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1. Introduction

Ramsey Theory, named after F. P. Ramsey, is the combinatorical
study of finding certain substructures in large enough structures. In
Ramsey’s original paper, ’On A Problem Of Formal Logic’, [8], he
presents his original theorem on sets. However, Ramsey Theory extends
to many areas of mathematics, such as geometry, number theory and
logic.

In this text we will look at Ramsey theory on graphs. The reader
will need a basic understanding in graphs and combinatorics. We will
recap some definitions but for basic definitions, refer to Chapter 1 of
[5].

An overview of the content of this project is as follows. In section
2 we will go through some preliminaries and introduce the notion of
colouring the edges of graphs and what the Ramsey number is. A
motivating example will be given to illustrate these notions. In section
3 we present our main theorem, 3.1, and give a proof of it, therefore
showing existence of the Ramsey Number. Furthermore, we look at
how the upper bound given to us via this proof corresponds to the
actual value of certain Ramsey numbers. In section 4 we will look at
the techniques used to find tighter bounds and lower bounds on the
Ramsey number. We acknowledge the fact only few values of Ramsey
numbers are known, and give some insight on why this may be.

The aim of this project is to highlight on the enigma of Ramsey
Theory and how what may seem a simple problem is actually a topic
that has perplexed mathematicians for many years.

2. Graph Colourings

In our first section we will talk about what it means to colour a
graph. One may colour the edges or the vertices of a graph but in this
project we are only going to talk about colouring the edges of a graph.
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For notation purposes, let us first recall the definition of a graph, as
stated in [5], page 2.

2.1. Definition. A graph is an ordered pair G = (V,E) such that V is
a set of vertices and E ⊆ {{x, y} | x, y ∈ V, x 6= y} is the set of edges,
where we may write xy for edge {x, y}. We refer to the vertex set of G
as V (G) and the edge set of G as E(G).

We will assume that that the reader knows the terms adjacent, or-
der of a graph and degree of a vertex. If the reader would like more
information on basic definitions, refer to chapter 1 of [5].

2.2. Definition. A complete graph Kn is a graph such that |V (G)| = n
and E(G) = {{x, y} | x, y ∈ V, x 6= y} and |E(G)| =

(
n
2

)
, so that the

graph has n vertices and every vertex is joined to every other vertex in
the graph with an edge, the maximum number of edges.

Now we introduce the notion of r-colouring, as stated in [5], page 96.

2.3. Definition. An r-colouring of of the edges of a graph G = (V,E)
is a function c : E → {1, 2, ..., r}. In other words we are assigning a
"colour" to each of the edges and the set of colours is {1, 2, ..., r}.

In this section and for the majority of this project we will be talking
purely about two-colourings and taking the colours as red and blue.
When we say that a graph or subgraph is monochromatic we mean
that each of the edges of this graph are of the same colour.

Now we introduce the Ramsey Number for two-colourings on com-
plete graphs, as stated in [4], pages 1-2.

2.4. Definition. The Ramsey Number R(k, l), with k, l ∈ Z+ is the
least positive integer, n ∈ Z+ such that any two-colouring of the edges
of Kn contains either a monochromatic copy of Kk or a monochromatic
copy of Kl.

Here we can see that k, l ≤ n. Note that we are wanting a graph
large enough so that any and all two-colourings of this graph will have
a monochromatic subgraph on k or l vertices.

We may also look at the case where we are simply looking for a
monochromatic copy of Kk in a large enough complete graph. In this
case R(k, k) = R(k) and this is the least positive integer n ∈ Z+ such
that any two-colouring of the edges of this graph contains a monochro-
matic copy of Kk. Sometimes R(k, k) is called the diagonal Ramsey
Number.

The question is whether this number actually exists for k, l ≥ 2. We
will see in section 3 that it does in fact and we will see a proof of this.
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We will now refer to [3], Chapter 13. One may want to look at the
problem of finding monochromatic structures within larger structures
within a real life setting. Consider a group of six people. Will there
always be a group of three people that are either mutual acquaintances
or mutual strangers? The answer is yes, and showing this is equivalent
to proving that R(3, 3) ≤ 6. In the following example we will prove
exactly this. Think about the people as vertices and we will join each
person with a connection that is either acquaintance (red edge) or
stranger (blue edge). What we have done is two coloured the graph
K6. Let us put the problem into a formal setting and prove it.

2.5. Example. Consider the complete graph on six vertices, K6. Prove
that upon two-colouring the edges of the graph, we may always find a
monochromatic triangle, K3.

Proof. Take a vertex v ∈ V (K6). The degree of this vertex is 5, as it is
connected to all other 5 vertices. So these five edges will either have at
least three edges of the same colour. Without loss of generality, assume
there are three red edges which connect vertex v to vertices a, b and
c. Look at figure 1a. We can see that if we choose to connect any of
a, b or c to each other with a red edge then we immediately have a red
triangle. So all these edges between these three vertices must be blue.
But then by looking at figure 1b, we have made a blue triangle.

Hence, we will always find a monochromatic triangle in a two-coloured
complete graph on 6 vertices and therefore R(3, 3) ≤ 6.

�

In fact, it is true that R(3, 3) = 6, which we can see by simply
showing that there exists no monochromatic triangle in a particular
complete graph on 5 vertices, showing that R(3, 3) ≥ 5, see figure 1c.

(a) (b) (c)

Figure 1
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This example should be regarded as motivation for what is to come.
Although it may seem simple to work out these Ramsey Numbers, this
is far from the case. The largest known value for R(k, k), when k = l, is
R(4, 4) = 18 (for further information look at Example 3.3). However,
there are many bounds on these numbers, for example the value of
R(5, 5) is known to be between 43 and 48. We will look further into
bounds on Ramsey Numbers in Section 4. The largest known value of
R(k, l) for k 6= l is R(3, 9) = 36, which we note is still a small number.
A table of known values and bounds for Ramsey number can be found
in [7], page 4.

3. The Existence of the Ramsey Number

So as we have seen in section 2, we have some values for Ramsey
Numbers and certain methods to find them. In this section we show
that in fact the Ramsey Number exists for all k, l ≥ 2, even if we don’t
know what the value is. Now we present and prove the main theorem
of the project, using [3] as reference.

3.1. Theorem. The Ramsey Number, R(k, l), defined in 2.4 exists for
all k, l ≥ 2 and is such that

(3.1) R(k, l) ≤ R(k, l − 1) +R(k − 1, l).

Proof. This is a proof by induction where we show existence of R(k, l).
For the base case look at R(k, 2). So this means we are either looking
for a red Kk or a blue K2. We have R(k, 2) ≥ k, as there is no red Kk or
blue K2 in Kk−1 where all the edges are red. We also have R(k, 2) ≤ k
as if we have a two-colouring such that all the edges are red then we
have a red Kk, and in all other cases of colourings there is at least one
blue edge, which is exactly a blue K2. So R(k, 2) = k. Using the same
argument, we have that R(2, l) = l. So R(k, l) exists for l = 2 and
k = 2.

For the induction step we assume that R(k − 1, l) and R(k, l − 1)
exist for k, l ≥ 2 and use this to prove that R(k, l) exists for all k, l ≥ 2
and indeed that R(k, l) ≤ R(k, l − 1) +R(k − 1, l).

Let us take a complete graph, G, with R(k, l−1)+R(k−1, l) vertices.
Note that any vertex v of a complete graph, Kn, has degree n− 1.

Now, let us take an arbitrary vertex v ∈ V . Let Rv and Bv be such
that

Rv = {y ∈ {v, y} | {v, y} ∈ E(G), {v, y} is red},
Bv = {y ∈ {v, y} | {v, y} ∈ E(G), {v, y} is blue}.
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These are sets of adjacent vertices to v, such that Rv is the set of
vertices, y, such that v is joined to y with a red edge, and Rv is the
set of vertices, y, such that v is joined to y with a blue edge. So as the
degree of v is R(k, l − 1) +R(k − 1, l)− 1 = |Rv|+ |Bv|, we have that
either |Rv| ≥ R(k − 1, l) or |Bv| ≥ R(k, l − 1).

If we look at the first case where |Rv| ≥ R(k− 1, l). Rv is the vertex
set of endpoints of the red edges of v. This forms a complete graph with
order at least R(k−1, l). So by the inductive hypothesis, this complete
graph contains either a blue Kl, in which case we are done, or a red
Kk−1. If we have a red Kk−1, then add vertex v and all edges joining
v to the vertices of this Kk−1. Adding this vertex makes a complete
graph on k edges, and as all the edges we are adding are red, we have
made a red Kk.

Similarly if |Bv| ≥ R(k, l− 1), we will either have a red Kk, in which
case we are done or we will have a blue Kl−1 which we may extend to
a blue Kl with the addition of vertex v and all blue edges joining v to
this blue Kl−1.

So in either case we either have a red Kk or a blue Kl, and so by
definition of the Ramsey number 2.4, R(k, l) ≤ R(k, l− 1)+R(k− 1, l)
and so it exists.

�

This proof not only proves that the Ramsey Number exists for all
k, l ≥ 2, but also gives us an upper bound. In section 4, we will look
further into bounds on Ramsey Numbers and how upper and lower
bounds can be constructed.

For now, we will look at how our current upper bound from theorem
3.1 can aid us in finding values of R(k, l).

3.2. Example. In the proof of theorem 3.1, we saw that R(k, 2) =
R(2, k) = k for all k ≥ 2. So we have that R(4, 2) = 4. Recall
from example 2.5 that R(3, 3) = 6. So, with these values we may find
an upper bound for R(4, 3). Inserting our values of k = 4, l = 3 into
equation 3.1, we get

R(4, 3) ≤ R(4, 2) +R(3, 3) = 4 + 6 = 10.

This upper bound is close because in fact we have R(4, 3) = 9. The
proof of R(4, 3) ≤ 9 is given by an analysis of the graph K9, showing
in a similar way to Example 2.5 that there must always exist a red K4

or a blue K3. For further information see Example 13.3 of [3].
In Section 4, Example 4.3, we provide a proof of R(4, 3) ≥ 9 .

Using the value of R(4, 3) = 9, it is now easy to show the following.
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3.3. Example. We show that R(4, 4) ≤ 18, given the information that
R(4, 3) = R(3, 4) = 9 from Example 3.2. Inserting our values of k and
l into equation 3.1 we get

R(4, 4) ≤ R(4, 3) +R(3, 4) = 18

So we have that R(4, 4) ≤ 18. It can be shown that R(4, 4) ≥ 18 by
analysing a specifically two-coloured K17, for more information read
Example 13.4 of [3].

4. Bounds on Ramsey Numbers

As we have commented on, there is no formula to work out values of
Ramsey Numbers. However, there are bounds that can allow us close
to the actual value.

For further reading on recent developments on upper and lower
bounds on the Ramsey number, the survey by Conlon, Fox and Su-
dakov [4] is a very interesting read, but these will largely not be looked
at in this text. For now we will look at consequences of the upper bound
developed in Theorem 3.1, that are slightly tighter upper bounds. Fur-
thermore, we will look at one of the first lower bounds and give an
explanation of the proof.

The following theorem and proof will follow how it is presented in
[3], original source [6].

4.1. Theorem. Let k, l ≥ 2 with k, l ∈ Z. Then

(4.1) R(k, l) ≤
(
k + l − 2

k − 1

)
Proof. This, again, is a proof by induction on on k and l.

For the base case, if k = 2, then we have that R(2, l) ≤
(
l
1

)
= l.

Recall from the proof of 3.1 we showed that R(2, l) = l, so the base
case holds for k = 2 with equality in fact. If l = 2, we similarly have
R(2, l) ≤

(
l
1

)
= l, which is again true and holds with equality by an

analogous argument. So the base case holds.
Suppose the statement is true for R(k, l − 1) and R(k − 1, l) for all

k, l ≥. By equation 3.1 we know that

R(k, l) ≤ R(k, l − 1) +R(k − 1, l).
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Applying the inductive hypothesis we get
R(k, l) ≤ R(k, l − 1) +R(k − 1, l)

≤
(
k + (l − 1)− 2

k − 1

)
+

(
(k − 1) + l − 2

(k − 1)− 1

)
=

(
k + l − 3

k − 1

)
+

(
k + l − 3

k − 2

)
=

(
k + l − 2

k − 1

)
.

In the last step we have used Pascal’s Identity (see [3], Theorem 4.3,
page 66): (

n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

Hence, we have proved the result for all k, l ≥ 2. �

From this upper bound we also get a very neat upper bound for the
diagonal Ramsey Number R(k, k).

4.2. Corollary. For all k ≥ 2, k ∈ Z we have that R(k, k) ≤ 4k−1.

Proof. By substituting k = l into equation 4.1, we have that

R(k, k) ≤
(
2k − 2

k − 1

)
Now recall that the total number of subsets of a set of size n is 2n. By
the definition of the binomial coefficient we are choosing subsets of a
set of size 2k − 2. Therefore,

R(k, k) ≤
(
2k − 2

k − 1

)
≤ 22k−2 = 22(k−1) = 4k−1.

�

For lower bounds the problem is different, we are instead trying
to find two-coloured complete graphs where there does not exist a
monochromatic Kk or Kl, some k, l ≥ 2. The way to usually do this
for specific values of k and l is to just find a graph on a certain number
of vertices with no monochromatic Kk or Kl. The following example
provides a proof of a lower bound for R(4, 3), using Example 13.4 of
[3] as reference.
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4.3. Example. Show that R(4, 3) ≥ 9.

Proof. To see that R(4, 3) ≥ 9, consider the following two-coloured K8.
Label the vertices of the graph clockwise with elements of {1, 2, . . . , 8}
in ascending order. Let edge ij ∈ E(K8), with i < j be blue if i− j ∈
{1, 4, 7} and red if i − j ∈ {2, 3, 5, 6}. Suppose there exists a blue
triangle. Then take a smallest vertex, i, of this triangle. Vertex i must
make a blue triangle with two of the vertices i+1, i+4 and i+7 for these
edges to be blue. However, observe that none of these three vertices
have difference 1, 4 or 7, and so cannot have a blue edge between them,
a contradiction. Hence there is no blue triangle.

On the other hand, suppose we have a red K4. Take smallest vertex
i of this red K4. We would then need three of the four vertices i +
2, i + 3, i + 5 and i + 6. Observe that we must chose i + 2 and i + 3
together, or i+5 and i+6 together. However, their difference is 1 and
so would be joined with a blue edge, a contradiction. Hence there is
no red K4. �

The brute force method of finding a complete graph such as in Ex-
ample 4.3 works for when looking for bounds on a specific Ramsey
number. However, there are more generalised results.

The following theorem we give with only an outline of the proof. The
theorem gives a neat lower bound for the diagonal Ramsey Number and
a proof may be found in [3], Theorem 15.1, page 343.

4.4. Theorem. For all k ≥ 3, k ∈ Z, we have that R(k, k) > 2
k
2 .

The proof of this theorem is quite accessible and uses the proba-
bilistic method, where it is proved that the probability of finding no
monochromatic Kk in a larger two-coloured Kn cannot be zero, imply-
ing there is at least one outcome with no monochromatic Kk. This is
one of the simpler proofs of a lower bound.

Although it is a general lower bound, it is not necessarily a very good
one. To give a feel of this lower bound let us look at how it compares
to known values.

4.5. Example. The lower bound in Theorem 4.4 gives R(4, 4) > 2
4
2 = 4.

As we know that R(4, 4) = 18, this lower bound is not as revealing as
hoped.

For other upper and lower bounds a lot more work is required. The
best known bounds for k 6= l are provided in the following theorem,
referring to [4].
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4.6. Theorem. For any k, l ≥ 2 there exist positive constants ck, c
′
k

such that

c′k
l
k+1
2

(log l)
k+1
2
− 1

k−2

≤ r(k, l) ≤ ck
lk−1

(log l)k−2
.

The lower bound here was proved by Bohman and Keevash in 2010
[2], and upper bound by Ajtai, Komlós and Szemeréedi in 1980 [1].
As we can see these are not the easiest of bounds to understand and
the proofs of them require a lot of work. Mathematicians are still no
closer to finding a formula for the Ramsey Number and, using [4] as a
reference, it shows improvements to the bounds are not being made at
rapid pace.

A formula for R(k, l) is an active area of research to this day and
proves to be a rather elusive problem.

5. Conclusion

In this project we have studied Ramsey Theory on graphs, where the
beauty of Ramsey Theory is possibly best illustrated. We have seen
examples of many methods of finding Ramsey Numbers, a complete
proof of the existence of the Ramsey Number, R(k, l), for any k, l ≥ 2
and also looked at how bounds on the Ramsey Number are made.

Although we have only looked at two-colouring complete graphs,
Theorem 3.1 can be generalised for r-colourings for any r ≥ 2. In fact,
Ramsey Theory can be applied to many areas of mathematics, one of
the most interesting being convex geometry. Consider finding a set of
points in the plane large enough so that n of these points lie in convex
position. This is what is referred to as the Happy Ending Problem,
and follows on very nicely from what has been studied in this project.
Erdös and Szekeres’s paper, [6], on this very problem is also where the
bound in Theorem 4.1 was first presented. If the reader would like to
further explore the applications of Ramsey Theory, Vera Rosta’s survey
[9], takes a comprehensive view of this subject.

This project has given the reader a taste of Ramsey Theory, and in-
sight into areas of this combinatorical problem that remain an unsolved
puzzle.



RAMSEY THEORY ON GRAPHS 11

References

[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. A note on Ramsey numbers.
J. Combin. Theory Ser. A, 29(3):354–360, 1980.

[2] Tom Bohman and Peter Keevash. The early evolution of the H-free process.
Invent. Math., 181(2):291–336, 2010.

[3] Miklós Bóna. A walk through combinatorics. World Scientific Publishing Co.,
Inc., River Edge, NJ, 2002. An introduction to enumeration and graph theory,
With a foreword by Richard Stanley.

[4] David Conlon, Jacob Fox, and Benny Sudakov. Recent developments in graph
Ramsey theory. In Surveys in combinatorics 2015, volume 424 of London Math.
Soc. Lecture Note Ser., pages 49–118. Cambridge Univ. Press, Cambridge, 2015.

[5] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 2000.

[6] P. Erdös and G. Szekeres. A combinatorial problem in geometry. Compositio
Math., 2:463–470, 1935.

[7] Stanisław P. Radziszowski. Small Ramsey numbers. Electron. J. Combin., 1:Dy-
namic Survey 1, 30, 1994.

[8] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math. Soc. (2),
30(4):264–286, 1929.

[9] Vera Rosta. Ramsey theory applications. Electron. J. Combin., 11(1):Research
Paper 89, 48, 2004.


	1. Introduction
	2. Graph Colourings
	3. The Existence of the Ramsey Number
	4. Bounds on Ramsey Numbers
	5. Conclusion
	References

