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1. Introduction

1.1. Abstract. Our main motivation in this project is to introduce simple groups
and to prove the Jordan-Holder Theorem. The Jordan-Holder Theorem states that
any two composition series (4.1.2) for a finite group G have the same length and the
same set of composition factors. This tells us that for each finite group G we can
associate a unique set of simple groups. [Ros09] refers to the composition factors
as the ’building blocks’ of a group G. An important application of the theorem is
that it motivates ’Holder’s Program’ [Mac12] for the classification of finite groups,
which says for groups with composition series, if we can

(i) list all finite simple groups,
(ii) solve the extension problem: given two groups K and H, determine all

groups G which contain a normal subgroup which is isomorphic to K and
such that H ' G/K. We say G is an extension of K by H.

then we can describe all groups. Essentially this tells us we can use the Jordan
Holder Theorem to construct all finite and even some infinite groups from simple
groups using extensions. This indicates the importance of the concept of a simple
group when trying to achieve a complete picture of all groups. Following the reading
of this project we direct the reader to [Ros09, Extension Problem 9.2] for further
discussion of this application.

Before we approach the Jordan-Holder Theorem statement and proof we will
recall some material involving normal subgroups and factor groups. We will also
introduce simple groups and prove another important theorem that An is simple
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for n ≥ 5. These chapters describe key mathematical concepts and contain funda-
mental technical material for the Jordan-Holder Theorem statement and proof.

The intended audience for this project is a mathematics undergraduate who has
taken an introductory algebra course and is familiar with groups, subgroups, normal
groups, conjugacy and the isomorphism theorems. We direct the reader to [Kna06]
if a revision of the prerequisite material is required.

1.2. Outline of Contents. In section 2 we will recall the definition of a normal
subgroup and prove some results that we will need in section 4 for our proof of the
Jordan-Holder Theorem. We will also recall the definition of a factor group G/H,
as well as stating some important lemmas relating to factor groups.

Section 3 will introduce simple groups, providing a definition and detailing some
key examples. We will also present the important proof that An is simple for n ≥ 5.

In the fourth and final section we will state and prove the Jordan-Holder Theo-
rem. We will first define a composition series and provide examples as motivation
for our proof. We will then give two proofs of the Jordan Holder Theorem, one
by induction and one using the Zassenhaus Lemma and the Schreier Refinement
Theorem.

1.3. Acknowledgement of Referenced Material. A list of all referenced ma-
terial used in this project can be found in the bibliography. Referenced text is
identified by the use of quotation marks and the mentioning of the source in the
text. Definitions and Theorems provided in this project will come from the ref-
erenced sources unless stated otherwise. The proofs presented in this project are
adapted from the referenced sources, reworded and in some cases developed further.
These are referenced accordingly.

1.4. Preliminaries and Notation. In this text we will use the following notation:

• We will denote the order of a group G by | G |.
• We use the notation H ≤ G to say H is a subgroup of a group G, and
H < G if H is a proper subgroup of G.

• We will denote the trivial group, the group containing only the identity
element, by {1}.

• We denote the symmetric group by Sn and alternating group of all the even
permutations of Sn by An.

• We will use gH and Hg to denote the set of left and right cosets of a
subgroup H respectively.

2. Normal Subgroups & Factor Groups

Summary. In this section we will recall what it means for a subgroup H of G to
be normal in G and for G/H to be a factor group. We will give some examples and
prove some important results which will we need in section 4 for our proof of the
Jordan-Holder Theorem.
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2.1. Normal Subgroups. The definitions and theorems in this subsection are
adapted from [Ros09, Section 2.4] unless otherwise stated.

2.1.1. Definition. Let N ≤ G. N is normal in G if and only if gN = Ng, for all
g ∈ G. That is, if and only if the left and right cosets of N are equal. If N is a
normal subgroup of G we denote this by N EG.

2.1.2. Theorem. Let G be a group, N ≤ G. Then the following are equivalent:

(i) N EG
(ii) for all g ∈ G, g−1Ng ⊆ N
(iii) for all g ∈ G, for all n ∈ N , g−1ng ∈ N

Our proof that these conditions are equivalent follows that of [Ros09, Theorem 2.29]

Proof. (i) =⇒ (ii):
Suppose N E G and let g ∈ G. Then from our definition of a normal subgroup,
gN = Ng. Then for all n ∈ N there exists n′ ∈ N such that gn′ = ng. Applying
g−1 on the left of both sides of our equation gives n′ = g−1ng ∈ N as required.

(ii) =⇒ (iii):
This is immediate as g−1ng ∈ g−1Ng for all n ∈ N .

(iii) =⇒ (i):
Let g ∈ G,n ∈ N . Then there exists n′ ∈ N satisfying g−1ng = n′ which implies
ng = gn′. So Ng ⊆ gN . Conversely, gng−1 = (g−1)−1n(g−1) ∈ N so we can find
n′′ ∈ N which satisfies gng−1 = n′′. Equivalently gn = n′′g, so gN ⊆ Ng. So we
have shown gN = Ng and so by definition N is a normal subgroup of G. �

2.1.3. Examples.

(i) In a group G, the trivial group and G itself are normal.
(i) For an abelian group G, all subgroups are normal as all elements g are

conjugate to themselves so the conjugacy class of g is g.

2.1.4. Theorem. If H EG and J EG, HJ EG.

We use [Ros09, THM 2.30] as the source of our proof.

Proof. Recall HJ ≤ G for H ≤ G, J ≤ G. So we just need to show HJ is normal
in G. Let g ∈ G, h ∈ H and j ∈ J . Now g−1hjg = g−1hgg−1jg ∈ HJ . Since H and
J are normal g−1hg ∈ H and g−1jg ∈ J so HJ EG by 2.1.2(iii). �

Following this we can state and proof another lemma.

2.1.5. Lemma. Let H,K be groups. If J EH, then JK EHK.

Proof. Since J ≤ H, recall JK ≤ HK. We then want to show normality. Let
j ∈ J , k ∈ K. Since j ∈ H, g−1jg ∈ HJ so JK EHK. �

2.1.6. Lemma. Let H EG, K EG. Then H ∩K EG

Proof. Recall that for H ≤ G, K ≤ G, H ∩ K ≤ G. So we just need to prove
normality of H ∩K. Since K EG, h−1jh ∈ K if j ∈ K by 2.1.2. Now let h ∈ H.
If j ∈ H, h−1jh ∈ H. Therefore if j ∈ H ∩K, h−1jh ∈ H ∩K. �
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A proper normal subgroup N of G is said to be maximal if G has no proper normal
subgroups larger than N. We give the definition of a maximal normal subgroup as
given in [Mac12].

2.1.7. Definition. A normal subgroup N is said to be a maximal normal sub-
group if N ≤ K and K EG, then either N = K or K = G.

2.2. Factor Groups. The definitions and proofs in this subsection follow [KM77,
Chapter 2] unless otherwise stated.

2.2.1. Definition. We let G/H denote the set of all the left cosets of H in G. Recall
that for g ∈ G, gH = {gh | h ∈ H} is a left coset of H in G. When H is normal we
say G/H is the factor group or quotient group of G, with group multiplication
defined by (g1H)(g2H) = (g1g2H).

Recall that the index of H in G denoted [G:H] is the number of cosets of H in G.
We will follow the idea of [Mac12, Example 2.2.2] to prove that if the index of H
in G is equal to 2, H is normal.

2.2.2. Lemma. If [G : H] = 2, then H EG.

Proof. Let G be a group, H ≤ G. Let g ∈ G. We want to show that Hg = gH.
If g ∈ H then Hg = H = gH and then we are done. Suppose g /∈ G. Then
G = H ∪ Hg = H ∪ gH, which is a disjoint union. So G/H = Hg = gH and
gH = Hg. So H EG. �

2.2.3. Examples. [Sn : An] = 2 so An is normal in Sn

We recall Lagrange’s Theorem here as it will be useful in section 4 when we are
constructing a composition series for G. However, we will not prove it here as it is
expected prerequisite material.

2.2.4. Theorem. (Lagrange’s Theorem)
Let G be a finite group, H ≤ G. Then |G| = |G/H| · |H|

In our proof of the Jordan Holder Theorem in Section 4 we use the Second Isomor-
phism Theorem. The reader is expected to be familiar with it so we will state the
theorem here but not present the proof. Our statements come from [Ros09] and we
direct the reader to [Ros09, Theorem 4.14] for the proof.

2.2.5. Theorem. (The Second Isomorphism Theorem)
Let H ≤ G and N EG. Then,

(i) N ENH ≤ G, and
(ii) H/(H ∩N) ' NH/N

3. Simple Groups

Summary. In this section we define what it means for a group G to be simple
from [Kna06]. We introduce some examples of simple groups and prove two lem-
mas relating maximal normal subgroups and simple groups. We then present the
important proof that An is simple for n ≥ 5.
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3.0.1. Definition. A group G is simple if and only if its only normal subgroups
are itself and {1}.

3.0.2. Examples.

(1) Zp, the cyclic group of prime order is simple by Lagrange’s Theorem 2.2.4
since the order of any subgroup H of G has to divide the order of G, so its
only subgroups are G and {1} which are both normal in Zp.

(2) Z isn’t simple as 2Z is a non-trivial, proper normal subgroup.

Now we state and prove two lemmas involving maximal normal subgroups. The first
statement and proof follows [Mac12, Lemma 2.2] and the second [Ros09, Lemma
9.2].

3.0.3. Lemma. If N is a maximal normal subgroup of G, then G/H is simple.

Proof. If K/H E G/H then K E G by the Third Isomorphism Theorem. Then if
H � K we have K = G and the factor group K/H is the whole group or H = K
and K/H = H is the identity. So G/H is simple. �

3.0.4. Lemma. Let H E G, K E G. Let H and K both be maximal subgroups but
H 6= K. Then H ∩K is a maximal normal subgroup of H and K.

Proof. Recall that since H EG, K EG, H EHK EG by 2.1.4. By the maximality
of H, either H = HK or HK = G. If H = HK then K < H and since H 6= K and
K ≤ HK we get a contradiction to the maximality of K. So HK must equal G and
by 2.2.5 we have G/K = HK/K ' H/(H ∩ K). G/K is simple by 3.0.3 and by
similar argument we see H/(H ∩K) is simple and so H ∩K is a maximal normal
subgroup of H. We argue similarly to show H ∩K is a maximal normal subgroup
of K and our result follows. �

We now prove that An is simple for n ≥ 5. We separate our proof into lemmas.
We want to show that An has no normal subgroups other that itself and the trivial
group. We suppose for contradiction that there is a normal subgroup N of An but
we will show N must be equal to An.

3.0.5. Remark. A1 = A2 = (1) and A3 is a group of prime order 3 so An is simple for
n = 1, 2, 3. A4 is not simple. For example H = {(1), (12)(34), (13)(24), (14)(23)} is
a normal subgroup of A4.

First we prove that every element of An for n ≥ 3 can be written as the product of
three cycles. We say An is generated by its 3 cycles for n ≥ 3. We follow the proof
given by [Ros09, Theorem 3.12].

3.0.6. Lemma. An is generated by three cycles for n ≥ 3

Proof. We want to show that the product of two transpositions (two cycles of length
two) can be written as the product of three cycles. Consider 1 ≤ α, β, γ, δ ≤ n where
α, β, γ, δ are all distinct. Then we have the following cases for the product of two
transpositions:

(i) (α, β)(α, β)=(1)
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(ii) (α, β)(α, γ) = (α, γ, β)
(iii) (α, β)(γ, δ) = (α, β)(α, γ)(γ, α)(γ, δ) = (α, γ, β)(γ, δ, α) (using case (ii) and

inserting the identity)

We have shown every pair of transpositions is either the identity or a product of
three cycles.

Now take σ ∈ An, then σ = τ1τ2....τk, this is a product of transpositions for some
even k. We can pair these transpositions and let σ = (τ1, τ2)(τ3, τ4)....(τk−1, τk).
Then each pair is one of the cases we have presented in beginning of this proof so
σ is a product of three cycles. �

Now we adapt the proof of [KM77, Theorem 12.1] to prove the following lemma.

3.0.7. Lemma. Any three-cycles are conjugate in An for n ≥ 5, so if N E An

contains a three cycle, it contains all three cycles.

Proof. Let N EAn and take an element σ = (a1, a2, a3) ∈ N . Let γ = (b1, b2, b3) ∈
An. Let δ ∈ Sn such that δ(ai) = bi for i = 1, 2, 3 and δσδ−1 = γ since three cycles
are conjugate in Sn. If δ ∈ An we are done. Suppose δ ∈ Sn \ An. Since n ≥ 5 we
can choose elements x1, x2 ∈ Σ \ {a1, a2, a3}. Let µ = (x1, x2). Let δ(x1) = y1 and
δ(x2) = y2. Clearly y1, y2 /∈ b1, b2, b3. Since σ and µ are disjoint σµ = µσ. Then
(µδ)−1σ(µδ) = δ−1µ−1σµδ = δ−1σδ = γ. We have shown least one of δ and µδ
must be an even permutation. So we have shown any three cycles are conjugate in
An. �

We now give the following definition and lemma from [SS15, Section 5.2].

3.0.8. Definition. Let G be a group. We define a commutator in G to be an
element of the form x−1y−1xy = [x, y].

3.0.9. Lemma. Let G be a group, NEG. Let g ∈ G and n ∈ N . Then g−1n−1gn ∈
N .

Proof. We know g−1n−1g ∈ N as NEG and n−1 ∈ N as N is a group. Since n ∈ N
as well, it follows g−1n−1gn ∈ N �

For the proof of Lemma 3.0.10 and Theorem 3.0.11 we will adapt the proof given
in [KM77, Theorem 12.1].

3.0.10. Lemma. Let N EAn. N contains at least one three cycle.

Proof. Let {1} 6= NEAn with n ≥ 5. Let σ ∈ N , σ 6= (1). Then the representation
of σ as a product of disjoint cycles must take one of the following forms:

(i) σ has at least one cycle of length at least four
(ii) σ has at least one cycle of length 3 and another of length at least 2
(iii) σ is a three cycle
(iv) σ is the product of two disjoint transpositions.

We choose the symbols 1,2,..,5 for convenience and can express σ as follows:

(i) σ = (1234 . . .)
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(ii) σ = (123 . . .)(12 . . .)
(iii) σ = (123)
(iv) σ = (12)(34)

If σ is as in case (iii) the lemma is proven. For the other cases we will use 3.0.9
which says [σ, ρ] = σ−1ρ−1σρ ∈ N .

In case (i) let ρ = (123). Then [σ, ρ] = (1234 . . .)−1(123)−1(1234 . . .)(123) = (234)
which is a three cycle.

In case (ii) let ρ = (124). Then [σ, ρ] = ((123)(45 . . .))−1(124)−1(123)(45 . . .)(124)
= (12435). From case (i) this cycle of length five can be expressed as a three cycle.

In case (iv) let ρ = (123) [σ, ρ] = ((12)(34))−1(123)−1(12)(34)(123) = (14)(23).
Since (12435) is even and (14)(32) ∈ N, (12435)−1(14)(23)(12435) = (14)(25).
Then (14)(23)(14)(25) = (253).

So we have shown that N contains at least one three cycle. �

3.0.11. Theorem. An is simple for n ≥ 5

Proof. We have shown in 3.0.10 that a normal subgroup N of An for n ≥ 5 contains
at least one three cycle. So by 3.0.7 since all three cycles are conjugate in An, all
three cycles are in N. Therefore by 3.0.6 N contains all the elements of An and so
N = An. We has shown An has no proper normal subgroups and so is simple. �

4. The Jordan-Holder Theorem

Summary. In this section we state and prove the Jordan-Holder Theorem. First
we give some definitions required for the statement of the Theorem and state some
preliminary lemmas. We then give a proof of the Jordan-Holder Theorem using in-
duction. Then we prove the Zassenhaus Lemma and Schreier Refinement Theorem
and present an alternative proof of the Jordan-Holder Theorem using these.

4.1. The Jordan-Holder Theorem. Firstly we define a normal series and com-
position series of G as given in [Kna06, Chapter 4, Section 8].

4.1.1. Definition. Let G be a group. The sequence G = G0 D G1 D ... Gn−1 D
Gn of subgroups of G, where our notation means each Gk is normal in Gk−1, and
Gn = {1}, is called a normal series of G.

4.1.2. Definition. When a normal series for G is such that every factor group
Gk−1/Gk is simple and every inclusion Gk ⊆ Gk−1 is proper, we say that the
sequence is a composition series. We call theGk−1/Gk the composition factors
of G.

4.1.3. Remark. Recall |G/H| = [G : H] by definition and [G : G1] = |G|
|G1| by

Lagrange’s Theorem 2.2.4.

Now we give some illustrative examples.

4.1.4. Examples.
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(i) Let G = S4. Since we know A4 ≤ S4 and [S4 : A4] = 2, by 2.2.2, A4 E S4.
So for G1 we choose A4. |G/G1| = [G : G1] = |G|

|G1| = 24
12 = 2. Therefore

G/G1 ' Z2 and we know Z2 is simple as it is a cyclic group of prime
order. < (12)(34), (13)(24) > is normal in A4 so we take this as our G2.
|G1/G2| = [G1 : G2] == 12

4 = 3 so G1/G2 ' Z3. Since G2 is an abelian
group, all its subgroups are normal. Therefore we have three choices for
G3. We choose G3 =< (12)(34) >. Then |G2/G3| = 2 and so G2/G3 ' Z2.
Our only choice for G4 is the trivial group. So a composition series for S4 is
S4 D A4 D < (12)(34), (13)(24) > D < (12)(34) > D {1} with composition
factors Z2,Z3,Z2.

(ii) Let G = Sn for some n ≥ 5. By 2.2.3, [Sn : An] = 2 and so An E Sn by
2.2.2. |Sn/An| = 2 and so Sn/An ' Z2. Then since An is simple, the only
choice for G2 is {1} and G1/G2 ' An. SnDAnD{1} is then a composition
series for G since Sn/An

∼= Z2 and An/{1} ∼= An and Z2 and An are simple.
(iii) Let G = Z6. Z6 D 〈2〉D {0} is a composition series for Z6 with G/G1

∼= Z2

and G1/G2
∼= Z3. Z6 D 〈3〉 D {0} is a also composition series for Z6 with

G/G1
∼= Z3 and G1/G2

∼= Z2.

4.1.5. Remark. From 4.1.4(iii) we can see that the composition series for a group
G is not unique as we have given two possible composition series for G. Note that
the composition factors are the same in both composition series.

Using lemma 3.0.3, we adapt the comment made in [Mac12] following the proof
of Lemma 2.2 into a proof that every finite group G has at least one composition
series.

4.1.6. Theorem. Let G be a finite group. Then it has at least one composition
series.

Proof. Let G be a finite group. If G itself is simple it has composition series G D
{1}. Suppose G is not simple and not trivial. Choose a maximal normal subgroup
N1 of G. Let N1 = G1 in our composition series. By 3.0.3 G/G1 is simple. We
continue in this way, choosing N2 a maximal normal subgroup of N1, until we get
Gr = {1}. We have then constructed a composition series for G. �

We use definition of equivalence given by [Ros09, Definition 9.4] to form our state-
ment of the Jordan Holder Theorem.

4.1.7. Definition. Let G 6= {1} be a group and let G D H1 D ... Hr−1 D Hr and
G D K1 D ... Ks−1 D Gs be two normal series of G. We say these are equivalent
if r = s and the composition factors of the two composition series are the same up
to isomorphism.

4.1.8. Theorem. (The Jordan-Holder Theorem)
Suppose G is a finite group. Then all composition series for G are equivalent.

In our proof by induction we follow the proof given by [Ros09, Theorem 9.5].

Proof. We prove this theorem using induction on the order of G. If G is the trivial
group, we have nothing to prove. If G is simple it’s only proper normal subgroup
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is the trivial group so GDG1 = {1} is the only composition series of G and we are
done. So we will assume that G is not trivial and not simple.

For our inductive hypothesis we suppose that for a finite group G of order n, all the
composition series of G are equivalent. From this we can assume that the result
holds for all groups G′ of order less than G.

Now suppose GDH1 D ...Hr−1 DHr = 1 and GDK1 D ...Ks−1 DKs = 1 are two
composition series for G. We have the following two cases:

Case 1 : H1 = K1

If H1 = K1 we can use our inductive hypothesis as the order of H1 = K1 is less
than G since H1 = K1 is a proper subgroup of G. We conclude the two composition
series are therefore equivalent.

Case 2 : H1 6= K1

For this case we will use the facts that H1 ∩K1EH1 and H1 ∩K1EK1 from 3.0.4.
We let L = H1 ∩ K1. If L = {1} we have two equivalent composition series so
suppose L 6= {1}. Now let L = H1 ∩K1 DL1 D ...DLt = 1 be a composition series
for L. This series exists and is non-trivial by 4.1.6.

Recall from 2.1.4 that H1K1 EG since H1 EG and K1 EG.

Also recall since H1 ≤ H1K1 and K1 ≤ H1K1 and we cannot have H1 or K1 equal
to H1K1 otherwise H1 = K1. So we suppose without loss of generality H1 � H1K1

EG. By 3.0.3, G/H1 is simple so H1 is maximal. Therefore G = H1K1.

Now we use the Second Isomorphism Theorem 2.2.5(ii) which tells us G/H1 =
H1K1/H1 ' K/K1 ∩H1 = K1/L and G/K1 = H1K1/K1 ' H/H1 ∩K1 = H1/L.

We now have four composition series for G:

(i) GDH1 DH2 D ...DHr = 1
(ii) GDH1 DH1 ∩K1 = LD L1...D Lt = 1
(iii) GDK1 DH1 ∩K1 = LD L1...D Lt = 1
(iv) GDK1 DK2 D ...DKr = 1

If we remove the first term G from (i) and (ii) we get two composition series for H1.
Since H1 has order less than G, by our inductive hypothesis these two composition
series are equivalent. Since the G we removed from the two series was the same,
we conclude (i) and (ii) are two equivalent composition series for G. A similar
argument shows the equivalence of (iii) and (iv). Composition series (ii) and (iii)
are equivalent apart from their second term, they clearly have the same length
and the same set of factors with only the first two interchanged so are equivalent
composition series. It then follows (i) and (iv) are also equivalent. �

4.2. An Alternative Proof of the Jordan-Holder Theorem. We now state
and prove Zassenhaus’ Lemma and the Schreier Refinement Theorem. These two
results can be used to give an alternative proof of the Jordan-Holder Theorem which
does not require our group G to be finite.

First we state the definition of one normal series being a refinement as another as
given in [Kna06, Chapter 9].
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4.2.1. Definition. One normal series is said to be a refinement of another if the
subgroups appearing in the second normal series all appear as subgroups in the first
normal series.

4.2.2. Lemma. (Zassenhaus’ Lemma)
Let H1, H,K1 and K be subgroups of G such that H1 EH and K1 EK. Then,

(i) H1(H ∩K1)EH1(H ∩K)
(ii) K1(H1 ∩K)EK1(H ∩K)
(iii) H1(H ∩ k)/H1(H ∩K1) ∼= K1(H ∩K)/K1(H1 ∩K)

Our proof follows [Ros09, Lemma 9.7]

Proof. (i) Since K1EK, H ∩K1EH ∩K using 2.1.6. Also, from 2.1, since H1EH,
H1(H ∩K1)EH1(H ∩K) which is our required result.

(ii) Similar to (i), but with the roles of H1 and H interchanged with K1 and K
respectively.

(iii) First we shall note some equations needed for our proof.

• From the Second Isomorphism Theorem 2.2.5, H ∩K ≤ H1(H ∩K).
• By part (i) of this lemma we have H1(H ∩K1)EH1(H ∩K).
• Also, since H ∩K1 ≤ H ∩K as stated in part (i), H1(H ∩K) = H1(H ∩
K1)(H ∩K).

• Also, (H ∩K) ∩H1(H ∩K1) = (H1 ∩K)(H ∩K).

We use these equations and apply the Second Isomorphism Theorem 2.2.5. Letting
G = H1(H ∩K), H = (H ∩K) and N = H1(H ∩K1) in 2.2.5, we get

H1(H ∩K)/H1(H ∩K1) = H1(H ∩K1)(H ∩K)/H1(H ∩K1)

' H ∩K/(H ∩K) ∩ (H1(H ∩K1))

= H ∩K/(H ∩K1)(H1 ∩K)

Using (ii) we can make a similar argument interchanging H1 and H with K1 and K
respectively throughout. This gives two identical equations and our result follows.

�

4.2.3. Theorem. (Schreier Refinement Theorem)
Let G = H1 D H2 D . . . D Hr = {1} and G = K1 D K2 D . . .D Ks = {1} be two
normal series of G. These series have equivalent refinements.

Proof. Following the proof of [Ros09, Theorem 9.8], we begin by constructing a
new normal series S1,2 by essentially inserting a copy of S2 between each term in
S1. Similarly, we construct a second normal series, S2,1 by inserting a copy of S1

between each term in S2.

For 0 ≤ n ≤ r and 0 ≤ m ≤ s let In,m let us denote the subgroup In,m =Hn(Hn+1∩
Km). Then we note the following:

(1) In,0 = Hn(Hn+1 ∩K0) = Hn(Hn+1 ∩ {1}) = Hn

(2) In,s = Hn(Hn+1 ∩G) = HnHn+1 = Hn+1 (since Hn ≤ Hn+1).



12 XXXXXX XXXXXX

(3) For 0 < m < s, In,m = Hn(Hn+1 ∩Km) E Hn(Hn+1 ∩Km+1) = Kn,m+1

by 4.2.2(i) where we have used Hn = H1, Hn+1 = H, Km = K1 and
Km+1 = K.

Now we can write S1,2 as G = Ir,s D ...D I2,0 D I1,s D ...D I0,s D ...D I0,0 = {1}.
Similarly, for S2,1 we let Jm,n = Km(Km+1 ∩ Hn), which gives the refinement
G = Js,r D ...D J1,0 D J0,s D ...D J0,0 = {1}.
S1,2 and S2,1 have the same length of rs+ r + s.

Now by 4.2.2 (iii), we get In,m+1/In,m = Hn(Hn+1 ∩ Km+1)/Hn(Hn+1 ∩ Km) '
Km(Km+1 ∩Hm+1)/Km(Km+1 ∩Hn) = Jm+1,n/Jm,n

Therefore the sets of factors of S1,2 and S2,1 are identical and we have shown that
the refinements are equivalent. �

Proof. (Alternative proof of the Jordan-Holder Theorem.)
Suppose we have two composition series for G. These are normal series so by the
Schreier Refinement Theorem they have equivalent refinements. Since they are
composition series they have maximum length and so the only way to insert a
new term into the series is to repeat a term . This results in a factor Hj−1/Hj

isomorphic to {1}. So the number of terms added to each series is the same, as the
factors from two refinements must match. Therefore our original two composition
series must of had the same length and so we have shown their equivalence. �
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