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1. Introduction

Stone representation of an algebraic structure A refers to a statement roughly saying that
A can be encoded in some form in a topological space X such that X is constructed out
of A in a natural way. The term is coined around Marshall Stone’s classical theorem from
[Sto36], where this was first done for so called Boolean algebras (see 2.3.1 for the definition;
for now it is enough to think of some algebraic structure, hence a set equipped with some
operations). The text at hand is about this classical theorem, and Stone’s result is proved
in 3.5.

For a Boolean algebra A, the representation process associates a topological space U(A)
to A, called the spectrum of A, see 3.3, from which one can reconstruct the structure A.
We refer to 3.5 and the remark following it. The reconstruction process allows to analyze
a Boolean algebra fully within its spectrum. This opens the possibility to think about
the algebraic structure in terms of topological or even geometrical intuition. For example
one can ask about the shape of the space locally (at each point) and gain systematic
understanding about Boolean algebras from it. As a matter of fact one can associate
many spaces with the features above to almost every algebraic structure, but these spaces
contain generally much more information than the original structure and they are therefore
deemed to be too complicated to be analysable or of any help. This is not the case for
the spectrum of a Boolean algebra: The reason is that they have an intrinsic topological
description (as Boolean spaces, cf. 3.1) and the representation above also goes the other
way. Hence for every Boolean space there is a unique Boolean algebra from which we can
reconstruct the space. This is done in 3.6.

Our two main results 3.5 and 3.6 are the backbone of the celebrated Stone Duality for
Boolean algebras, where they are tied up in the language of category theory and the power
of these theorems is made fully visible. We refer to [Kop89, Chapter 3].

The reader is assumed to have basic knowledge of general (Hausdorff) topology as can
be found in [Kel75; Eng89]. Further, some acquaintance with the basic notions of partially
ordered sets is required, as for example exposed in [Fuc63].

Outline of contents. In section 2 a preliminary version of the representation theorem is
presented, without reference to topology. This is developed in the more general context
of distributive lattices (see, 2.1.1 for the definition). The rational here is twofold: On the
one hand, the general case is not more complicated to prove and on the other hand, Stone
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Duality is also available in this more general context; the reader who wants to follow up
this path will then have an adequate preparation. In section 3 we prove our main theorems
3.5 and 3.6.
In this text, the symbol N stands for the set of natural numbers N = {1, 2, 3, . . .}, whereas
N0 = {0} ∪N.

2. Stone representation of distributive lattices

Summary In this chapter we describe the famous representation theorem for distributive
lattices of M. Stone, cf. [Sto37]. He proved this first for the special case of Boolean algebras
in [Sto36], but in fact the proof goes through more generally.

2.1. Distributive lattices. We present a brief introduction to distributive lattices, suit-
able for our purposes. For more details we refer to [Grä11, Chapter II].

2.1.1. Definition. A distributive lattice in this text[1] is a partially ordered set L =
(L,≤) with the following properties:
DL1 For all a, b ∈ L the supremum of {a, b} for the partial order≤ exists. The supremum

is denoted by a ∨ b. It is also called the join of a and b.
DL2 For all a, b ∈ L the infimum of {a, b} for the partial order ≤ exists. The infimum

is denoted by a ∧ b. It is also called the meet of a and b.
Hence we may view the operations ∧, ∨ as functions L × L −→ L. Notice that both
operations are commutative and associative as follows immediately from their definitions;
in particular, expressions of the form a1 ∧ . . . ∧ an are unambiguous. However, the next
requirement is not implied by the previous ones:
DL3 Distributivity law for ∧ and ∨

For all a, b, c ∈ L we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
DL4 There is a smallest element for ≤, which we denote by ⊥, called bottom. There

is a largest element for ≤, which we denote by >, called top.
2.1.2. Examples.

(i) The most common example of a distributive lattice is the powerset P(S) of a set
S together with the partial order given by inclusion.

(ii) There is a smallest distributive lattice, consisting of two elements ⊥< >. There is
also a terminal distributive lattice consisting of exactly one element.

(iii) More generally, if L is a subset of P(S) containing ∅, S and if L is closed under
taking finite intersections and finite unions (in S), then L = (L,⊆) is a distributive
lattice. The operations and constants in definition 2.1.1 are given by

⊥= ∅, > = S, a ∧ b = a ∩ b, a ∨ b = a ∪ b.
Distributive lattices of this form are called lattices of subsets (of S).

(iv) The set of open subsets of a topological space is a distributive lattice. The set
of closed subsets of a topological space is a distributive lattice. Both lattices are
lattices of subsets of the space.

[1]In the literature, condition DL4 is not required and the objects that we are talking about are called
bounded distributive lattices. However we will always work under assumption DL4 and suppress the
adjective bounded.
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(v) A distributive lattice that is not by definition a lattice of subsets is the set of propo-
sitional sentences (expressions made up of letters p, q, r, . . . using the connectives
¬,∨,∧,⇒) modulo the equivalence relation ∼ saying that two such expressions
have the same truth table. The order is given by [s]∼ ≤ [t]∼ ⇐⇒ (s ⇒ t) is a
tautology.

In section 2.3 below we will see another example of distributive lattices, namely Boolean
algebras.

2.1.3. Definition. A map ϕ : L −→ M between distributive lattices is called a homo-
morphism (of lattices) if it preserves ⊥,>, ∧ and ∨. Explicitly, this means ϕ(⊥L) =⊥M

, ϕ(>L) = >M , ϕ(a ∧L b) = ϕ(a) ∧M ϕ(b) and ϕ(a ∨L b) = ϕ(a) ∨M ϕ(b) for all a, b ∈ L.
(For better readability we will drop the subscripts L,M of the operations when this is
unambiguous.)

The homomorphism ϕ is called an isomorphism (of lattices) if it is bijective.

2.1.4. Remark. Let ϕ : L −→M be a homomorphism of lattices.
(i) The map ϕ preserves the partial orders given on L,M because x ≤ y is equivalent

to x = x ∧ y in every distributive lattice and this identity is preserved by ϕ.
(ii) If ϕ is an isomorphism, then its compositional inverse ϕ−1 is again a homomor-

phism: The proof is straightforward and follows tightly the lines of the proof that
the compositional inverse of a bijective homomorphism of groups, is itself a homo-
morphism of groups.

2.2. The representation of distributive lattices as lattices of subsets.

2.2.1. We show that every distributive lattice is isomorphic to a lattice of subsets of some
set S (cf. 2.2.12). The key issue is how to find S. In order to construct S we will need
some preparations.

2.2.2. Definition. Let L be a distributive lattice. A filter of L is a subset F of L with
the following properties.

F1 F 6= ∅.
F2 If a, b ∈ F , then a ∧ b ∈ F .
F3 If a ∈ F and a ≤ b ∈ L, then b ∈ F .[2]

Obviously L is a filter of L. A filter is proper if it is different from L. In virtue of F3,
this is equivalent to saying that ⊥/∈ F .

2.2.3. Examples. Let L be a distributive lattice.
(i) Clearly L is the largest filter of L and {>} is the smallest filter of L.
(ii) If a ∈ L, then the set fa := {b ∈ L | a ≤ b} is obviously the smallest filter of L

containing a, called the principal filter of a.
(iii) If L is a lattice of subsets of a set S (cf. 2.1.2(iii)) and p ∈ S, then the set
{a ∈ L | p ∈ a} is obviously a proper filter of L.

(iv) In the distributive lattice L of open subsets of a topological space X, the so called
neighborhood filter Np = {O ∈ L | p ∈ O} of a point p ∈ X is a filter of L. This is
a special case of (iii)

[2]Hence by F1 we know > ∈ F .
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2.2.4. Alternative description of filters. The following conditions are equivalent for
every subset F of a distributive lattice L.

(i) F is a filter.
(ii) F 6= ∅ and for all a, b ∈ L we have

a ∧ b ∈ F ⇐⇒ a ∈ F and b ∈ F.

Proof. (i)⇒(ii). We know F 6= ∅ by condition F1 in 2.2.2. The implication ⇐ of the
equivalence holds by F2 and the implication⇒ follows from F3 by noticing that a∧b ≤ a, b.
(ii)⇒(i). Obviously conditions F1 and F2 follow from (ii). Towards F3, if a ≤ b ∈ L and
a ∈ F , then a ∧ b = a ∈ F and so implication ⇒ in (ii) implies b ∈ F . �

2.2.5. Definition. A filter F of a distributive lattice L is called a prime filter if
P1 F is proper, hence F 6= L.
P2 For all a, b ∈ L with a ∨ b ∈ F we have a ∈ F or b ∈ F .

The filters in example 2.2.3(iii) are clearly prime. On the other hand, principal filters may
or may not be prime. For example the principal filter of a ∈ P(S) in example 2.1.2(i) is
prime if and only if a has exactly one element.

2.2.6. Characterization of prime filters. The following conditions are equivalent for
every subset F of a distributive lattice L.

(i) F is a prime filter.
(ii) F 6= ∅, L and for all a, b ∈ L the following equivalences hold.

a ∧ b ∈ F ⇐⇒ a ∈ F and b ∈ F
a ∨ b ∈ F ⇐⇒ a ∈ F or b ∈ F.

(iii) The map

χ : L −→ {⊥,>}, a 7−→

{
> if a ∈ F
⊥ if a /∈ F,

is a homomorphism of lattices.

Proof. (i)⇒(ii). Since F is a proper filter we know that F 6= L and by 2.2.4 we only need
to show the second equivalence. The implication ⇒ holds by P2 and the implication ⇐
follows from a, b ≤ a ∨ b and F3.
(ii)⇒(i). By 2.2.4 we only need to show P1 and P2. Since F 6= L we know P1. The
implication ⇒ in the second equivalence of (ii) is just P2.

Hence we know that (i) and (ii) are equivalent.
(ii)⇔(iii). The map χ pre

serves ⊥ and > just if ⊥/∈ F and > ∈ F . Hence under both assumptions (ii) and (iii) we
know ⊥/∈ F and > ∈ F . Furthermore, the equivalences in (ii) expressed in terms of the
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map χ translate into
χ(a ∧ b) = > ⇐⇒ χ(a) = > and χ(b) = >
χ(a ∨ b) = > ⇐⇒ χ(a) = > or χ(b) = >.

But just says that χ preserves meet and join. Thus (ii) is equivalent to (iii). �

2.2.7. Notation. Let L be a distributive lattice. We write
PrimF(L) = {P ⊆ L | P is a prime filter}

for the set of prime filters of L. If S ⊆ L we write
V (S) = {P ∈ PrimF(L) | S ⊆ P}.

When S = {a} with a ∈ L we just write V (a) instead of V ({a}), hence V (a) = {P ∈
PrimF(L) | a ∈ P}. Finally we write

C(L) = {V (a) | a ∈ L}.
The set S promised in 2.2.1 is PrimF(L) and the lattice of subsets of this set, which is
isomorphic to the given lattice L is supported by C(L). All but one property of these
statements are mere observations:

2.2.8. Observation. In the situation of 2.2.7 we observe the following properties.
(i) We have V (⊥) = ∅, because by P1 no prime filter contains ⊥. Furthermore

V (>) = PrimF(L) because every prime filter contains >.
(ii) If a, b ∈ L then by 2.2.6(i)⇒(ii) we know

V (a ∧ b) = V (a) ∩ V (b), and
V (a ∨ b) = V (a) ∪ V (b).

(iii) By (i) and (ii), the set C(L) is a lattice of subsets of PrimF(L) and the map
VL : L −→ C(L) that sends a ∈ L to V (a) is a homomorphism of lattices.

Hence, once we know that the map VL from 2.2.8(iii) is injective, then VL is an isomorphism
of distributive lattices as announced in 2.2.1. However, injectivity requires some work;
notice that at the moment we even do not know whether a given distributive lattice with
at least two elements possesses a prime filter.

2.2.9. Lemma. Let L be a distributive lattice and let ∅ 6= S ⊆ L. Then there is a smallest
filter of L containing S, namely

fS = {a ∈ L | ∃n ∈ N, s1, . . . , sn ∈ S : s1 ∧ . . . ∧ sn ≤ a}.
The filter fS is called the filter generated by S. Notice that f{a} = fa for a ∈ L.
Proof. Clearly S ⊆ fS. We first show that fS is a filter: Since S 6= ∅ we have fS 6= ∅
and so F1 of 2.2.2 holds. If fS 3 a ≤ b ∈ L then clearly b ∈ fS and so F3 holds. Now
assume a, b ∈ fS. Choose k, n ∈ N and s1, . . . , sk, t1, . . . , tn ∈ S with s1 ∧ . . . ∧ sk ≤ a and
t1 ∧ . . . ∧ tn ≤ b. Then s1 ∧ . . . ∧ sk ∧ t1 ∧ . . . ∧ tn ≤ a ∧ b, witnessing that a ∧ b ∈ fS.

Hence indeed fS is a filter containing S and it remains to show that fS is contained
in every filter F that contains S. Take a ∈ fS. By definition of fS there are n ∈ N and
s1, . . . sn ∈ S with s1∧ . . .∧sn ≤ a. As S ⊆ F , condition F2 for F ensures s1∧ . . .∧sn ∈ F .
But now condition F3 for F ensures that a ∈ F as required. �
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The next proposition is central for the representation theorem 2.2.12.

2.2.10. Proposition. Let F be a filter of a distributive lattice L and let a ∈ L\F . Suppose
that there is no proper filter G with F ( G and a /∈ G (hence F is maximal for inclusion
among filters of L not containing a). Then F is a prime filter.

Proof. Since a /∈ F , the filter F is proper and thus satisfy condition P1 of 2.2.5. We need
to verify condition P2. So take b, c ∈ L with b ∨ c ∈ F . Assume by way of contradiction
that b, c /∈ F . Let G be the filter generated by F ∪ {b} and let H be the filter generated
by F ∪ {c}. By the maximality assumption on F in the proposition we know that a ∈ G
and a ∈ H. By 2.2.9 there are s1, . . . , sk, t1, . . . , tn ∈ F with

s1 ∧ . . . ∧ sk ∧ b ≤ a and
t1 ∧ . . . ∧ tn ∧ c ≤ a.

Then z := s1 ∧ . . . ∧ sk ∧ t1 ∧ . . . ∧ tn ∈ F by F2 of 2.2.2 and therefore z ∧ b, z ∧ c ≤ a.
But then (z ∧ b) ∨ (z ∧ c) ≤ a and by the distributivity law DL3 for distributive lattices
we obtain

z ∧ (b ∨ c) = (z ∧ b) ∨ (z ∧ c) ≤ a.

However, at the beginning of the proof we have assumed that b ∨ c ∈ F . Then F2 implies
z ∧ (b ∨ c) ∈ F and consequently F3 implies a ∈ F . This contradicts the assumption of
the proposition. �

2.2.11. Corollary. Let F be a filter of the distributive lattice L and let a ∈ L \ F . Then
there is a prime filter P of L containing F with a /∈ P .

Proof. We apply the Lemma of Zorn (cf. [Cie97, Theorem 4.3.4, p. 53]) to the set

S = {G ⊆ L | G filter of L with F ⊆ G and a /∈ G}
furnished with the partial order ⊆. If C ⊆ S is nonempty and totally ordered for inclusion,
then routine checking shows that

⋃
C is again a filter of L and obviously F ⊆

⋃
C (as

C 6= ∅) and a /∈
⋃
C. Thus

⋃
C is an upper bound of C in the partially ordered set (S,⊆).

Since S is nonempty (it contains F ) we may apply Zorn’s Lemma and see that (S,⊆) has
a maximal element P . By 2.2.10 we know that P is a prime filter. Since P ∈ S we obtain
F ⊆ P and a /∈ P , as required. �

2.2.12. Representation theorem for distributive lattices (This was originally proved
by Marshall Stone in [Sto37].) Every distributive lattice L is isomorphic to the distributive
lattice C(L) of subsets of PrimF(L) (cf. 2.2.7). The isomorphism is given by the map
VL : L −→ C(L) that sends a ∈ L to V (a) = {P | a ∈ P}.

Proof. By 2.2.8, the only property that remains to be shown is injectivity of VL. Take
a, b ∈ L and assume that b � a. This means that a is not in the principal filter fb
generated by b. By 2.2.11, there is a prime filter P of L with fb ⊆ P and a /∈ P . Hence
P ∈ V (a) 6= V (b), which entails V (a) 6= V (b) as required. �

We conclude with one notion that becomes central in the rest of the text.

2.2.13. Definition. A filter F of a distributive lattice L is called a ultrafilter if it is a
maximal proper filter, i.e.,
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U1 F is proper, hence F 6= L.
U2 If G is a filter of L with F ⊆ G, then G = F or G = L.

2.2.14. Observation. Ultrafilters are prime by 2.2.10 applied to a =⊥. Furthermore ultra-
filters exist in any distributive lattice that satisfies ⊥6= >: apply the proof of 2.2.11 to
F = {>} and a =⊥.

2.3. Application to Boolean algebras.

2.3.1. Definition. A Boolean algebra is a distributive lattice A that satisfies the follow-
ing additional property:
BA Existence of a complement

For every a ∈ A there is some b ∈ A with a ∧ b =⊥ and a ∨ b = >.
The element b in BA is uniquely determined as follows from DL3. We may therefore
define ¬a = b and called it the complement of a (in A).

A map ϕ : A −→ B between Boolean algebras is called a homomorphism (of Boolean
Algebras) if ϕ is a homomorphism of lattices. By uniqueness of complements, the prop-
erties defining the complement in BA readily imply that ϕ(¬a) = ¬ϕ(a) for all a ∈ A,
thus ϕ preserves complements as well.

An isomorphism (of Boolean algebras) is an isomorphism of distributive lattices be-
tween Boolean algebras.

2.3.2. Example. The prime example of a Boolean algebra is the powersetP(S) of a set S, cf.
2.1.2(i). The distributive lattices in 2.1.2(iii),(iv) are in general not Boolean algebras. The
distributive lattice in 2.1.2(v) is a Boolean algebra (called Tarski-Lindenbaum algebra of
propositional calculus), because complements are given by ¬[t]∼ = [¬t]∼ for a propositional
expression t.

If A is a nonempty subset of P(S) that is closed under taking finite intersections and
complements (in S), then A = (A,⊆) is a Boolean algebra. The operations and constants
in definitions 2.1.1 and 2.3.1 are given by

⊥= ∅, > = S, a ∧ b = a ∩ b, a ∨ b = a ∪ b [3], and ¬a = S \ a.
Boolean algebras of this form are called Boolean algebras of subsets (of S). .

Obviously a Boolean algebras of subsets of S is the same as a lattice of subsets of S,
which is at the same time a Boolean algebra. Hence we can write out the representation
theorem 2.2.12 for Boolean algebras. However we can do slightly better, because in Boolean
algebras, prime filters agree with ultrafilters:

2.3.3. Characterization of ultrafilters in Boolean algebras. The following conditions
are equivalent for every subset F of a Boolean algebra A.

(i) F is an ultrafilter.
(ii) F is a prime filter.
(iii) F is a proper filter and for all a ∈ A we have a ∈ F or ¬a ∈ F .

[3]The choice of a∨ b here makes sense, because A is closed under finite intersections and complements;
now apply DeMorgan’s law.
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(iv) The map

χ : A −→ {⊥,>}, a 7−→

{
> if a ∈ F
⊥ if a /∈ F,

is a homomorphism of Boolean algebras.

Proof. (i)⇒(ii) holds by 2.2.14 in any distributive lattice.
(ii)⇒(iii) The prime filter F is proper by P1 of 2.2.5. If a ∈ A, then a ∨ ¬a = > ∈ F and
by P2 we get a ∈ F or ¬a ∈ F .
(iii)⇒(i). If G is a filter of A with F ( G, then take a ∈ G \F . Since a /∈ F we know that
¬a ∈ F by (iii). But F ⊆ G, hence ¬a ∈ G and as a ∈ G we obtain ⊥= a∧¬a ∈ G. Thus
G = A as required.

Hence we know that (i), (ii) and (iii) are equivalent. However, by 2.2.6 we already
know that (ii) and (iv) are equivalent (recall that every homomorphism of lattices between
Boolean algebras is a homomorphisms of Boolean algebras). �

Altogether we obtain:

2.3.4. Representation theorem for Boolean algebras I [Sto36]
Every Boolean algebra A is isomorphic to the Boolean algebra C(A) of subsets of the set
of ultrafilters PrimF(A) of A. The isomorphism is given by the map VA : A −→ C(A) that
sends a ∈ A to V (a) = {P | a ∈ P}. Consequently V (¬a) = PrimF(A) \ V (a) for every
a ∈ A. �

Proof. Ultrafilters are the same objects as prime filters for Boolean algebras by 2.3.3. All
other assertion are immediate from 2.2.12. �

3. The representation of Boolean algebras and Boolean spaces

Summary. Theorem 2.3.4 can be considerably strengthened in topological terms, which is
established in 3.5 and 3.6 below. In fact, the representation theorem 2.2.12 of distributive
lattices can also be strengthened in a similar spirit as has been shown by Stone again in
[Sto37]. For details we refer to [DST19, Chapter 3].

3.1. Definition. A Boolean space is a topological space X that is compact Hausdorff
and such that every open set is a union of clopen sets (clopen means “closed and open”);
in other words, the clopen sets form a basis of X.

3.2. Remark. Let X be a any topological space.
(i) The set Clop(X) of clopen subsets of X is a Boolean algebra of subsets of X,

because ∅, X are clopen and clearly intersections and complements of clopen sets
are again clopen.

(ii) The most prominent Boolean space is the Cantor ternary set. One can see this
directly or by invoking the following characterization: A compact Hausdorff space
is Boolean if and only if it is totally disconnected, i.e. the only nonempty
connected subsets are singletons. This is an easy consequence of [Eng89, Theorem
6.1.23], which says that every connected component of any compact Hausdorff space
is the intersection of its clopen superset.
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3.3. Definition. Let A be a Boolean algebra. We define a topological space U(A) associ-
ated to A, called the spectrum of A [4], as follows: The underlying set of U(A) is the set
of ultrafilters of A; recall from 2.3.3 that this set is equal to the set of prime filters of A.
The topology of U(A) is defined to be the smallest topology for which all sets of the form
V (a) = {U ∈ U(A) | a ∈ U}, a ∈ A, are closed.

3.4. Proposition.
The space U(A) is a Boolean space and Clop(U(A)) = {V (a) | a ∈ A}.

Proof. Recall that the set on right hand side was denoted by C(A) in 2.2.7. By 2.3.4, the
set C(A) is a Boolean algebra of subsets of U(A) and the map A −→ C(A) that sends a
to V (A) is an isomorphism of Boolean algebras. It follows that the set of all intersections
of sets of the form V (a) is the set of closed sets of a topology on U(A) and consequently
this has to be the topology defined in 3.3. Consequently,

(∗) every closed set of U(A) is an intersection of sets of the form V (a) with a ∈ A.

Claim 1. The space U(A) is compact.
Proof of claim 1. By virtue of property (∗), it suffices to show that every subset S of C(A)
with the property that every finite subset of S has nonempty intersection (this property
of a set of subsets of a given set is referred to as finite intersection property), has
nonempty intersection.

Let S = {a ∈ A | V (a) ∈ S}. We first show that F is proper. Otherwise ⊥∈ F and by
2.2.9 there are a1, . . . , an ∈ S with a1∧. . .∧an =⊥. But then ∅ = V (⊥) = V (a1∧. . .∧an) =
V (a1)∩. . .∩V (an); since all V (ai) are in S, this contradicts the finite intersection property.
Hence F indeed is a proper filter and by 2.2.11 there is a prime filter U of A containing
F . By 2.3.3 we know U ∈ U(A) and we show that U ∈

⋂
S: Take S ∈ S. Then S = V (a)

for some a ∈ F by choice of F . Since F ⊆ U we get U ∈ V (a) as required. �
Claim 2. Clop(U(A)) = {V (a) | a ∈ A}.
Proof of claim 2. ⊇: Take a ∈ A. Since V (¬a) = U(A) \ V (a), the set V (a) is open. It is
closed by definition of the topology, hence V (A) ∈ Clop(U(A)).
⊆. Let K ⊆ U(A) be clopen. Since K is open we know from (∗) that the complement of
K is an intersection of sets from C(A). By taking complements and takeing into account
that V (a) has complement V (¬a) for a ∈ A we see that K is a union of sets of the form
V (b) with b ∈ A. As K is also closed it is compact, using claim 1. It follows that K is
a finite union of sets of the form V (b) with b ∈ A. Hence there are b1, . . . , bn ∈ A with
K = V (b1) ∪ . . . ∪ V (bn). However, the latter set is equal to V (b1 ∨ . . . ∨ bn), which is in
C(A). �

Claim 2 together with property (∗) also implies that every open set is a union of sets
from C(A) and so U(A) is Boolean. It remains to show that U(A) is Hausdorff. So take
U1, U2 ∈ U(A) with U1 6= U2. Without loss of generality we may assume that there is
some a ∈ U1 \ U2. By 2.3.3 we know ¬a ∈ U2. Hence U1 ∈ V (a), U2 ∈ V (¬a) and
V (a)∩V (¬a) = V (a∧¬a) = V (⊥) = ∅. Since V (a) and V (¬a) are open, this implies that
U(A) is Hausdorff. �

[4]In the literature, U(A) is also called the Stone space, cf. [Joh86, II 4.2, bottom of p. 70] or space
of ultrafilters of A.
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We can now improve 2.3.4 by invoking 3.4 to obtain

3.5. Representation theorem for Boolean algebras II (This was originally proved by
Marshall Stone in [Sto36].) Every Boolean algebra A is isomorphic to the Boolean algebra
Clop(U(A)) of the Boolean space U(A).

The isomorphism is given by the map VA : A −→ Clop(U(A)) that sends a ∈ A to
V (a) = {P | a ∈ P}. �

Theorem 3.5 says something remarkable: Given a Boolean algebra A we have constructed
the topological space U(A). Now using 3.5 we see that we can reconstruct A (up to
isomorphism) from this topological space. The mechanism also works in the opposite
direction:

3.6. Representation theorem for Boolean spaces
Let X be a Boolean space. Then Clop(X) is a Boolean algebra of subsets of X and the
map ΘX : X −→ U(Clop(X)) defined by ΘX(x) = {K ∈ Clop(X) | x ∈ K} is a homeo-
morphism.

The compositional inverse is given as follows: If U ∈ U(Clop(X)), then the intersection⋂
U has exactly one element and this element is Θ−1X (U).

Proof. Firstly we observe that the map ΘX is indeed well defined, i.e., for x ∈ X the set
ΘX(x) is an ultrafilter, also see example 2.2.3(iii). For the rest of the proof we suppress
the index X from ΘX and just write Θ. The essential part of the assertion is the following

Claim. For each U ∈ U(Clop(X)) there is some x ∈ X with
⋂
U = {x}. We write Ψ(U)

for this element and obtain a map Ψ : U(Clop(X)) −→ X.
Proof of the claim. Since U is a proper filter, U has the finite intersection property. Since
all elements of U are closed sets and X is compact, we know that

⋂
U 6= ∅. We need to

show that there is at most one point in
⋂
U . Suppose for way of contradiction that there

are two points x, y ∈
⋂
U . Since x 6= y and X is Hausdorff, there are open and disjoint

neighborhoods O,W of x, y respectively. Since X is Boolean there are clopen subsets K,L
of X with x ∈ K ⊆ O and y ∈ L ⊆ W . From O ∩W = ∅ we get K ∩ L = ∅ and therefore
(X \K)∪ (X \L) = X. Since U is a filter we know X ∈ U . However, X \K and X \L are
in the Boolean algebra Clop(X) and so the ultrafilter property of U implies X \K ∈ U or
X \ L ∈ U . By symmetry we may assume that X \ L ∈ U . But then

⋂
U ⊆ X \ L and

this contradicts y ∈
⋂
U ∩ L, establishing the claim. �

We now proof that Ψ is the compositional inverse of Θ. For x ∈ X we have x ∈
⋂

Θ(x)
by definition of Θ(x) and so by the claim this implies Ψ(Θ(x)) = x. Thus Ψ ◦ Θ = idX .
Further, if U ∈ U(Clop(X)) we have Θ(Ψ(U)) = {K ∈ Clop(X) | Ψ(U) ∈ K} ⊇ U by
definition of Ψ(U); since both U and Θ(Ψ(U)) are ultrafilters we get Θ(Ψ(U)) = U . This
shows Θ ◦Ψ = idU(Clop(X)) and so indeed Ψ is the compositional inverse of Θ.

Finally we need to show that Θ is a homeomorphism. It is continuous because for
K ∈ Clop(X) we have

Θ−1(V (K)) = {x ∈ X | Θ(x) ∈ V (K)}
= {x ∈ X | K ∈ Θ(x)}, by definition of V (K)

= {x ∈ X | x ∈ K}, by definition of Θ(x)

= K,
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which is closed, and because every closed sets of U(Clop(X)) is an intersection of sets of
the form V (K) with K ∈ Clop(X) (see property (∗) in the proof of 3.4).

Hence we know that Θ is a continuous bijective between the compact Hausdorff spaces
X and U(Clop(X)) (invoke 3.4) and every such map is a homeomorphism by general
topology. �

As indicated at the beginning of section 3, both representation theorems 3.5 and 3.6 can
be generalised to all distributive lattices. On the topological side one has to switch from
Boolean spaces to so called spectral spaces. This can be found in various formulations in
[DST19, Section 3.2].
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