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1 Introduction.

The aim of this project is to establish several results used by Hieronymi in

‘When is Scalar Multiplication Decidable?’ [3]. In the first half (sections 2

and 3) continued fractions are introduced and two results are given. The

first result is a way of uniquely representing any natural number based on

the continued fraction of some fixed irrational number. The second result

is a way of uniquely representing any real number based on the continued

fraction of some fixed irrational number.

In the second half (sections 4 and 5) the primary concern is the decid-

ability of the first order theory of (R;<,+,Z). To establish this quanti-

fier elimination is proved for an axiomatisation of the first order theory of

(Q;<,+,−, 0, 1, (λq)q∈Q, b c), which is then used to establish decidability of

the first order theory of (R;<,+,Z) by interpreting the elementary substruc-

ture (Q;<,+,Z).

Two shorter sections follow these at the end. The first (section 6) proves

the undecidability of (R;<,+,×,Z), using a theorem of Tarski. The sec-

ond (section 7) looks at some of the results in Hieronymi [3] and gives an

overview of how all of the results presented in the project will be used to

prove these results in an upcoming dissertation. All of these are either used

by Hieronymi, or otherwise provide the starting point for results in [3], where

further expansions are considered. Results from [2] and [4] are also built upon

by Hieronymi in [3]. The remainder of this introduction will outline the con-

tents of each section in more depth one by one.

Section 2 involves a treatment of basic results about continued fractions.

Several sequences associated with them are defined, and a way of assigning

a unique continued fraction to a real number is established (in particular see

algorithm 2.3.1). The continued fraction for a real number is then used as

the foundation of two results in section 3.
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Section 3 features two main results. The first is a result about unique repre-

sentations of natural numbers based on the continued fraction of some fixed

irrational number (as produced in section 2). In particular this utilises the

sequence of denominators from the continued fraction (see definition 2.1.4).

The precise statement is given in theorem 3.1.2. Secondly a way of uniquely

representing real numbers is developed. These representations are also based

on the continued fraction of some fixed irrational number, but utilise the se-

quence of differences from the continued fraction (see definition 2.4.1). The

precise statement is given in theorem 3.2.1. In both cases uniqueness of the

representations depends on conditions placed on coefficients used.

In sections 4 and 5 quantifier elimination is used to prove that the first

order theories of the two structures (Q;<,+,Z) and (R;<,+,Z) are decid-

able. Throughout these sections the main source is Miller [7]. The strategy

is as follows.

In section 4 a set of formulas TQ in the language {<,+,−, 0, 1, (λq)q∈Q, b c}
will be given (see axioms 4.1.3). These formulas will then be shown to ax-

iomatise the structure Q = (Q;<,+,−, 0, 1, (λq)Q, b c). Informally the for-

mulas will say that Q is a divisible ordered abelian group, and that the image

of b c forms a subgroup with least positive element 1 such that every element

q ∈ Q lies between bqc and bqc+ 1.

This will be done by using an embedding test to prove that TQ admits

quantifier elimination. The reason we work in this language is that it al-

lows us to exploit the fact that if an ordered abelian group is a Q-vector

space, then it is divisible (see lemma 4.1.4). By including axioms that force

this Q-vector space structure, we are able to use universal axioms to force

divisibility. An embedding test specific to universal theories can then be

used. Such a test will be proved as a consequence of the Shoenfield-Blum
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embedding test (see theorem 4.2.3). With quantifier elimination established,

we will be ready to prove TQ really does axiomatise Q by showing that Q

embeds into every model of TQ. Combining this with the fact that Q is a

model of TQ, we also get as a consequence that TQ is a complete theory (see

proposition 4.3.9), which will be used in section 5.

In section 5 we will harvest the results from section 4 to get decidability

for the structures (Q;<,+,Z) and (R;<,+,Z). Firstly TQ is shown to be

recursive. In section 4 it was shown that TQ is satisfiable, and complete,

which gives us that TQ is decidable from the recursivity (see lemma 5.1.2

and propositions 5.1.4 and 5.1.5). With this we go on to prove decidability

for the structures (Q;<,+,Z) and (R;<,+,Z). This is done by recursively

interpreting the structure (Q;<,+,Z) in Q. For the real case we intro-

duce the structure R = (R;<,+,−, 0, 1, (λq)q∈Q, b c). It is easily seen that

R |= TQ, and is an therefore an elementary extension of Q by the fact TQ ad-

mits quantifier elimination (since Q embeds into R as a substructure). Then

as R recursively defines the structure (R;<,+,Z) (this is almost identical to

the rational case) this structure is also decidable.

In section 6 it is shown that including multiplication to give the field struc-

ture of R kills the first order decidability of the structure (R;<,+,Z). This

is done by straightforward application of a theorem of Tarski, and recursively

interpreting ω̄ = (ω;<,+,×, 0, S), which is already known to be undecidable,

in the structure (R;<,+,×,Z).

Finally, in section 7, the link between all of the results are discussed, and the

motivation behind them is given. An overview of some results proved by Hi-

eronymi [3] are given. These will be covered in a dissertation expanding this

project. The results are, in a loose sense, about which structures ‘in-between’

(R;<,+,Z) and (R;<,+,×,Z) have decidable first order theory.
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2 Continued Fractions.

This section will cover definitions and results about continued fractions which

will be used in section 3. Most importantly a way of associating a unique

continued fraction to a real number is given. Several sequences derived from

these continued fractions will also play a large part in section 3.

After defining what a continued fraction is, a class of continued fractions

will be introduced which will be shown to always converge with a real limit.

An algorithm is given which produces, for any real number as input, a unique

continued fraction in this class converging to that real number (the sense in

which a continued fraction ‘converges’ will be stated clearly, see lemma 2.2.3

and the following comment). The main source used is Stein [9], the material

can also be found in Rockett and Szusz [8].

2.1 Continued fractions.

Definition 2.1.1. A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
.. .

.

We call the ai partial quotients.

In order to condense notation, I will write continued fractions in the form

[a0; a1, a2, . . .]. Sometimes these will terminate, i.e. we will have [a0; a1, . . . , an].

However in most uses later, especially in section 3, only continued fractions

which do not terminate will be of interest.

Definition 2.1.2. We will call a continued fraction infinite if it does not

terminate, i.e. when there are infinitely many (ignoring repetition) partial

quotients. Otherwise, if a continued fraction is of the form [a0; a1, . . . , am]

for some natural m, we call it finite.
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Definition 2.1.3. Given a continued fraction, we define the sequence (cn)n≥0

of convergents by c0 = a0, c1 = [a0; a1], c2 = [a0; a1, a2] and so on up to

ck = [a0; a1, a2, . . . , ak]. Of course in the case of finite continued fractions we

only define finitely many terms.

Definition 2.1.4. We define two more sequences, the numerators and the

denominators of a continued fraction, respectively pn and qn for n ≥ −1

as follows. Set p−1 = 1, p0 = a0, and q−1 = 0, q0 = 1, and then define

further entries by the following two recursion relations, making use of the

partial quotients from the continued fraction, pk+1 = ak+1pk + pk−1 and

qk+1 = ak+1qk + qk−1 for k ≥ 0.

Note that immediately we get p0/q0 = a0 = c0, and

p1

q1
=
a1p0 + p−1

a1q0 + q−1
=
a1a0 + 1

a1
= a0 +

1

a1
= c1.

In the following proposition we will show that this extends, that is we have

ck = pk/qk for all k ≥ 0, using these observations as the base case in an

induction on k.

Proposition 2.1.5. For all k ∈ N, ck = pk/qk.

Proof. We proceed by induction, having established the base case (k = 0, 1)

in the comment above. Supposing that the statement holds for all natural

numbers up to and including k, we show that ck+1 = pk+1/qk+1.

We can think of ck+1 as a continued fraction with just k partial quotients

by taking the last two partial quotients and considering them together , that

is by considering ãk given by ak + 1
ak+1

. Then we have

ck+1 = [a0; a1, . . . , ak−1, ak, ak+1] = [a0; a1, . . . , ak−1, ãk] = c̃k.

Now the k-th convergent of this new continued fraction is, by induction

hypothesis and the recursion relations satisfied (by construction)by the nu-
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merators and denominators of the continued fraction, given by

c̃k =
ãkpk−1 + pk−2
ãkqk−1 + qk−2

=
(ak + 1

ak+1
)pk−1 + pk−2

(ak + 1
ak+1

)qk−1 + qk−2
.

Importantly the pk−1, pk−2, qk−1, and qk−2 coincide when considering ck+1

and c̃k. Further rearranging gives

ck+1 =
(ak + 1

ak+1
)pk−1 + pk−2

(ak + 1
ak+1

)qk−1 + qk−2

=
(akpk−1 + pk−2) + 1

ak+1
pk−1

(akqk−1 + qk−2) + 1
ak+1

qk−1

=
pk + 1

ak+1
pk−1

qk + 1
ak+1

qk−1
· ak+1

ak+1

=
pk+1

qk+1

,

which is precisely what we wanted to show.

Now that we have seen pk/qk agrees with ck for all k ≥ 0, we will largely

dispense with referring to the ck’s, and instead refer just to pk and qk.

A useful property of the numerators and denominators of the convergents

is given in the following lemma.

Lemma 2.1.6. For k ≥ 0 we have pkqk−1 − pk−1qk = (−1)k−1.

Proof. Firstly p0q−1− p−1q0 = −1 (= (−1)−1). We then proceed inductively,

for k ≥ 0 we have

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= −(pkqk−1 − pk−1qk)

= (−1)(−1)k−1 = (−1)k.

Where the third equality goes through by use of the induction hypothesis.

Whence the statement holds for all k ≥ 0.

The usefulness of this lemma will become apparent in the following sub-

section where we restrict the partial quotients.
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2.2 Regular continued fractions.

In this subsection we look at a class of continued fractions whose partial quo-

tients are natural numbers. It will be seen that the sequence of convergents

for such continued fractions always tends to a real limit.

Definition 2.2.1. We say that a continued fraction is a regular continued

fraction if a0 ∈ Z and ai ∈ N \ {0} for i ≥ 1.

From now on continued fraction will always be taken to mean regular

continued fraction, unless specifically stated otherwise.

Remark 2.2.2. Once we have restricted ourself to regular continued fractions,

lemma 2.1.6 tells us that pk and qk are coprime for k ≥ 0, and hence that

each convergent is a reduced fraction.

Lemma 2.2.3. Let (pk/qk)k≥0 be the sequence of convergents for an infinite

regular continued fraction, then this sequence converges to a real limit t.

Proof. We have, for k ≥ 1, that

pk
qk
− pk−1
qk−1

=
pkqk−1 − qkpk−1

qkqk−1
=

(−1)k−1

qkqk−1
,

where the first equality is obvious and the second follows from lemma 2.1.6.

Therefore we have

p0
q0

+
∞∑
k=1

(
pk
qk
− pk−1
qk−1

) =
p0
q0

+
∞∑
k=1

(−1)k−1

qkqk−1
,

but notice that since q0 = 1 and qk = akqk−1 + qk−2, we get qk > qk−1 for

k ≥ 1. So we have that 1/qkqk−1 < 1/k2, and it then follows that the series

described converges. Hence the sequence of convergents converges, say with

limk→∞ pk/qk = t.

So now we have a way of associating real numbers to (regular) continued

fractions. As shorthand we will often say that a continued fraction converges

to or tends to some real number t to mean that t is the limit of its sequence

of convergents.
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Definition 2.2.4. Given a continued fraction [a0; a1, a2, . . .], the k-th com-

plete quotient is defined as the continued fraction [ak; ak+1, ak+2, . . .]. We will

denote the k-th complete quotient ζk. Immediate from the definition, notice

that ζk = ak + 1/ζk+1.

So far we have associated a real number to each continued fraction. The

following lemma will be used in the next subsection, where we go in the

opposite direction and produce a continued fraction which converges to some

given real limit t.

Lemma 2.2.5. Given a continued fraction with convergents (pk/qk)k≥0, we

have

t =
pkζk+1 + pk−1
qkζk+1 + qk−1

for all k ≥ 0.

Proof. For the base case k = 0, we have

p0ζ1 + p−1
q0ζ1 + q−1

=
a0ζ1 + 1

ζ1
= a0 + 1/ζ1 = ζ0.

Next for the induction step, suppose the statement holds for k, then we show

it also holds for k + 1.

t =
(ak+1 + 1

ζk+2
)pk + pk−1

(ak+1 + 1
ζk+2

)qk + qk−1

=
(ak+1pk + pk−1) + ( 1

ζk+2
)pk

(ak+1qk + qk−1) + ( 1
ζk+2

)qk

=
pk+1ζk+2 + pk
qk+1ζk+2 + qk

.

Here the first equality is by induction hypothesis and an immediate conse-

quence of the definition of ζk+1, the second equality is by rearrangement, and

the third equality is by the definition of the convergents along with multi-

plying through by ζk+2/ζk+2. Hence the statement holds for all k ≥ 0 as

required.
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2.3 Continued fraction for a real number.

The following algorithm produces, given some real number t, a continued

fraction that converges to t. In section 3 this will be used to give ways of

representing both natural numbers and real numbers based on the continued

fraction converging to some fixed irrational number t.

Algorithm 2.3.1. We want to take as input a real number t, and produce

a continued fraction that converges to t.

Step 1: Set a0 = btc. Then define δ0 = t − a0. If δ0 = 0 then we stop

and the process is finished with [a0] being the continued fraction for t. If not

then we proceed as follows.

Further steps: Suppose we have iterated the algorithm and produced ak

and δk. Then set ak+1 = b1/δkc, and δk+1 = 1/δk − ak+1. If δk+1 = 0 we are

done, otherwise we continue iterating.

Starting with t ∈ R the continued fraction produced by algorithm 2.3.1

is hereafter referred to as the continued fraction for t. The intuition behind

algorithm 2.3.1 is to take the greatest integer not exceeding t (as a0), then

to make up as much of the rest of t as possible by taking the greatest integer

not exceeding the reciprocal of the difference between t and this integer (as

a1). Repeating this to get progressively closer to t while conforming to the

definition of a regular continued fraction by always taking natural numbers

for the partial quotients.

Note that if t is rational then the process outlined will terminate and we

will get a finite expression [a0; a1, . . . , an]. On the other hand for irrational

t if the algorithm were to terminate then clearly we would get a contradic-

tion, since by multiplying through by denominators repeatedly we would get

an expression for t as a quotient of two integers. The following proposition

shows that algorithm 2.3.1 successfully produces a continued fraction which

converges to t.
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Proposition 2.3.2. With pk/qk defined according to algorithm 2.3.1, we

have limk→∞(t− pk/qk) = 0.

Proof. The key here is to use lemma 2.2.5. This gives us that

t =
pkζk+1 + pk−1
qkζk+1 + qk−1

for all k ≥ 0. Using this we get

lim
k→∞

(t− pk/qk) = lim
k→∞

(
pkζk+1 + pk−1
qkζk+1 + qk−1

− pk
qk

).

Now with some straightforward rearranging we get

pkζk+1 + pk−1
qkζk+1 + qk−1

− pk
qk

=
pk−1qk − pkqk−1
q2kζk+1 + qkqk−1

,

and then applying lemma 2.1.6 we get

lim
k→∞

(t− pk/qk) = lim
k→∞

(
(−1)k

q2kζk+1 + qkqk−1
).

Note that this shows the convergents alternate between approximating t from

below and above. Now taking the modulus (since we are looking to establish

a null sequence this is valid) we have

lim
k→∞
|t− pk/qk| = lim

k→∞
(

1

q2kζk+1 + qkqk−1
).

Lastly we note that ζk+1 = 1/δk ≥ ak+1 by construction. This means we can

bound the terms of our sequence as follows,

1

q2kζk+1 + qkqk−1
≤ 1

q2kak+1 + qkqk−1
=

1

qk(qkak+1 + qk−1)
=

1

qkqk+1

.

So since the last term gives a null sequence, we are done. Algorithm 2.3.1

takes input t ∈ R and has as output a regular continued fraction which is

either equal to t (if the algorithm terminates) or whose convergents have

limit t.
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2.4 The sequence of differences βk.

The following sequence will be used in section 3 when we give representations

of real numbers based on continued fractions.

Definition 2.4.1. We define the k-th difference of the continued fraction for

some real number t to be βk := qkt− pk. As it is notationally useful to do so

we start from k = −1, with β−1 = −1.

Remark 2.4.2. The differences of the continued fraction of t share the same

recurrence relation as the numerators and the denominators since we have

βk+1 = qk+1t− pk+1

= (ak+1qk + qk−1)t− (ak+1pk + pk−1)

= ak+1(qkt− pk) + (qk−1t− pk−1)

= ak+1βk + βk−1.
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3 Ostrowski Representations.

Now we present two results which using the definitions and results from sec-

tion 2. In both cases we work with a fixed irrational number t, and the con-

tinued fraction for t, as produced by algorithm 2.3.1. With algorithm 3.1.3 we

see that every natural number can be represented as a sum of denominators

from the continued fraction of t. The first result then establishes condi-

tions on the coefficients used, see theorem 3.1.2 for the precise statement.

Theorem 3.2.1) gives a similar result for real numbers, using the sequence

of differences from the continued fraction of t (definition 2.4.1) rather than

the denominators, unique representations are available for all real numbers

(again with important restrictions on the coefficients). In both cases the

precise statement is taken from Hieronymi [3], however no proof is presented

there. Theorem 3.1.2 follows the proof from [1]. Theorem 3.2.1 uses a proof

adapted from Rockett and Szusz[8] (which gives a slightly different formula-

tion).

3.1 Representations for N.

Here we want to prove that under certain conditions on coefficients every

natural number can be uniquely represented as a sum of the denominators

from the continued fraction of some fixed irrational t. First a lemma that

will be used in the proof.

Lemma 3.1.1. Let 1 = u0 < u1 < u2 < . . . be a strictly increasing sequence

of integers. Then every natural number m has a unique representation of the

form
∑N

k=0 bk+1uk where bN+1 6= 0 and for k ≥ 0 the bk+1 are non-negative

integers satisfying

b1u0 + b2u1 + · · ·+ bk+1uk < uk+1.

Proof. For existence we defer to algorithm 3.1.3, which is an example of
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the ‘greedy algorithm’ (see Allouche and Shallit [1] for a discussion in full

generality).

Now for uniqueness. Suppose a natural number m has two distinct rep-

resentations b1u0 + · · ·+ bN+1uN and c1u0 + · · ·+ cN+1uN (if the lengths are

different, say with one having length M < N then add N −M terms to the

end of the shorter representation, with 0 coefficients for each new term). We

can choose N such that one of bN+1, cN+1 is non-zero. Let i ∈ {0, . . . , N} be

minimal such that bi+1 6= ci+1 (such an i exists by the assumption that the

two representations are distinct). Without loss of generality we can assume

bi+1 > ci+1, however (b1u0 + · · ·+ bk+1uk)− (c1u0 + · · · ck+1uk) = 0, so we get

(bk+1− ck+1)uk = (c1− b1)u0 + · · ·+ (ck− bk)uk−1 ≤ c1u0 + · · ·+ ckuk−1 < uk.

But bk+1− ck+1 ≥ 1, so we have uk ≤ (bk+1− ck+1)uk < uk which is obviously

a contradiction. Hence such representations are unique as required.

Theorem 3.1.2. Let m be a natural number. Then there exists unique nat-

ural N such that qN ≤ m < qN+1, and tuple (b1, . . . , bN+1) of integers such

that m =
∑N

k=0 bk+1qk with

• 0 ≤ b1 < a1,

• 0 ≤ bk ≤ ak for k > 1, and

• bk+1 = ak+1 implies bk = 0.

Proof. By lemma 3.1.1 it is sufficient to show that the three conditions on

the coefficients bk are equivalent to b1q0 + b2q1 + · · ·+ bk+1qk < qk+1.

Suppose the three conditions hold. We induct on k to show that the

inequality holds.

If k = 0 then we have b1q0 = b1 < a1 = q1 by the first condition.

If k = 1 then we have to show b1q0+b2q1 < q2. Well if b2 = a2 then b1 = 0

and we get a2q1 = q2 − q0 < q2 as expected. Meanwhile if b2 < a2 we have

14



b1q0 + b2q1 < b1 + b2a1 ≤ a1a2 < a1a2 + 1 = q2. So the cases k = 0 and k = 1

are established.

Suppose that the inequality holds for k < j, then we want to show it

holds for j. By the second condition we have bj+1 ≤ aj+1. If bj+1 < aj+1

then bj+1 ≤ aj+1 − 1, so

bj+1qj ≤ (aj+1 − 1)qj ≤ qj+1 − qj−1 − qj ≤ qj+1 − qj.

Combining this with the induction hypothesis that b1q0 + · · · + bjqj−1 < qj,

we get

b1q0 + · · ·+ bj+1qj < qj + bj+1qj ≤ qj+1.

On the other hand if bj+1 = aj+1 we get bj = 0 from the third condition,

hence

bjqj−1 + bj+1qj = aj+1qj = qj+1 − qj−1.

But then by induction hypothesis we have b1q0+· · ·+bj−1qj−2 < qj−1, whence

b1q0 + · · ·+ bj+1qj < qj+1 as required.

Now for the opposite direction. We get the first condition out of the

inequality since b1q0 < q1 implies b1 < a1 (as q0 = 1 and q1 = a1). For

the second condition note that bk+1qk < qk+1 is given by the inequality, so

bk+1qk < ak+1qk + qk−1. This gives bk+1 < ak+1 + (qk−1/qk), then as qk−1 ≤ qk

we have bk+1 < ak+1 +1, so bk+1 ≤ ak+1. For the third condition, bk+1 = ak+1

and bk 6= 0, imply

b1q0 + · · ·+ bkqk−1 + bk+1qk ≥ qk−1 + ak+1qk = qk+1.

So the conditions are equivalent, hence by lemma 3.1.1 any representation

satisfying the conditions in the statement is unique. Existence is demon-

strated in algorithm 3.1.3 next.

The following algorithm gives the unique representation from theorem 3.1.2

of any natural number m based on the continued fraction of some fixed irra-

tional t.
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Algorithm 3.1.3. We have fixed irrational t ∈ R. If (qk)k∈N is the sequence

of denominators of the continued fraction for t we get 1 = q0 ≤ q1 < q2 < . . .

and so for any natural number m there must be indices N and N + 1 such

that qN ≤ m < qN+1.

Step 1: Dividing m by qN we get m = bm/qNcqN +rN where 0 ≤ rN < qN

is the remainder. If qN divides m then we get rN = 0 and we are done.

Otherwise we let rN take the role of m and we proceed to the next step.

Further steps: We then divide rN by qk for some k < N with qk ≤ rN <

qk+1, getting rN = brN/qkcqk+rk, at which point if rk = 0 we stop, otherwise

letting rk take the role of m.

Repeating this process until a remainder 0 is obtained at some stage (note

that the indices are strictly decreasing, and q0 = 1, which divides any possible

remainder r, hence the process will always terminate in finitely many steps).

At each stage the coefficient is chosen to be maximal and hence unique.

Note that the coefficients obtained by the algorithm conform to the conditions

given in the statement of theorem 3.1.2.

3.2 Representations for R.

Now look at representations for real numbers instead of natural numbers.

The representation is still grounded in the continued fraction of some fixed

irrational number t, but this time uses the sequence of differences instead

of the sequence of denominators. Again we have important restrictions on

the coefficients, which are relied on for the uniqueness of the representations.

At the end an algorithm is given to explain how such representations are

produced (algorithm 3.2.2).
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Theorem 3.2.1. Let c be a real number such that −1
ζ1
≤ c < 1 − 1

ζ1
. Then

there is a unique sequence (bk)k≥1, bk ∈ N such that c =
∑∞

k=0 bk+1βk with

• 0 ≤ b1 < a1,

• 0 ≤ bk ≤ ak for k > 1,

• bk+1 = ak+1 implies bk = 0, and

• bk < ak for infinitely many odd k.

Proof. First notice that the interval which we are assuming c lies in is

[−β0, (a1 − 1)β0 − β1). This is because by remark 2.4.2 we have

−1

ζ1
= a0 − t = −(q0t− p0) = −β0,

1− 1

ζ1
= 1− β0 = −(0t− 1)− β0 = −β−1 − β0 = (a1 − 1)β0 − β1.

First we should note that all such sums do lie in the interval. To see this

notice that the signs of the differences alternate, with βk ≥ 0 for even k and

βk ≤ 0 for odd k, so we can estimate any such sum as follows.

For the lower bound, we set the coefficients of all positive differences to 0,

and take the highest possible coefficient for all negative differences. That is

we consider a2β1 +a4β3 + . . ., then cancel terms using the recurrence relation

in the following way to get a non-strict lower bound

∞∑
k=1

a2kβ2k−1 =
∞∑
k=1

(β2k − β2k−2) = −β0.

Similarly for the upper bound we get

(a1− 1)β0 +
∞∑
k=1

a2k+1β2k = (a1− 1)β0 +
∞∑
k=1

(β2k+1−β2k−1) = (a1− 1)β0−β1.

However as bk < ak for infinitely many odd k, we have that bk < ak for some

k > 1, meaning that the upper bound is strict. (Note that this is true at
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every stage, and is the reason we always have intervals open on the right and

closed on the left. This contributes to uniqueness of representation in the

same way as disallowing recurring 9’s in decimal expansions.)

It can also be seen that such sums of βk’s fill the interval (if you aren’t

convinced, look at algorithm 3.2.2 below). Hence any real number c in the

interval can be written as such a sum of the βk’s of the continued fraction

for t. What remains to show is that the coefficients are unique.

To do this we outline a process of nested partitioning of the initial interval

according to the range of values for the coefficients in the representation of c.

Starting with b1, a partitioning of the interval [−β0, (a1−1)β0−β1) according

to the a1 different possible values of b1 is given. Then at subsequent stages,

we partition each of the subintervals produced in the previous stage according

to the range of values the subsequent coefficient can take. At the k-th stage

this will be a partitioning of each of the subintervals into a further ak + 1

subintervals. As we will have a partitioning at each stage (i.e. none of the

subintervals given at any step will have non-trivial intersection with another

subinterval produced at that step), the coefficients will therefore be unique.

Step 1: The first partitioning goes as follows.

If b1 = 0 then we use the same style of estimate before. The lower bound

is not affected as we were already taking b1 = 0. For the upper bound we get
∞∑
k=0

bk+1βk < a3β2 + a5β4 + . . . =
∞∑
k=0

(β2k+1 − β2k−1) = −β1.

So if b1 = 0 we have c ∈ [−β0,−β1).
If 0 < b1 < a1 then we have that b2 < a2 by our initial restrictions on

the coefficients since b2 = a2 implies b1 = 0. So the lower bound of our

estimation, with b1 now being fixed, becomes

b1β0 + (a2 − 1)β1 + a4β3 + . . . = (b1 − 1)β0 − β1,

and the upper bound becomes

b1β0 + a3β2 + a5β4 + . . . = b1β0 − β1.
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Putting the two cases together, we get the required partitioning of

[−β0, (a1 − 1)β0 − β1) into subintervals.

Further steps: For the subsequent steps we proceed in the same way as

before, but the subinterval determined by the coefficients already calculated

now acts as the starting interval. We do the second step as an example.

So supposing we have c = b1β0 +
∑∞

k=1 bk+1βk, with b1 fixed, we need

to show that the choices for b2 partition the estimates from the first step

depending on b1.

If b1 = 0 then the upper and lower bounds on b1β0 +
∑∞

k=1 bk+1βk are −β0
and −β1 respectively. Then if b2 = 0 we get a lower bound of

a4β3 + a6β5 + . . . = −β2,

which is indeed in [−β0,−β1). We also get an upper bound of

a3β2 + a5β4 + . . . = −β1.

If instead 0 < b2 ≤ a2 then b3 < a3 and so the lower bound is given by

b2β1 + a4β3 + a6β5 + . . . = b2β1 − β2,

while the upper bound is given by

b2β1 + (a3 − 1)β2 + a5β4 + . . . = (b2 − 1)β1 − β2.

Notice here that since β1 ≤ 0, larger values of b2 correspond to lower estimates

of c. In this sense at at each stage we alternate between partitioning left to

right or right to left.

If 0 < b1 < a1 then 0 ≤ b2 < a2. Now if b2 = 0 we get

b1β0 + a4β3 + a6β5 + . . . = b1β0 − β2,

as a lower bound, while for an upper bound we get

b1β0 + a3β2 + a5β4 + . . . = b1β0 − β1.
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Finally if also 0 < b2 < a2 then we have b3 < a3, so we get a lower bound of

b1β0 + b2β1 + a4β3 + a6β5 + . . . = b1β0 + b2β1 − β2,

and an upper bound of

b1β0 + b2β1 + (a3 − 1)β2 + a5β4 + . . . = b1β0 + (b2 − 1)β1 − β2.

Notice that for the lower bound, the lowest estimate is attained when b2 =

a2 − 1 in which case

b1β0 + (a2 − 1)β1 − β2 = b1β0 − β1 + (a2β1 − β2) = (b1 − 1)β0 − β1

Thus we have a partitioning of the subinterval [(b1 − 1)β0 − β1, b1β0 − β1)

into further subintervals according to the value of b2 as required.

All further stages follow identical procedures.

Algorithm 3.2.2. Supposing that we have fixed a real number t and taken

its continued fraction, to get the t-expansion of some suitable real number

c we simply choose the coefficients bk according to the subinterval which c

lies in. So if −β0 ≤ c < −β1 we take b1 = 0, and so on choosing successive

coefficients one at a time.

We call the representation c =
∑∞

k=0 bk+1βk obtained in this manner the

t-expansion of c. Notice that β0 < 1, so if we need to uniquely represent

all real numbers then we can instead take
∑∞

k=−1 bk+1βk, with b0 taking any

integer value. As all real numbers can be integer translated into the interval
−1
ζ1
< c < 1− 1

ζ1
this is sufficient since β−1 = −1.
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4 Quantifier Elimination for Q.

In this section we work with the structure Q = (Q;<,+,−, 0, 1, (λq)q∈Q, b c).
Here each λq is the usual scalar map x 7→ qx in Q, and b c maps elements

of Q to the greatest integer less than or equal to them, i.e. is the expected

floor function on Q.

First a universal theory TQ in the language of Q will be shown to admit

quantifier elimination using a consequence of the Shoenfield-Blum test (see

theorem 4.2.3 and theorem 4.3.7). The consequence of Shoenfield-Blum gives

sufficient conditions for a universal theory to have quantifier elimination. It

will then be shown that this set TQ axiomatises the structure Q.

The order of results may seem unintuitive at first, but establishing quan-

tifier elimination will greatly simplify the proof that TQ axiomatises Q, and

so is presented at the start. These results will all be put to use in section 5,

where we will show that Q defines (Q;<,+,Z), to prove decidability of the

first order theory of the latter. The main sources are Miller [7] who estab-

lishes quantifer elimination for the theory TQ. For the background model

theoretic results employed both Marker [6] and Hodges [5] have been used,

and for the quantifier elimination tests Tressl [10] is used.

4.1 Axiomatisation TQ.

Definition 4.1.1. We say that an L -theory U is axiomatised by an L -

theory T if Ded(T ) = U . We also say that an L -structureM is axiomatised

by an L -theory T if Th(M) is axiomatised by the theory T .

Definition 4.1.2. We say that a theory T in a language L admits quantifier

elimination if for every L -formula ϕ(x1, ..., xn) there is some quantifier free

L -formula χ(x1, ..., xn) such that T |= ϕ↔ χ.
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Note that embeddings between models of theories with quantifier elimina-

tion are always elementary embeddings. This is because embeddings preserve

all quantifier free formulas, so if every formula is equivalent modulo the the-

ory to some quantifier free formula then it is preserved by an embedding.

Axioms 4.1.3. Let L be the language of Q, then we fix the following set

of axioms TQ:

(i) Axioms for ordered abelian groups;

(a) the group axioms,

(b) axioms for a linear order,

(c) ∀x∀y x+ y = y + x,

(d) ∀x∀y∀z x < y → x+ z < y + z,

(ii) 0 < 1,

(iii) An axiom for each pair (j, n) ∈ Z× N stating that ∀x nλj/n(x) = jx,

(iv) ∀x∀y bbxc+ yc = bxc+ byc,

(v) ∀x 0 ≤ x < 1→ bxc = 0,

(vi) b1c = 1,

(vii) ∀x bxc ≤ x < bxc+ 1.

We will see shortly that TQ admits quantifier elimination. Since Q |= TQ

we have that Ded(TQ) ⊆ Th(Q), to show that TQ axiomatises Q it will be

sufficient to show that Q embeds into every model of TQ. By the comment

above about embeddings this will give us that Th(Q) ⊆ Ded(TQ), and hence

that Ded(TQ) = Th(Q) as required. We do this now using some results about

ordered divisible abelian groups.
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Lemma 4.1.4. Let (G,+, <) be an ordered abelian group. If G has Q-vector

space structure, then it is a divisible group.

Proof. Suppose we have Q-vector space structure on G, then we need to

show that for all g ∈ G and n ∈ N there is h ∈ G such that h + · · · + h = g

(where we have n summands). Well using the vector space structure we can

just take h = 1
n
g. By the usual vector space axioms we get h + · · · + h =

( 1
n

+ · · ·+ 1
n
)g = g.

Lemma 4.1.4 will be essential in allowing us to use a variation of the

Shoenfield-Blum test for quantifier elimination. By using axiom (iii) to force

Q-vector space structure for TQ-models, we can axiomatise divisibility with

universal formulas. Writing out the usual axiom for divisibility ∀x∃y(ny = x)

would undermine this.

Remark 4.1.5. TQ is universal. That is, all formulas in TQ are of the form

∀x1, ...xnφ where φ is a quantifier free L -formula (or are themselves quantifier

free).

Proposition 4.1.6. Q embeds into every model of TQ.

Proof. LetM = (M ;<′,+′,−′, 0′, 1′, (λq)q∈Q) be a model of TQ. Notice that

axiom (iii) just says that λq is to be interpreted as usual Q-multiplication. So

any model of TQ is an ordered abelian group with Q-vector space structure.

We show that φ : Q → M given by p 7→ λp(1
′) is an embedding. From

axiom (iii) we get that 0 7→ 0′ and 1 7→ 1′. Then by the usual properties of

scalar multiplication we get

p1 + p2 7→ λp1+p2(1
′) = λp1(1

′) + λp2(1
′) = φ(p1) +′ φ(p2),

and −p 7→ λ−p(1
′), while clearly λ−p(1

′) +′ λp(1
′) = λ0(1

′) = 0′, whence

φ(−p) = −′φ(p).

For the order we have that p1 < p2 implies λp1(1
′) < λp2(1

′) by axiom

(ii) and the usual properties of ordered vector spaces. While if p1 ≥ p2 we
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get either p1 = p2 in which case λp1(1
′) = λp2(1

′), or p2 < p1 in which case

λp2(1
′) < λp1(1

′). In both cases we clearly cannot have λp1(1
′) < λp2(1

′), so

we have p1 < p2 if and only if λp1(1
′) < λp2(1

′).

Lastly note for any p ∈ Q we get

bφ(p)c′ = bφ(p− bpc) + φ(bpc)c′

= bφ(p− bpc) + bφ(bpc)c′c′

= bφ(p− bpc)c′ + bφ(bpc)c′

= bφ(bpc)c′,

but note that as bpc ∈ Z, we can write bpc = 1 + · · · + 1 and then we get

that

bφ(bpc)c′ = bφ(1 + · · ·+ 1)c′ = b1′ + · · ·+ 1′c′ = 1′ + · · ·+ 1′ = φ(bpc).

So putting this together, we at last have bφ(p)c′ = φ(bpc).
Therefore φ is indeed an embedding.

4.2 Quantifier elimination tests

Definition 4.2.1. LetM,N be L -structures, with a common substructure

U . Then we write MV∃1U N to mean the following:

For all quantifier free L -formulas χ(y1, . . . , yn, x) and n-tuples α from U ,

the implication M |= ∃xχ(α, x)⇒ N |= ∃xχ(α, x) holds.

The following test for quantifier elimination is stated without proof, for

a full proof see Tressl[10].

Proposition 4.2.2 (Shoenfield-Blum Test). Let T be an L -theory without

finite models. Then the following are equivalent:

1. T admits quantifier elimination.

2. If B, C |= T , and A is a finitely generated common substructure of B
and C, then B V∃1A C.
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In the following theorem the test for quantifier elimination which will be

used on TQ is given. It is proved as a consequence of the Shoenfield-Blum

test.

Theorem 4.2.3. Let T be a universal L -theory, and suppose for all models

M � N of T there is some a ∈ N \M and M′ � M such that M〈a〉N
embeds into M′ over M. Then T admits quantifier elimination.

Proof. Suppose the conditions in the statement all hold. We want to show

that the Shoenfield-Blum test goes through.

So let T be universal theory, with B, C |= T , and with A a finitely gener-

ated common substructure of the two. Now consider the collection of struc-

tures Ψ = {A0 : A ≤ A0 ≤ B and A0 V∃1A C}.
This collection is partially ordered under the substructure relation. We

also have that any chain in Ψ has an upper bound in Ψ. Taking A∗ to be

the union of a chain, we just need to check that A∗ V∃1A C. But this is clear

since any witness for a formula from the union can be found in some structure

which makes up the chain, and so there is a witness in C by assumption.

Now by Zorn’s lemma Ψ contains a maximal element, say A1. As A1 ∈ Ψ

we have that A1 ≤ B. Then since B models T , which is universal, we have

that A1 |= T . Note that this is where we utilise the assumption that T is

universal.

Supposing that A1 � B, we can bring in the assumptions from the state-

ment. These tell us that there is some α ∈ B\A1 and an elementary extension

A′1 � A1 such that there exists an embedding φ : A1〈α〉B → A′1 over A1 .

So then we get that A1〈α〉B ∈ Ψ since if A1〈α〉B |= ∃xχ(ā, x) we have a

witness, say λ. This gives us that A′1 |= χ(ā, φ(λ)), so that A′1 |= ∃xχ(ā, x),

and hence A1 |= ∃xχ(ā, x) by A1 ≺ A′1. So as A1 ∈ Ψ we get by transitivity

of V∃1A that A1〈α〉B ∈ Ψ, contradicting the maximality of A1. Hence we

must have A1 = B. Whence B V∃1A C, so by the Shoenfield-Blum test T

admits quantifier elimination as required.
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4.3 TQ admits quantifier elimination.

We will use theorem 4.2.3 to prove that the theory TQ admits quantifier

elimination, but before the proof we establish some results about TQ-models

which will be used.

Lemma 4.3.1. Let M |= TQ, then for any a ∈ M we have a ∈ bMc if and

only if a = bac.

Proof. The implication right to left is trivial. For left to right simply notice

that since a = bmc for some m ∈ M , we get bac = bbmc + 0c. But as M
satisfies axiom (iv) we get bac = bmc = a as required.

Lemma 4.3.2. Let M |= TQ, then bMc forms a subgroup of (M,+).

Proof. Note that b0c = 0 so bMc 6= ∅, and for a, b ∈ bMc we have

a− b = bac − b = bbac − bc = ba− bc,

so a− b ∈ bMc. Hence bMc forms a subgroup of (M,+) as required.

Lemma 4.3.3. Let M |= T , a ∈ bMc and n a positive integer. Then there

is unique i ∈ {0, . . . , n− 1} such that a+i
n
∈ bMc.

Proof. For uniqueness note that if we have a+i1
n
, a+i2

n
∈ bMc then by lemma 4.3.2

we get that both i1−i2
n
, i2−i1

n
∈ bMc. Note that for one of these we can apply

axiom (vii) and so using lemma 4.3.1 we get that i1 = i2.

Then for existence, consider different values of n. For n = 1, taking i = 0

is the only choice, and fortunately it works as we assume a ∈ bMc.
So now for n ≥ 2 we can assume that a

n
/∈ bMc since otherwise we are

done. In this case we notice that

bn(a/n− ba/nc)c = ba− nba/ncc

= bbac − nba/ncc

= bac+ b−nba/ncc

= a− nba/nc 6= 0.
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Where the inequality at the end is due to the assumption that a
n
/∈ bMc.

Then by considering axiom (vii) we get that 0 < a − nb a
n
c < n. Now

bMc∩(0, n) = {1, ..., n−1} so for some k ∈ {1, ..., n−1} we have a = nb a
n
c+k.

But then a−k
n
∈ bMc, hence 1 + a−k

n
= a+(n−k)

n
∈ bMc by lemma 4.3.2 and

axiom (vi). Since 0 < n− k < n we can take i = n− k for n ≥ 2. So we have

existence and uniqueness, hence we are done.

Definition 4.3.4. Let G ≤ H be ordered groups. We say that h1, h2 ∈ H
realise the same cut in G if for all g ∈ G we have g < h1 if and only if g < h2.

Definition 4.3.5. A map between ordered structures will be called an order

embedding if it is both order preserving and order reflective.

Proposition 4.3.6. Let (G,<,+) be a divisible ordered abelian group with

proper extensions H1 and H2 (which are also divisible ordered abelian groups).

Let h1 ∈ H1 \ G and h2 ∈ H2 \ G. Then the map φ : G ⊕ Qh1 → G ⊕ Qh2
given by φ(g + qh1) = g + qh2 is an order embedding if h1 and h2 realise the

same cut in G.

Proof. We want to show that for any g1, g2 ∈ G, h1 ∈ H1, and q1, q2 ∈ Q we

have g1 + q1h1 < g2 + q2h1 if and only if g1 + q1h2 < g2 + q2h2.

If q1 6= q2 then we can rearrange in the following way,

g1 + q1h1 < g2 + q2h1 ⇔
g1 − g2
q2 − q1

< h1

⇔ g1 − g2
q2 − q1

< h2

⇔ g1 + q1h2 < g2 + q2h2.

Whereas if q1 = q2 we have,

g1 + q1h1 < g2 + q2h1 ⇔ g1 < g2

⇔ g1 + q1h2 < g2 + q2h2.

So we are done.
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Theorem 4.3.7. TQ admits quantifier elimination.

Proof. We apply theorem 4.2.3. Let M � N be models of TQ. To establish

quantifier elimination we produce α ∈ N \M and an extension M′ � M
such thatM〈α〉N embeds intoM′ over M . We consider two cases according

to whether or not bNc is contained in bMc. In both cases we will choose

some suitable α ∈ N , then produce a type over M , and give an embedding

over M between M〈α〉N and an elementary extension of M which contains

a realisation of this type.

Case 1:

For the first case, suppose bNc = bMc (note that as M≤ N we must have

bMc ⊆ bNc, so we are adding the assumption that bNc ⊆ bMc). Then for

any α ∈ N \M we have bm+ qαc ∈M for all m ∈M and q ∈ Q. Hence for

such α we have bM ⊕Qαc ⊆M ⊆M ⊕Qα, and so |M〈α〉N | = M ⊕Qα.

Now to produce a suitable extension M′ � M we take any α ∈ N \M
and an extension M′ containing some α′ which realises the same cut in M

as α does. The sets of parameters αL = {m ∈ M : N |= m < α} and

αR = {m ∈ M : N |= α < m}, are clearly contained in M . We define a

partial M-type using these, by {m < x : m ∈ αL} ∪ {m > x : m ∈ αR}. To

verify that this is a partial type, we check that it is finitely realisable in M.

Taking a finite subset, we clearly get an open interval by taking the formulas

corresponding to the most restrictivem from both αL and αR (or possibly just

an upper or lower bound, but this case is of course even easier to deal with).

Now suppose the interval we get is (m1,m2), then m1 + 1
2
(m2 − m1) ∈ M

satisfies all of the formulas in the finite collection. Extending to a maximally

consistent set of formulas we get anM-type over M , which is hence realised

in some extension M′ � M, say by α′ ∈ M ′. Note that as α /∈ M we have

αL ∪ αR = M , hence α′ /∈M also.

We can now use proposition 4.3.6. As we have two extensions N and

M′, both containing elements realising the same cut in the ground structure
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M, the map φ : M ⊕ Qα → M ⊕ Qα′ given by m + qα 7→ m +′ qα′ is

an order embedding (also note that φ is well defined since the domain is a

direct sum). Checking addition, constants, and scalar multiplication are all

straightforward, so the details for the floor function are given.

For the floor function we need to check that for any m ∈ M and q ∈ Q
we have φ(bm + qαc) = bm +′ qα′c′. By our assumption that bNc = bMc
we have that bm + qαc ∈ bMc ⊂ M , so φ(bm + qαc) = bm + qαc. Since N
satisfies TQ we know

bm+ qαc ≤ m+ qα < bm+ qαc+ 1,

so as φ is an order embedding we get

bm+ qαc ≤′ m+′ qα′ <′ bm+ qαc+′ 1.

This gives us that

0 ≤′ (m+′ qα′)−′ bm+ qαc <′ 1,

and hence b(m+qα′)−′bm+qαcc′ = 0. It is easily seen that in any TQ-model

bx−bycc = bxc−byc. AsM′ �M we have bMc ⊆ bM ′c′, and in particular

bm+ qαc ∈ bM′c′. Putting all of this together we get

bm+′ qα′c′ −′ φ(bm+ qαc) = bm+′ qα′c′ −′ bm+ qαc

= bm′ + qα′c′ −′ bbm+ qαcc′,

= b(m+ qα′)−′ bbm+ qαcc′c′,

= b(m+′ qα′)−′ bm+ qαcc′,

= 0.

Therefore φ(bm + qαc) = bm +′ qα′c′. So we have α ∈ N \M , and an

extension M′ �M such that M〈α〉N embeds into M′ over M as required.

Case 2:

For the second case suppose bMc $ bNc. Taking α ∈ bNc \ bMc have that
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bM ⊕ Qαc ⊆ M ⊕ Qα. This is because for any m ∈ M and q ∈ Q we can

write q = k
n

where k ∈ Z and n a natural number. By lemma 4.3.3 there

exists in ∈ {0, . . . , n− 1} such that (α + in)/n ∈ bNc, it follows that

bm+ qαc = bm− qin + k
α + in
n
c = bm− qinc+ k

α + in
n
∈M ⊕Qα,

where the first equality is trivial, and the second is implied by α+in
n
∈ bNc.

So we have |M〈α〉N | = M ⊕Qα as in the first case.

Again we must produce some extension M′ � M such that M〈α〉N
embeds intoM′ over M . We will use the same technique as in the first case.

First a partial type is given, this is extended to a maximally consistent set of

formulas, we take some realisation α′ in an extension M′ � M, then show

that φ given by m + qα 7→ m +′ qα′ is an embedding from M〈α〉N into M′

over M .

We have now fixed α ∈ bNc \ bMc. The sets of parameters αL and

αR are defined as in the first case, but with respect to this new α. New

parameters are also introduced. For each natural n ≥ 2 we take the unique

in ∈ {0, . . . , n−1} given by lemma 4.3.3 such that α+in
n
∈ bNc, writing αN for

the collection of all such in. Since we can identify these natural numbers in

the ground model M, all our parameters still come from M (in is identified

with λin(1), and more generally any q ∈ Q is identified with λq(1), which is

an embedding by proposition 4.1.6).

We now need to show that taking the union of the order conditions,

produced just as in the first case (for the new α), and the following set

{(x+ in)/n = b(x+ in)/nc : in ∈ αN},

gives a partial type. To do this we must show that the set of formulas is

finitely realisable in M.

As in the first case, any finite collection of the order conditions gives an

open interval (m1,m2) in M . Any finite collection of new formulas gives a

finite sequence of congruences. So to finitely realise the collection we need to
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realise a finite sequence of congruences in an arbitrary open interval of the

ground modelM which contains an element α ∈ bNc\bMc when considered

as an interval in N . This last remark is essential to the proof, why this is

the case will become clear shortly.

By the Chinese remainder theorem there exists some k ∈ Z satisfying any

such finite sequence of congruences. Now it is sufficient to show that for each

natural number n, there exists an element m ∈ bMc ∩ (m1,m2) such that
m
n
∈ bMc. Then fixing n to be the (finite) product of denominators from the

congruences, we get for any natural number j, and ij ∈ {0, . . . , j − 1} with
x+ij
j

= bx+ij
j
c being one of the congruences, that

bm+ k + ij
j

c = bn̂m
n
c+ bk + ij

j
c

= n̂
m

n
+
k + ij
j

=
m+ k + ij

j
,

where n̂ := n/j is a clearly a natural number. So for any such m ∈ M and

k ∈ Z, m + k satisfies the finite sequence of congruences. By lemma 4.3.3

applied to bm1c ∈ bMc and the n we have chosen as the product of the finitely

many denominators from the congruences, there is in ∈ {0, . . . , n − 1} such

that bm1c+in
n

∈ bMc.
Now we take m = bm1c+ in + n. Since α /∈ bMc, we have bm1c+K < α

for any natural number K. Otherwise we get a contradiction as follows. If

natural K exists with bm1c+ k ≥ α then clearly K 6= 0. Taking minimal K

with bm1c+K ≥ α, we get

bm1c+K − 1 < α < bm1c+K,

where the second inequality is strict as bm1c+K ∈ bMc. This gives

0 < α− (bm1c+K − 1) < 1,
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and therefore

bαc − (bm1c+K − 1) = bα− (bm1c+K − 1)c = 0.

But this implies α ∈ bMc, a contradiction.

Now we take m = bm1c+ in +n. Then as in +n+ k is a natural number,

it follows that bm1c + in + n + k ≥ bm1c + 1 > m1, and therefore that

m + k ∈ (m1, α) ⊂ (m1,m2). So m + k ∈ M realises the finite subset from

the collection of formulas. Hence the collection of formulas given is finitely

realisable in the ground modelM. So we have a partial type over M , and as

in the first case we extend it to a maximally consistent set of formulas, then

take some realisation α′ in an extensionM′ �M. By the same argument as

in the first case using proposition 4.3.6, we have that the order is preserved

and reflected by the map φ since α′ realises the same cut as α in M . To

prove that φ is an embedding we just need to check that the floor function

is also preserved.

We do this using the construction of α′ such that it realises all the con-

gruences given for α. For any m ∈ M and q ∈ Q we have q = k
n

for some

k ∈ Z and natural n. Then we can write m + qα = m − qin + k(α + in)/n.

Since (α + in)/n ∈ bNc we get bm + qαc = bm − qin + bk(α + in)/ncc =

bm− qinc+ k(α + in)/n. Now bm− qinc+ qin ∈M , so we get

φ(bm+ qαc) = bm− qinc+′ qin +′ qα′.

Since α′ realises our type, we also have

bm+ qα′c′ = bm+ qα′ + qin − qinc′

= bm− qinc′ +′ qin +′ qα′,

whence φ(bm + qαc) = bm + qα′c′ for any m ∈ M and q ∈ Q, so again

M〈α〉N embeds into M′ over M .

Putting both cases together, we have that TQ admits quantifier elimina-

tion by theorem 4.2.3.

32



Proposition 4.3.8. TQ axiomatises Q.

Proof. Since TQ admits quantifier elimination, any embedding between TQ

models is elementary. So by proposition 4.1.6 we have that Q is a prime

model of TQ, and hence is axiomatised by TQ.

Proposition 4.3.9. TQ is a complete theory.

Proof. This follows from the fact Q is a prime-model of TQ.
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5 Decidability of (R;<,+,Z).

We show here that the structure Q is decidable using the results of section 4,

and with this prove that the structure (Q;<,+,Z) is decidable by showing

that Q recursively defines it. After this only a few simple adaptions are

needed. In particular noticing that R = (R;<,+,−, 0, 1, (λq)q∈Q, b c) models

TQ, and so is an elementary extension of Q. Then showing that R recursively

defines (R;<,+,Z), decidability carries over to this structure which is our

original interest. The main sources used are Tressl [11] and Marker [6].

5.1 Decidability of TQ

Definition 5.1.1. Let T be a theory in a language L . Then we say that T

is decidable if the set Ded(T ) is recursive.

Lemma 5.1.2. Let T be a theory in a recursive language L . If T is recur-

sive, complete, and satisfiable then T is decidable.

Proof. Since T is consistent and satisfiable the sets {ϕ ∈ Sen(L ) : T |= ϕ}
and {ϕ ∈ Sen(L ) : T |= ¬ϕ} partition Sen(L ). By the completeness

theorem these sets are equal to {ϕ ∈ Sen(L ) : T ` ϕ} and {ϕ ∈ Sen(L ) :

T ` ¬ϕ} respectively. Now as T is recursive, both of these sets (once coded)

are recursively enumerable, this then implies that {ϕ ∈ Sen(L ) : T ` ϕ} is

recursive. But this says precisely that T is decidable, so we are done.

Remark 5.1.3. The language for Q is recursive. We can fix symbol numbers

by sending each variable vi to 2i, and setting [<] = 1, [+] = 3, [0] = 5,

[1] = 7, [−] = 9, [b c] = 11.

For the scalar multiplication we use the Cantor pairing function

π : N× N \ {0}, (k1, k2) 7→
1

2
(k1 + k2)(k1 + k2 + 1) + k1,
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composed with n 7→ 2n + 11. The composed function has cofinite, hence

recursive, image. Since the images of the arity maps are finite we have a

recursive language.

Proposition 5.1.4. The axiomatisation TQ of Q is recursive.

Proof. There are essentially only two things we need to check here. Both (i)

and (iii) contain infinitely many axioms, however these can quickly be seen to

be recursive. We have, for each n ∈ N, an axiom of the form ∀x∃y(n ·y = x),

and for each pair (j, n) ∈ Z×N an axiom of the form ∀xλn(λj/n(x)) = λj(x).

Now the first are recursive as their codes are recursive, which can be seen

from the fact the positions of the n summands are retrievable from the length

of the string, and everything surrounding these remain fixed between all such

axioms (i.e. we want all formulas ∀x∃y(? = x), and here the candidates for

? are all of the recursive form y + ... + y with the number of summands

being the coded length of the formula with some constant subtracted). The

second set of axioms are obviously recursive because the set of codes for λq

is recursive.

Proposition 5.1.5. TQ is decidable.

Proof. We just saw that both the language of Q and an axiomatisation are

recursive. Since Q |= TQ we have that TQ is satisfiable. Now we also have

that TQ admits quantifier elimination and has prime-model Q. It follows

that TQ is complete, and hence by lemma 5.1.2 is decidable.

5.2 Decidability of (Q;<,+,Z) and (R;<,+,Z).

Proposition 5.2.1. Q = (Q;<,+,−, 0, 1, (λq)q∈Q, b c) recursively defines

(Q;<,+,Z).

Proof. The predicate Z is defined in Q by ϕZ(x) : x = bxc. Since the

language for Q is finite the definition is clearly recursive.
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Theorem 5.2.2. (Q;<,+,Z) is decidable.

Proof. This follows from the fact that (Q;<,+,Z) is recursively definable

in Q, which is decidable since it is recursively axiomatised by a decidable

theory TQ.

Theorem 5.2.3. (R;<,+,Z) is decidable.

Proof. It is easily seen that R = (R;<,+,−, 0, 1, (λq)q∈Q, b c) is a model of

TQ which admits Q as a substructure. As TQ admits quantifier elimination we

in fact have that R is an elementary extension of Q (by model-completeness).

Since the first order theory of Q is decidable, the (identical) first order theory

of R is hence decidable. Then as (R;<,+,Z) is (recursively) definable in R

(by taking for Z the fixed points of b c again) we have that (R;<,+,Z) is

decidable.
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6 Undecidability of (R;<,+,×,Z).

Here we show that the first order theory of (R;<,+,×,Z) is undecidable.

This is done by recursively interpreting a well known undecidable structure

ω = (ω;<,+,×, 0, S) in it. Tressl[11] contains a proof of this theorem, as

well as proof of the undecidability of ω, both are used without proof here.

6.1 Applying a theorem of Tarski.

Theorem 6.1.1 (Tarski). Let M and M′ be structures in recursive lan-

guages L and L ′ respectively. Then ifM′ is undecidable andM recursively

interprets M′, also M is undecidable.

So to prove that (R;<,+,×,Z) is undecidable, it is sufficient to interpret

(recursively) some structure which we already know to be undecidable in it.

We do this with ω = (ω;<,+,×, 0, S).

Theorem 6.1.2. (R;<,+,×,Z) is undecidable.

Proof. We show that (R;<,+,×,Z) interprets ω, which is known to be un-

decidable. In fact ω is definable within our structure. The constants 0 and 1

are easily defined in (R;<,+,×,Z) as the additive and multiplicative iden-

tity, so we are free to work with these. The universe of the interpretation is

given by U (x) : Z(x) ∧ (x > 0 ∨ x = 0). Then all non-logical symbols are

just directly inherited, with the exception of S which is interpreted in the

obvious way ϕS(x, y) : x + 1 = y. Both languages are clearly finite, hence

both the languages and the interpretation are recursive. So by theorem 6.1.1

(R;<,+,×,Z) is undecidable.

In the next section expansions of (R;<,+,Z) by scalar multiplication

are discussed. Theorem 6.1.2 is used when looking at these expansions.

For example, given non-quadratic a ∈ R it can be shown that expanding

(R;<,+,Z) by a scalar function λa : x 7→ ax gives a structure which defines

(R;<,+,×, 0, 1,Z), and is therefore undecidable by theorem 6.1.2.
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7 Further expansions of (R;<,+,Z).

Without going into great detail, this section will give a brief overview of

some results established by Hieronymi in [3] and [2], and give insight into

how Hieronymi is using Ostrowski representations to build on the results

covered in sections 5 and 6.

We have seen that the first order theory of (R;<,+,Z) is decidable, while

the first order theory of (R;<,+, ·,Z) is undecidable. These results give rise

to a question asked by Hieronymi,

“How many traces of multiplication can be added to (R;<,+,Z) without

making the first order theory undecidable?”1.

Taking “traces of multiplication” to mean scalar multiplication, Hieronymi

answers this question in the same paper with the following two results.

Denote (R;<,+,Z, λa), the expansion of (R;<,+,Z) by scalar multipli-

cation by a ∈ R, as Sa, then:

Theorem. The theory of Sa is decidable if and only if a is quadratic.

This generalises to scalar multiplication by subfields, with the result:

Theorem. Let K be a subfield of R, then the theory of the ordered K-vector

space R expanded by a predicate for Z is decidable if and only if K is a

quadratic field.

If a is not quadratic then it can be shown that Sa defines full multi-

plication on R. It follows that Sa is undecidable by the undecidability of

(R;<,+, ·,Z) (see section 6).

The more involved task is to show that if a is quadratic the theory of Sa is

decidable. To show this, Hieronymi shows that for quadratic a the structure

Ra = (R;<,+,Z,Za) defines Sa. Combining this with the result that the

1Hieronymi [3] page 1
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theory of Ra is decidable for quadratic a we are done, but this result is of

course not trivial.

In order to prove that Ra is decidable for quadratic a, Hieronymi uses

properties of Ostrowski representations of both natural and real numbers to

show that for quadratic a the structure Ra is definable in B. Here B is the

structure (N,P(N), sN,∈), the monadic second order structure of the natural

numbers. Using automaton theory Büchi showed that B is decidable, and so

the decidability of Ra is within grasp at this point.

To give a small indication of how Ostrowski representations come into

play, defining Ra in B involves using results such as the following.

Fixing d ∈ Q, with d 6= c2 for any c ∈ Q, we get that the continued

fraction for
√
d is periodic, say with minimal period length m. Taking the

sequences ζk and βk from the continued fraction of
√
d (see definition 2.2.4

and definition 2.4.1 respectively), we get the following result:

Fact ((2.2), Hieronymi [3]).

ζ1 · · · ζm+1 · βk+m = (−1)m · βk.

Which gives us (with some work!) that multiplying any real number in

the interval [−1/ζ1, 1− 1/ζ1) by ζ1 · · · ζm+1 corresponds to an m-shift in the

Ostrowski representation of that number based on the continued fraction of√
d.

The first step towards definingRa in B is to define sets in B corresponding

to Ostroswki representations based on the continued fraction of a. Then, as

an example, the fact above can be used in defining scalar multiplication by

appropriate numbers as shifts in the Ostrowski representations, which are

definable within B.
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