73. Let K be a number field of signature (r, s). Let µK denote the set
of roots of unity in K. Then O×K is isomorphic to µK×Zr+s−1 as an abelian group
(with the operation of multiplication).

e.g. K = Q: the signature is (1, 0) so r + s − 1 = 0. Thus O×K = µK = {±1},
which matches what we know about Z×.

Similarly for an imaginary quadratic field: the signature is (0, 1) so r+s−1 = 0.
Thus O×K = µK is finite, agreeing with Lemma 72.

Meanwhile a real quadratic field has signature (2, 0) so r + s − 1 = 1. Hence
O×K ∼= µK ×Z = {±1} ×Z by Lemma 71. Thus O×K is infinite, matching what we
saw for Q(

√
2).
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27. Units of a real quadratic field

Fundamental units.
Let K = Q(

√
d) be a real quadratic field. We saw yesterday that Dirichlet’s

Unit Theorem implies that
O×K ∼= {±1} × Z.

In other words, there is some ε ∈ O×K such that
O×K = {±εn : n ∈ Z},

and ε is not a root of unity.
There may be more than one possible choice of ε such that O×K has this form:

indeed, −ε, ε−1 or −ε−1 will also work. In fact, these are the only possibilities.
This could be considered obvious from the structure of the group {±1} × Z, but
let’s prove it carefully.
Lemma 74. Let K be a real quadratic field and suppose that

O×K = {±εn : n ∈ Z}.
Let η ∈ O×K be such that we also have

O×K = {±ηn : n ∈ Z}.
Then

η ∈ {±ε,±ε−1}.
Proof. From the defining property of ε and since η ∈ O×K , we have

η = uεn

for some n ∈ Z and u ∈ {±1}.
Similarly from the defining property of η and since ε ∈ O×K , we have

ε = vηm

for some m ∈ Z and v ∈ {±1}.
Now

η = uvnηmn

so
ηmn−1 = uvn = ±1.

Since η is not a root of unity, this implies that mn− 1 = 0 and so m = n = 1 or
m = n = −1. �

We consider K as a subfield of R (via the embedding for which
√
d > 0).

Replacing ε by −ε if necessary, we may assume that ε is positive. Then replacing
ε by ε−1 if necessary, we may assume that ε > 1. We then have

−ε < −1, −1 < −ε−1 < 0, 0 < ε−1 < 1.
In conclusion we see that there is a unique ε > 1 such that

O×K = {±εn : n ∈ Z}.
We call this ε the fundamental unit of K.

The following proposition tells us how to find the fundamental unit.
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Proposition 75. The fundamental unit is given by x + y
√
d where (x, y) is the

solution to
x2 − dy2 = ±1

with the smallest possible value of x, where
• x, y are positive integers if d ≡ 2, 3 mod 4,
• x, y are positive half-integers if d ≡ 1 mod 4.

Proof. First let η be any unit of OK greater than 1. Since OK = Z[
√
d] if

d ≡ 2, 3 mod 4 or Z[1+
√
d

2 ] if d ≡ 1 mod 4, we can write η = u + v
√
d where u, v

are integers or half-integers respectively. Since η ∈ O×K , we have

(u+ v
√
d)(u− v

√
d) = u2 − dv2 = NmK/Q(η) = ±1.

Hence u− v
√
d = ±η−1.

We conclude that the four elements ±u ± u
√
d are in fact ±η,±η−1 in some

order. Since η > 1, it is the largest of these four elements, so u, v are both positive.
Let ε be the fundamental unit. Applying the above argument to ε, we can write

ε = x+ y
√
d

where x, y are positive integers or half-integers as appropriate, satisfying x2−dy2 =
±1.

If (u, v) is another solution of the equation with u, v positive integers (when
d ≡ 2, 3 mod 4) or positive half-integers (when d ≡ 1 mod 4), then η := u+ v

√
d

is in O×K . (To prove this, we first check that u + v
√
d ∈ OK ; then the equation

tells us that the norm is ±1, so it is in O×K . If d ≡ 2 or 3 mod 4, then u, v ∈ Z
so certainly u+ v

√
d ∈ OK = Z[

√
d]. But if d ≡ 1 mod 4, then we are only given

that 2u, 2v ∈ Z and we have to check that u+ v
√
d ∈ Z[1+

√
d

2 ]. In other words, we
have to check that u and v are either both integers or both non-integers – we can
rewrite this as 2u ≡ 2v mod 2 (remember this is a non-trivial congruence because
u, v might not be integers). This follows from the equation (2u)2 − d(2v)2 = ±4,
since d is odd.) Consequently η = ±εn for some n ∈ Z.

Furthermore since u, v > 0, η is the largest out of {±u ± v
√
d}, and as above

this set is equal to {±η,±η−1}. Hence η > η−1 so η > 1. Therefore
η = εn with n > 1.

Hence η ≥ ε. Thus ε is the smallest unit greater than 1.
It remains to show that “smallest ε > 1” is equivalent to “smallest x > 0.”
If Nm(ε) = +1, then also Nm(η) = +1. We want to show that x ≤ u. Assume

for contradiction that x > u. Then

v2 = u2 − 1
d

<
x2 − 1
d

= y2.

Since y, v are both positive, we get y > v. But now x + y
√
d > u + v

√
d,

contradicting the fact that ε ≤ η.
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If Nm(ε) = −1, then Nm(η) may be +1 or −1. Again assume for contradiction
that x > u. We get

v2 = u2 ± 1
d

<
x2 + 1
d

= y2.

Thus again y > v so x+ y
√
d > u+ v

√
d, contradicting the fact that ε ≤ η.

At the end of the lecture, someone suggested another way of getting from “ε ≤ η”
to “x ≤ u”: write out the binomial expansion of

u+ v
√
d = (x+ y

√
d)n.

Since 1,
√
d are Q-linearly independent, you get u = xn + positive terms. If x ≥ 1,

this immediately implies that x ≤ u. If x = 1
2 , then you have to work a little

harder but can still finish it off. �

e.g. 1 +
√

2 is a unit of Q(
√

2) which is bigger than 1. It has x = 1, which
is certainly the smallest possible value for a positive integer! So 1 +

√
2 is the

fundamental unit of Q(
√

2), proving that
Z[
√

2]× = {±(1 +
√

2)n : n ∈ Z}.

e.g. We find the fundamental unit of K = Q(
√

6).
Here 6 ≡ 2 mod 4 so we look for solutions to x2 − 6y2 = ±1 with x, y positive

integers.
If x = 1, then 6y2 = 1± 1 = 0 or 2, leading to the solution x = 1, y = 0. But

we are looking for y to be a positive integer, so this doesn’t count. (We have just
rediscovered that 1 ∈ O×K , but it is a root of unity!)

If x = 2, 3 or 4, then there are no integer solutions for y.
If x = 5, then 6y2 = 25 ± 1 = 24 or 26. This has a solution y = 2. Thus the

fundamental unit of Q(
√

6) is
5 + 2

√
6.

Consequently all the units of Z[
√

6] are given by
O×K = {±(5 + 2

√
6n : n ∈ Z}.

We have
NmK/Q(5 + 2

√
6) = 25− 24 = +1.

Hence all units of Q(
√

6) have norm +1.
We can translate the fact that 5 + 2

√
6 is the fundamental unit into a statement

about solutions of Pell’s equation: the integer solutions of x2 − 6y2 = 1 are
precisely

{(x, y) : x+ y
√

6 = ±(5 + 2
√

6)n, n ∈ Z}.
There are no units of norm −1, so the equation x2 − 6y2 = −1 has no solutions
(we could also have proved this by working mod 3!).

On the other hand, if the fundamental unit turned out to have norm −1, then
solutions of Pell’s equation x2 − dy2 = 1 would be given by even powers of the
fundamental unit, while solutions of x2− dy2 = −1 would be given by odd powers
of the fundamental unit.
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28. Pell’s equation

Pell’s equation for d ≡ 1 mod 4.
We want to use the theory of units in quadratic fields to study solutions of the

Diophantine equation
x2 − dy2 = 1,

where d is a positive square-free integer, known as Pell’s equation.
We saw yesterday that, if d ≡ 2 or 3 mod 4, and if the fundamental unit ε of

Q(
√
d) has norm +1, then all the integer solutions to Pell’s equation are given by

{(x, y) : x+ y
√
d = ±εn for some n ∈ Z}.

Similarly, if the fundamental unit ε has norm −1, then all the integer solutions to
Pell’s equation are given by

{(x, y) : x+ y
√
d = ±ε2n for some n ∈ Z},

In particular, if d ≡ 2 or 3 mod 4, then Pell’s equation always has infinitely many
integer solutions.

If d ≡ 1 mod 4, then OK = Z[1+
√
d

2 ] and so ε might not be in Z[
√
d]. This means

we have to work a bit harder to guarantee that Pell’s equation has a non-trivial
integer solution.

We will prove this by doing “modular arithmetic in OK .” More specifically, we
will work modulo the ideal 〈2〉 (a natural choice because of the denominator of
1+
√
d

2 ). In order to do this, we need to understand the structure of the quotient
ring OK/〈2〉, and we shall find this using a version of the Chinese Remainder
Theorem.

Recall the abstract form of the Chinese Remainder Theorem from Algebra 2.

Theorem 76 (Chinese Remainder Theorem). Let I1, . . . , In be a finite set of ideals
in a ring R. Let J = I1 ∩ · · · ∩ In. Suppose that for every pair of ideals Ii, Ij, we
have Ii + Ij = R. Then there is a ring isomorphism R/J → ∏n

i=1R/Ii.

Corollary 77. Let p1, . . . , pn be distinct non-zero prime ideals in the ring of
integers of a number field OK. Let a = ∏n

i=1 pi. Then there is a ring isomorphism
R/a→ ∏n

i=1R/pi.

Proof. Since p1, . . . , pn are distinct maximal ideals, they satisfy the condition
pi + pj = OK for each pair i, j. Hence by Theorem 76, there is a ring isomorphism
OK/b→

∏n
i=1OK/pi, where b = p1 ∩ · · · ∩ pn.

This is not quite what we want: we have to check that p1 ∩ · · · ∩ pn = ∏n
i=1 pi.

First, it is clear that ∏n
i=1 pi ⊆ p1 ∩ · · · ∩ pn i.e. a ⊆ b. Hence there is a surjection

OK/a → OK/b. Composing with the isomorphism from Theorem 76, we get a
surjection

φ : OK/a→
n∏
i=1
OK/pi.
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Since ideal norms are multiplicative, we have

#OK/a = Nm(a) =
n∏
i=1

Nm(pi) = #
(∏
OK/pi

)
.

Thus φ is a surjection between finite sets of the same size, so it is a bijection. �

Lemma 78. Let K = Q(
√
d) where d is a square-free integer with d ≡ 1 mod 4,

d 6= 0 or 1. Then OK/〈2〉 is isomorphic (as a ring) to either F2 × F2 or the field
of order 4.

Proof. Let α = 1+
√
d

2 , so that OK = Z[α]. The minimal polynomial of α is
f(X) = X2 −X + 1−d

4 .
If d ≡ 1 mod 8, then f(X) ≡ X(X−1) mod 2 and so by the Dedekind–Kummer

theorem, 〈2〉 = pq where p, q are distinct prime ideals each of norm 2. By
Corollary 77, there is a ring isomorphism OK/〈2〉 → OK/p × OK/q. Since each
of p and q is a maximal ideal, the quotient rings OK/p and OK/q are fields; since
Nm(p) = Nm(q) = 2, they are both isomorphic to F2. Thus OK/〈2〉 ∼= F2 × F2.

If d ≡ 5 mod 8, then f(X) ≡ X2 + X + 1 mod 2, which is irreducible in
F2[X]. Hence by the Dedekind–Kummer theorem, 〈2〉 is a prime ideal in OK .
Consequently it is a maximal ideal, so OK/〈2〉 is a field. We have Nm(〈2〉) = 4,
so OK/〈2〉 must be the field of order 4. �

We now use another result of modular arithmetic: a version of the Fermat–Euler
theorem for OK .
Lemma 79. Let K be a number field and let a ⊆ OK be an ideal. Let f =
#(OK/a)×. For every β ∈ O×K, we have βf ∈ 1 + a.
Proof. If β ∈ O×K , then β−1 ∈ OK . So we have the following equation in OK/a:

(β + a)(β−1 + a) = 1 + a.

Thus β + a ∈ (OK/a)×.
By Lagrange’s theorem in the multiplicative group (OK/a)×, we get

βf + a = (β + a)f = 1 + a

and so βf ∈ 1 + a. �

Lemma 80. Let K = Q(
√
d) where d is a square-free integer with d ≡ 1 mod 4,

d 6= 1. For every α ∈ O×K, we have α3 ∈ Z[
√
d].

Proof. In order to apply Lemma 79, we need to calculate the size of (OK/a)×.
If OK/〈2〉 ∼= F2×F2: the only unit in F2×F2 is (1, 1) so (OK/〈2〉)× ∼= (F2×F2)×

is the trivial group.
If OK/〈2〉 is the field of order 4: every non-zero element of a field is invertible.

Hence the field of order 4 contains 4−1 = 3 invertible elements, i.e. #(OK/〈2〉)× =
3.

Thus #(OK/a)× = 1 or 3. So Lemma 79 tells us that for any α ∈ O×K ,
α3 ∈ 1 + 〈2〉 i.e. α3 = 1 + 2β for some β ∈ OK . Since OK = Z[1+

√
d

2 ], we have
2β ∈ Z[

√
d] and so 1 + 2β ∈ Z[

√
d]. �
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Now let ε be the fundamental unit of Q(
√
d) where d ≡ 1 mod 4. If ε ∈ Z[

√
d],

then we can get all the solutions of Pell’s equation x2 − dy2 = 1 in the same way
as before.

If ε 6∈ Z[
√
d], then Lemma 80 tells us that ε3 ∈ Z[

√
d], and also ε3n for every

n ∈ Z. Thus Pell’s equation still has infinitely many solutions: an infinite set of
solutions is given by

{(x, y) : x+ y
√
d = ±ε3n for some n ∈ Z} if NmK/Q(ε) = +1,

{(x, y) : x+ y
√
d = ±ε6n for some n ∈ Z} if NmK/Q(ε) = −1.

(End of examinable material)
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29. Proof of Dirichlet’s Unit Theorem

(All of this lecture is non-examinable.)
Our goal today is to outline the proof of Dirichlet’s unit theorem.

Lattices and discrete subgroups of Rn.
First we need some more facts about lattices.

Lemma 81. Let L be a subgroup of (Rn,+). Then L is a lattice if and only if
both of the following conditions are satisfied:
(i) L is discrete;
(ii) there exists a compact set C such that L+ C = Rn.

Lemma 82. Let L be a subgroup of (Rn,+). Then L is discrete if and only if, for
every bounded subset B ⊆ Rn, the intersection B ∩ L is finite.

(In the lecture, I said that Lemma 82 holds for every subset of Rn. This is false –
it only holds for subgroups.)

Corollary 83. For any positive real number R, the set
{α ∈ OK : |σ(α)| ≤ R for all embeddings σ of K}

is finite.

Proof. We use the canonical embedding ι : K → Rn from lecture 24.
Since ι(OK) is a lattice in Rn, it is a discrete subgroup. The set

{(x1, . . . , xr, y1, z1, . . . , ys, zs) ∈ Rn : |xi| ≤ R for 1 ≤ i ≤ r,
√
y2
i + z2

i ≤ R for 1 ≤ i ≤ s}

is a bounded subset, so its intersection with ι(OK) is finite. �

The logarithm map.
The group O×K has multiplication as its operation, but in order to use lattices

we need additive groups. So we will use a logarithm map to map O×K into an
additive group.

We can only take the logarithm of non-zero numbers, so let
(Rr+2s)∗ = {(x1, . . . , xr, y1, z1, . . . , ys, zs) ∈ Rr+2s : xi 6= 0, (yi, zi) 6= (0, 0) for all i}.

Note that we can make (Rr+2s)∗ into a multiplicative group. Formally we define

(x1, . . . , xr, y1, z1, . . . , ys, zs) · (x′1, . . . , x′r, y′1, z′1, . . . , y′s, z′s)
= (x1x

′
1, . . . , xrx

′
r, y1y

′
1 − z1z

′
1, y1z

′
1 + z1y

′
1, . . . , ysy

′
s − zsz′s, zsz′s + zsy

′
s).

In other words: we just multiply together the xis coordinate-wise. We treat each
pair yj, zj as a complex number yj + izj and multiply these as complex numbers,
then split back up into real and imaginary parts.

With this definition, ι restricts to a homomorphism of multiplicative groups
K× → (Rr+2s)∗. (Indeed, we have just defined a ring structure on Rr+2s, isomor-
phic to Rr×Cs, and ι is a ring homomorphism i.e. both additive and multiplicative.)
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Recall that we defined Nr,s : Rr+2s → R by

Nr,s(x1, . . . , xr, y1, z1, . . . , ys, zs) = |x1| · · · |xr|(y2
1 + z2

1) · · · (y2
s + z2

s).

Observe that
(Rr+2s)∗ = {x ∈ Rr+2s : Nr,s(x) 6= 0}

and Nr,s restricts to a homomorphism of multiplicative groups (Rr+2s)∗ → R×.
Define ` : (Rr+2s)∗ → Rr+s by

`(x1, . . . , xr, y1, z1, . . . , ys, zs) = (log|x1|, . . . , log|xr|, log(y2
1 + z2

1), . . . , log(y2
s + z2

s)).

This is a homomorphism from a multiplicative group to an additive group.
Let λ = ` ◦ ι : K× → Rr+s.
We will study the kernel and the image of λ restricted to O×K .

The kernel of the logarithm map.
The map λ : O×K → Rr+s is not injective. Its kernel is

{α ∈ O×K : |σ(α)| = 1 for all embeddings σ of K}.

By Corollary 83, ker(λ) is finite. Since ker(λ) is a group, every element of it must
be torsion i.e. every element of ker(λ) is a root of unity.

Conversely, if ζ is a root of unity, then every embedding of ζ satisfies |σ(ζ)| = 1.
Thus ker(λ) = µK .

The image of the logarithm map.
We would like to show that λ(O×K) is a lattice in Rr+s – but this cannot quite

be true, because it is contained in a linear subspace of Rr+s.
Indeed, observe that if x ∈ (Rr+2s)∗ and `(x) = (u1, . . . , ur+s), then

u1 + · · ·+ ur+s = logNr,s(x).

If α ∈ O×K , then Nr,s(ι(α)) = |NmK/Q(α)| = 1 so if λ(α) = (u1, . . . , ur+s), we get

u1 + · · ·+ ur+s = 0.

In other words, λ(O×K) is contained in the linear subspace

H = {(u1, . . . , ur+s) ∈ Rr+s : u1 + · · ·+ un = 0}.

It will be useful to consider a “multiplicative” version of H. Let

S = {x ∈ Rn : Nr,s(x) = 1}.

Then the fact that λ(O×K) ⊆ H can be broken up as:

ι(O×K) ⊆ S, `(S) ⊆ H.

Now H is a R-vector space of dimension r + s − 1. We will use Lemma 81 to
show that λ(O×K) is a lattice in H. The easier part is showing that it is discrete.

Lemma 84. λ(O×K) is a discrete subgroup of (H,+).
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Proof. Let B ⊆ H be a bounded subset. Then B′ = `−1(B) is a bounded subset of
Rr+2s (if all coordinates of elements of B are bounded by R, then all coordinates
of `−1(B) are bounded by exp(R)). Hence by Lemma 82, B′ ∩ ι(OK) is finite.

Applying `, we deduce that B′∩λ(O×K) is finite and so we are done by the other
direction of Lemma 82. �

Now we have to prove the second condition from Lemma 81. We shall deduce
this from an analogous result for ι(O×K) ⊆ S ⊆ Rn.
Lemma 85. There exists a compact set C ′ ⊆ S such that S = ι(O×K).C ′ (in the
multiplicative group structure on S; note that S is a subgroup of (Rr+2s)∗).
Proof. Choose a compact, convex, symmetric set X ⊆ Rn of volume at least
2n covol(ι(OK)). (Unlike when we used Minkowski’s theorem to study ideals, we
don’t care what compact set we use, only that it is large enough.)

Since X is compact, the continuous function Nr,s is bounded on X i.e. we can
pick N such that Nr,s(x) ≤ N for all x ∈ X.

We know that OK contains only finitely many non-zero ideals of norm ≤ N ;
hence it contains only finitely many non-zero principal ideals of norm ≤ N . Pick
α1, . . . , αm ∈ OK such that 〈α1〉, . . . , 〈αm〉 is the list of all non-zero principal
ideals of OK of norm ≤ N . Now if β is any non-zero element of OK of norm ≤ N ,
〈β〉 = 〈αi〉 for some i and so β = εαi for some ε ∈ O×K .

Consider any γ ∈ S. Multiplication by γ gives a linear map mγ : Rr+2s → Rr+2s,
and det(mγ) = Nr,s(γ) = 1. Hence

vol(γ.X) = vol(X) ≥ 2n covol(ι(OK)).
Hence by Minkowski’s theorem on lattices, γ.X ∩ ι(OK) 6= {0} i.e. we can choose
β ∈ OK \ {0} such that ι(β) ∈ γ.X. Multiplying by γ does not change Nr,s, so

|NmK/Q(β)| = Nr,s(ι(β)) ≤ N.

Hence β = εαi for some i and some ε ∈ O×K as above. Then
γ ∈ β−1.X = ε−1α−1

i X.

So if we let
C ′ =

m⋃
i=1

α−1
i X ∩ S,

we get γ ∈ O×K .C ′. Furthermore C ′ is compact because α−1
i .X is compact for each i,

so the union of finitely many such sets is compact; and then we are intersecting
with S which is closed in Rn. �

Using the fact that ` : S → H is surjective, we deduce that λ(O×K) + C = H
where C ′ = `(C). Combining these lemmas establishes that `(ι(O×K)) is a lattice
in H, so it is isomorphic to Zdim(H) = Zr+s−1.

So λ|O×K : O×K → H has kernel µK and image isomorphic to Zr+s−1. It follows
that O×K is a finitely generated abelian group. By the structure theorem for finitely
generated abelian groups, it is isomorphic to A × Zm where A = (O×K)tors is a
finite group and m is a nonnegative integer. We know that (O×K)tors = µK , and
then the fact that O×K/µK ∼= Zr+s−1 establishes that m = r + s− 1.
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