Algebraic Number Theory Example Sheet 2

Hand in the answers to questions 3, 5, 7 (marked with †). Deadline 2pm Friday, Week 6.

- 1. Let $\sigma : \mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{C}$ be given by $\sigma(a + b\sqrt{5}) = a b\sqrt{5}$. Explicitly write down the embeddings $\tau : \mathbb{Q}(\sqrt{5}, \sqrt{6}) \hookrightarrow \mathbb{C}$ that extend σ .
- 2. Which integers $-10 \le D \le 10$ are discriminants of quadratic fields?
- †3. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $X^3 2X 2$. Compute the trace $\operatorname{Tr}_{K/\mathbb{Q}}$ of $1, \alpha, \alpha^2, \alpha^3, \alpha^4$ and hence calculate $\Delta(1, \alpha, \alpha^2)$. Determine \mathcal{O}_K and Δ_K .
- 4. Suppose $f = X^3 + bX + c \in \mathbb{Q}[X]$ is irreducible and let α be a root. Let $K = \mathbb{Q}(\alpha)$. Show that

$$\Delta(1,\alpha,\alpha^2) = -4b^3 - 27c^2.$$

†5. Let α be as in Q3. Show carefully that $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\sqrt[3]{d})$ for any non-cube d. Thus not all cubic fields are of the form $\mathbb{Q}(\sqrt[3]{d})$.

Hint: Let $\eta = \sqrt[3]{d}$ and suppose $K = \mathbb{Q}(\eta)$. Then $1, \alpha, \alpha^2$ and $1, \eta, \eta^2$ are both \mathbb{Q} -bases for K. What do we know about the ratio $\Delta(1, \alpha, \alpha^2)/\Delta(1, \eta, \eta^2)$?

- 6. Let $\alpha = \sqrt[3]{10}$. Show that $(1 + \alpha + \alpha^2)/3$ is an algebraic integer. Compute an integral basis for $K = \mathbb{Q}(\alpha)$. What is Δ_K ? (The answer is -300).
- †7. Let p be an odd prime and let $\zeta = \zeta_p = \exp(2\pi i/p)$. Let $K = \mathbb{Q}(\zeta)$ and let $\omega = \zeta 1$. You may want to make use of question 4 from example sheet 1 while doing this question, and you may assume that $\operatorname{Nm}_{K/\mathbb{Q}}(\omega) = p$.
 - (i) Explain why the conjugates of ζ are

$$\zeta, \zeta^2, \zeta^3, \ldots, \zeta^{p-1}.$$

(ii) Using the determinant of a Vandermonde matrix, show that

$$\Delta(1,\zeta,\ldots,\zeta^{p-2}) = \prod_{\substack{1 \le i < j \le p-1}} (\zeta^i - \zeta^j)^2 = (-1)^{(p-1)/2} \cdot \prod_{\substack{1 \le i,j \le p-1, \\ i \ne j}} (\zeta^i - \zeta^j).$$

(iii) Prove that

$$\Delta(1,\zeta,\ldots,\zeta^{p-2}) = (-1)^{(p-1)/2} \left(\prod_{i=1}^{p-1} \zeta^{j}\right)^{p-2} \cdot \left(\prod_{k=1}^{p-1} (\zeta^{k}-1)\right)^{p-2}.$$

Express this in terms of $\operatorname{Nm}_{K/\mathbb{Q}}(\zeta)$ and $\operatorname{Nm}_{K/\mathbb{Q}}(\omega)$ and deduce that

$$\Delta(1,\zeta,\ldots,\zeta^{p-2}) = (-1)^{(p-1)/2} p^{p-2}.$$

(iv) Using the fact that the minimal polynomial of ω is Eisenstein at p, show that $\frac{\omega^{p-1}}{p}$ is an algebraic integer.

(v) Suppose that

$$\beta = \frac{u_0 + u_1\omega + \dots + u_{p-2}\omega^{p-2}}{p}$$

is an algebraic integer, with $u_i \in \mathbb{Z}$ not all zero and $0 \leq u_i < p$. Let j be the smallest nonnegative integer such that $u_j \neq 0$.

- (a) By considering $\omega^{p-2-j}\beta$, show that $\frac{u_j\omega^{p-2}}{p}$ is an algebraic integer. (b) Calculate $\operatorname{Nm}_{K/\mathbb{Q}}(\frac{u_j\omega^{p-2}}{p})$ and obtain a contradiction.
- (vi) Show that $1, \zeta, \ldots, \zeta^{p-2}$ is an integral basis for K.
- 8. Let K be a number field. We say that K is **totally real** if all its embeddings are real. Show that if K is totally real then the discriminant Δ_K is positive.
- 9. Let R be a ring and \mathfrak{a} be an ideal of R. Show that $\mathfrak{a} = R$ if and only if \mathfrak{a} contains a unit.
- 10. Let ω be an algebraic integer.
 - (i) Show that some conjugate of ω has absolute value ≥ 1 .
 - (ii) Suppose further that $Nm(\omega) = 1$. Show that that some conjugate has absolute value ≤ 1 .
 - (iii) (Hard!) With the help of (ii), show that $X^n + X + 3$ is irreducible over \mathbb{Q} for all $n \ge 2$.
- 11. Let, for $n \ge 1$,

$$M_n = (1 + \sqrt{2})^n + (1 - \sqrt{2})^n$$

Show (without expanding brackets) that $M_n \in \mathbb{Z}$, and that moreover it is the nearest integer to $(1 + \sqrt{2})^n$.