ALGEBRAIC GEOMETRY

Problem Sheet 6

(Mastery material)

(1) Suppose that k does not have characteristic 2 or 3.

For $a \in k$, let V_a denote the surface in \mathbb{A}^3 defined by the equation

$$x^{3} + y^{3} + z^{3} - 3a(x^{2} + y^{2} + z^{2}) - a^{2} = 0.$$

You may assume that this polynomial generates the ideal $\mathbb{I}(V_a)$.

For which values of a does V_a have singular points? For each a, find all the singular points of V_a .

(2) Let V, W be affine varieties. Let $v \in V$ and $w \in W$.

Prove that $V \times W$ is non-singular at (v, w) if and only if V is non-singular at v and W is non-singular at w.

(3) Let $V \subseteq \mathbb{A}^n$ be a reducible affine algebraic set, with irreducible components V_1 and V_2 . Let $x \in V_1 \cap V_2$. Prove that

$$T_xV_1 + T_xV_2 \subseteq T_xV$$
.

Is $T_xV_1 + T_xV_2$ always equal to T_xV ?

(Here, $T_xV_1 + T_xV_2$ means the vector space spanned by T_xV_1 and T_xV_2 .)

- (4) Let f be a non-zero polynomial in $k[X_1, \ldots, X_n]$ with no repeated factors. Let $V \subseteq \mathbb{A}^n$ be the hypersurface defined by f.
 - (a) Let x be a point in V and let u be a vector in k^n .

Prove that the polynomial

$$f(x + Tu) \in k[T]$$

has a repeated root at T=0 if and only if $u \in T_xV$.

(b) Suppose that $\deg f = 2$. Prove that if x is a singular point of V and $L \subseteq \mathbb{A}^n$ is a line through x, then either $L \subseteq V$ or $L \cap V = \{x\}$.