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1. Local Stability

Throughout, language refers to a first order language L of any cardinality. Let x̄,
ȳ be tuples of variables and let ϕ(x̄, ȳ) be a partitioned L -formula. This means
that apart from ϕ we also have a distinct partition of the free variables x̄, ȳ (which
might or might not occur in ϕ). We write ϕopp(ȳ, x̄) for the formula ϕ(x̄, ȳ), where
the partition of the variables is interchanged.

Let M be an L -structure and let X = ϕ(M x̄ ×M ȳ) be the set defined by ϕ.[1]

For ā ∈M x̄, we call the formula ϕ(ā, ȳ) as well as the set Sā = ϕ(ā,M ȳ) the fibre
of ϕ (resp. X) above ā. Each such formula/set is called a fibre (or instance)
above an x̄-tuple. If the free variables are clear from the context we will just say
“fibre or instance of ϕ”, or “fibre of X”.

1.1. Definition. [DiScTr2019, section 14.1] If M is an L -structure and A ⊆M we
write

∆ϕ(A) = ∆ϕ,x̄(A) = {ϕ(x̄, b̄) | b̄ ∈ Aȳ}
for the set of fibres of ϕ above ȳ-tuples of A, and

∆`
ϕ(A) = ∆`

ϕ,x̄(A) = {
∨∨
i∈I

∧∧
j∈J

ϕ(x̄, b̄i,j) | I, J finite, b̄ij ∈ Aȳ}

∆[
ϕ(A) = ∆[

ϕ,x̄(A) = {
∨∨
i∈I

∧∧
j∈J

ϕεij (x̄, b̄i,j) | I, J finite, b̄ij ∈ Aȳ, εij ∈ {0, 1}}

Here ϕ0 stands for ¬ϕ and ϕ1 stands for ϕ. Hence ∆`
ϕ(A) is the distributive

sublattice of Lx̄(A) generated by the fibres of ϕ above ȳ tuples of A. Furthermore,
∆[
ϕ(A) is the Boolean envelope of ∆`

ϕ(A).
If ᾱ ∈ N x̄ with N �M we define the ϕ-type of ᾱ over A (for M) as tpϕ(ᾱ/A)

tpϕ(ᾱ/A) = ∆ϕ(A) ∩ tp(ᾱ/A).

We write Sϕ(A) = Sϕ,x̄(A) for the set of ϕ-types, thus

Sϕ(A) = {p ∩∆ϕ(A) | p ∈ Sx̄(A)}.

Recall from [DiScTr2019, Theorem 14.2.5] that Sϕ(A) is a spectral space, whose
patch space is the quotient space of the map Sx̄(A) −→ Sϕ(A), p 7→ p ∩ ∆ϕ(A),
and whose specialization relation is set theoretic inclusion of ϕ-types.

Obviously, for each p ∈ Sx̄(A), the set p ∩∆[
ϕ(A) is uniquely determined by the

ϕ-type p ∩∆ϕ(A). Hence for each p ∈ Sϕ(A) we may define

p[ = p ∩∆[
ϕ(A), where p ∈ Sx̄(A) with p ∩∆ϕ(A) = p.

More explicitly, p[ is the ultrafilter of ∆[
ϕ(A) that intersects ∆ϕ(A) in p.

A subset Y of Aȳ is called ϕ-external or ϕ-externally definable if there is
some N �M and some ᾱ ∈ N x̄ such that

Y = {b̄ ∈ Aȳ | N |= ϕ(ᾱ, b̄)}.

We also denote this set by ϕ(ᾱ, Aȳ).

1.2. Remark. The map Sϕ(A) −→ {Y ⊆ Aȳ | Y is ϕ-external} that sends p to
{b̄ ∈ Aȳ | ϕ(x̄, b̄) ∈ p} is obviously a bijection.

[1]M x̄ is shorthand for Mk, where k is the length of the tuple x̄.
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1.3. Definition. Given subsets A,C of an L -structure M , a type p ∈ Sϕ(A) is
called definable over C if there is some ψ(ȳ) ∈ L (C) such that

for all b̄ ∈ Aȳ : ϕ(x̄, b̄) ∈ p ⇐⇒ |= ψ(b̄).[2]

Such a formula ψ is sometimes written as dpx̄ϕ(x̄, ȳ) and the expression dpx̄ here
acts as a generalized quantifier (but note that this formula is not an L -formula,
only an L (C)-formula)

In what follows we will be talking about theories T of a language L . These always
refer to consistent sets of L sentences. Hence T does not need to be complete,
unless this is explicitly stated.

1.4. Definition. The formula ϕ is stable for an L -theory T if for all M |= T
and every infinite A ⊆ M we have |Sϕ(A)| ≤ |A|. Notice that we did not put any
restriction on the size of the language.

1.5. Definition and Remark The formula ϕ has the order property for an
L -theory T if for all n ∈ ω there are M |= T and ā0, . . . , ān ∈M x̄, b̄0, . . . , b̄n ∈M ȳ

such that
ϕ(āi, b̄j) ⇐⇒ i ≤ j for all i, j ∈ {0, . . . , n}.

If ϕ does not have the order property we write o(ϕ) for the largest n ∈ ω for which
there is a configuration as above.
If ϕ does have the order property, then by compactness, for every chain I there are
M |= T and āi ∈M x̄, b̄i ∈M ȳ such that

ϕ(āi, b̄j) ⇐⇒ i ≤ j for all i, j ∈ I.

Some digestion of the order property: If we consider ϕ(x̄, ȳ) as a relation
{ā0, . . . , ān} −→ {b̄0, . . . , b̄n}, then the order property says that the graph of this
relation is bipartite half-complete and can be pictured for n = 5 with the graph
to the left of the following drawing:

ā0 b̄0

ā1 b̄1

ā2 b̄2

ā3 b̄3

ā4 b̄4

ā5 b̄5

ā0 b̄0

ā1 b̄1

ā2 b̄2

ā3 b̄3

ā4 b̄4

ā5 b̄5

The drawing to the right shows the order property of ϕopp.

[2]Hence if M is a model of T and p = tpϕ(ᾱ/M), then p is definable over M , just if the
external set ϕ(ᾱ,M ȳ) is definable (with parameters from M).
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1.6. Remark. ϕ(x̄, ȳ) has the order property if and only if for all n ∈ ω there are
M |= T and ā0, . . . , ān ∈M x̄, b̄0, . . . , b̄n ∈M ȳ such that

ϕ(āi, b̄j) ⇐⇒ i < j for all i 6= j ∈ {0, . . . , n}.

(In some sources, this is used as the definition of the order property.)

Proof. This is clear in one direction with the same choice of āi, b̄i. Conversely,
suppose the condition of the remark holds. Take ā1, . . . , ā2n ∈M x̄, b̄1, . . . , b̄2n ∈M ȳ

such that
ϕ(āi, b̄j) ⇐⇒ i < j for all i 6= j ∈ {1, . . . , 2n}.

Then either, there are n indices i ∈ {1, . . . , 2n} such that ϕ(āi, b̄i), in which case
we let i1 < . . . < in be such indices and get the order property witnessed for n and
the sequences āi1 , . . . , āin , b̄i1 , . . . , b̄in ,

or,
there are n indices i ∈ {1, . . . , 2n} such that ¬ϕ(āi, b̄i), in which case we let i1 <
. . . < in be such indices and get the order property witnessed for n − 1 and the
sequences āi1 , . . . , āin−1

, b̄i2 , . . . , b̄in . �

1.7. Definition. The partitioned formula ϕ(x̄, ȳ) has the binary tree property
for T if there is a binary tree (b̄s)s∈2<ω of ȳ-tuples of parameters in some M |= T
such that for all σ ∈ 2ω the set

{ϕσ(n)(x̄, b̄σ|n) | n < ω}

is consistent. In other words, there are āσ for σ ∈ 2ω from some elementary
extension N of M such that for all n < ω we have

|= ϕ(āσ, b̄σ|n) ⇐⇒ σ(n) = 1.

In pictures: The binary tree (b̄s)s∈2<ω looks like

b̄∅

b̄0

b̄00

b̄000 b̄001

b̄01

b̄010 b̄011

b̄1

b̄10

b̄100 b̄101

b̄01

b̄110 b̄111 .

The binary tree property says that Mn can be subdivided as follows:
σ(0): There is some b̄ such that Mn can be partitioned into two nonempty sets:

C1 = ϕ(Mn, b̄) and C0 = ¬ϕ(Mn, b̄); this b̄ is b̄∅. Hence Cs = ϕs(0)(Mn, b̄s|0),
where s = σ|1 : 1 −→ 2.

If σ(0) = 1 we are put into C1, if σ(0) = 0 we are put into C0.
σ(1): For each set X in the partition of the previous item, there is b̄ such that

X ∩ ϕ(Mn, b̄) and X ∩ ¬ϕ(Mn, b̄) are nonempty.
If σ(1) = 1 we are put into X ∩ ϕ(Mn, b̄), if σ(1) = 0 we are put into

X ∩ ¬ϕ(Mn, b̄).
Since there are 2 choices for sets X in the previous item we get 2 such b̄;

these are b̄0 and b̄1.
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We get a partition of Mn into 4 sets: C00 = C0 ∩ ¬ϕ(Mn, b̄0), C01 =
C0 ∩ ϕ(Mn, b̄0), C10 = C1 ∩ ¬ϕ(Mn, b̄1) and C11 = C1 ∩ ϕ(Mn, b̄1). Hence

Cs =⋂
i<2

ϕs(i)(Mn, b̄s|i), where s : 2 −→ 2.

σ(2): For each set X in the partition of the previous item, there is b̄ such that
X ∩ ϕ(Mn, b̄) and X ∩ ¬ϕ(Mn, b̄) are nonempty.

If σ(1) = 1 we are put into X ∩ ϕ(Mn, b̄), if σ(1) = 0 we are put into
X ∩ ¬ϕ(Mn, b̄).

Since there are 4 choices for sets X in the previous item we get 4 such b̄;
these are b̄00, b̄01, b̄10 and b̄11.

We get a partition of Mn into 8 sets: C000 = C00 ∩ ¬ϕ(Mn, b̄00), C001 =
C00 ∩ ϕ(Mn, b̄00),. . .

...
σ(k) At level k we get a partition of Mn into the 2k+1 sets

Cs = ⋂
i≤k

ϕs(i)(Mn, b̄s|i), where s : k + 1 −→ 2

... and so on.
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T

R
E
SSL

Mn

C0 = ¬ϕ(Mn, b̄∅)

C00 = C0 ∩ ¬ϕ(Mn, b̄0)

C00 ∩ ¬ϕ(Mn, b̄00) C00 ∩ ϕ(Mn, b̄00)

C01 = C0 ∩ ϕ(Mn, b̄0)

C1 = ϕ(Mn, b̄∅)

C10 = C1 ∩ ¬ϕ(Mn, b̄1)

C10 ∩ ¬ϕ(Mn, b̄10) C10 ∩ ϕ(Mn, b̄10)

C11 = C1 ∩ ϕ(Mn, b̄1)
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1.8. Characterization of stable formulas Let L be any language and let T
be an L -theory.[3] The following conditions are equivalent for each partitioned
L -formula ϕ(x̄, ȳ).

(1) ϕ is stable for T , hence if M |= T and A ⊆M is infinite, then |Sϕ(A)| ≤ |A|.
(1)+ There is an infinite cardinal κ such that for all M |= T and each A ⊆M with

|A| ≤ κ we have |Sϕ(A)| ≤ κ.
(1)∗ There is an infinite cardinal κ ≥ |L | such that for all M |= T with |M | = κ

we have |Sϕ(M)| ≤ |M |.
(2) ϕ does not have the order property (for T ).

(2)∗ Let ū = x̄ˆȳ, v̄ = x̄′ˆȳ′ and let ψ(ū, v̄) be the formula ϕ(x̄, ȳ′). Then there are
no M |= T and c̄n ∈M ū, n ∈ N such that ψ(c̄n, c̄k) ⇐⇒ n ≤ k.

(2)+ The following property holds: Let M |= T , X ⊆ M x̄, Y ⊆ M ȳ (these sets
do not need to be definable) and suppose for all finite sets E ⊆ X there is
some b̄ ∈ Y with E ⊆ ϕ(M x̄, b̄). Then there is a finite subset F ⊆ Y with
X ⊆⋃b̄∈F ϕ(M x̄, b̄).

If this is the case, then there is a bound on the size of sets F in the
implication, which is independent of M,X, Y and such a bound is o(ϕ).

(3) ϕ does not have the binary tree property (for T ).

(4) For all A ⊆M |= T , the Boolean space (Sϕ(A))con is scattered.

(4)∗ There is some K ∈ N such that for all A ⊆ M |= T , the Boolean space
(Sϕ(A))con has Cantor-Bendixson rank ≤ K.

(5) The formula ϕopp is stable.

(6) The formula ¬ϕ is stable.

(7) If ψ(x̄, ȳ) is another stable formula, then ϕ ∧ ψ is stable.

(8) Every p ∈ Sϕ(A) is definable over A for all A ⊆M |= T .

(9) If M is a model of T , then every p ∈ Sϕ(M) is definable over M with a
definition dpx̄ϕ(x̄, ȳ) ∈ ∆`

ϕopp(M).
This in fact is true in a strong uniform way as follows: There is some

K ∈ N and a lattice combinations
∨∨
j≤K

∧∧
i≤K ϕ(x̄ij , ȳ) such that for all

M ≺ N |= T , every formula γ(x̄) with parameters from M and all ᾱ ∈ N x̄

with N |= γ(ᾱ), there are āij ∈ γ(M x̄) such that the set ϕ(ᾱ, N ȳ) ∩M ȳ is
defined in M by ∨∨

j≤K

∧∧
i≤K

ϕ(āij , ȳ).

Proof. Obviously (1) implies (1)+ and (1)∗.
Now assume (2) fails, i.e. ϕ has the order property. We show that (1)+ and (1)∗
fail, therefore establishing the implications (1)+⇒(2) and (1)∗⇒(2).

Let κ be an infinite cardinal. By a theorem of Hausdorff there is a total order I
with |I| = κ that has at least κ+ cuts. By compactness, using the order property

[3]Notice that there are no assumptions made here: L may be uncountable and T may not be
complete.
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of ϕ there are M |= T and āi ∈M x̄, b̄i ∈M ȳ for i ∈ I such that

M |= ϕ(āi, b̄j) ⇐⇒ i ≤ j for all i, j ∈ I.
Since |I| = κ, there is a set A ⊆ M of size κ containing the coordinates of all the
āi, b̄i. Then for each up-set U of I the set

Ψ(U) = {¬ϕ(x̄, b̄j) | j ∈ I \ U} ∪ {ϕ(x̄, b̄j) | j ∈ U}
is finitely satisfiable in M (if j1 < U 3 j2, then N |= ¬ϕ(āj2 , b̄j1)) ∧ ϕ(āj2 , b̄j2))).
Obviously Ψ(U) 6= Ψ(U ′) if U 6= U ′, showing that |Sϕ(A)| > κ. This shows that
(1)+ fails.

Now, if κ ≥ |L |, the Skolem-Löwenheim theorems tell as that we can choose A
as a model of T . Therefore, (1)∗ fails as well.
(2)⇒(1). Suppose M |= T and A ⊆ M is infinite with |Sϕ(A)| > |A|. By 1.2 the
set S of all ϕ-external sets is in bijection with Sϕ(A). Hence S ⊆ P(Aȳ) has size
> |A| = |Aȳ| (as A is infinite).

By the Erdős-Makkai theorem [TenZie2012, C.2, page 210], there is an infinite
totally ordered set I and b̄i ∈ Aȳ, Yi ∈ S such that

b̄i ∈ Yi ⇐⇒ i ≤ j for all i, j ∈ I.
Let N � M such that Yi = {b̄ ∈ Aȳ | N |= ϕ(ᾱi, b̄)} for some ᾱi ∈ N x̄. Then the
equivalence reads as

N |= ϕ(ᾱi, b̄i) ⇐⇒ i ≤ j for all i, j ∈ I,
showing that ϕ has the order property.

This shows the equivalence of conditions (1),(1)+,(1)∗ and (2).
(2)⇐⇒ (2)∗ is a standard application of the compactness theorem.
(2)+⇒(2) Suppose ϕ does have the order property and let āi ∈ M x̄, b̄i ∈ M ȳ for
i < ω with

ϕ(āi, b̄j) ⇐⇒ i ≤ j for all i, j ∈ ω.
Take X = {āi | i < ω} and Y = {b̄i | i < ω}. Obviously the property in (2)+ fails.
(2)⇒(2)+ Let M,X, Y as given in (2)+. Assume first that

(‡) there is no finite subset F ⊆ Y with X ⊆ ⋃̄
b∈F

ϕ(M x̄, b̄).

We construct āi ∈M x̄, b̄i ∈M ȳ for i < ω with

ϕ(āi, b̄j) ⇐⇒ i ≤ j for all i, j ∈ ω
by induction on i. Choose ā0 ∈ X arbitrarily. By assumption on X there is some
b̄0 ∈ Y with ϕ(ā0, b̄0). Suppose we have already constructed āi ∈ M x̄, b̄i ∈ M ȳ for
i ≤ n with

ϕ(āi, b̄j) ⇐⇒ i ≤ j for all i, j ≤ n
By (‡) we have X *⋃i≤n ϕ(M x̄, b̄i), i.e. there is some ān+1 ∈ X with ¬ϕ(ān+1, b̄i)

for all i ≤ n. By assumption onX and Y there is some b̄n+1 ∈ Y with ā0, . . . , ān+1 ∈
ϕ(M x̄, b̄n+1). But now we see that

ϕ(āi, b̄j) ⇐⇒ i ≤ j for all i, j ≤ n+ 1.

This finishes the induction. Now if (2) holds, i.e. ϕ does not have the order property,
then we see that the induction above must stop at n = o(ϕ). And the reason is
that X ⊆⋃i≤n ϕ(M x̄, b̄i), as claimed by (2)+.
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(1)⇒(3). If ϕ has the binary tree property and we choose parameters (b̄s)s∈2<ω of
ȳ-tuples and āσ ∈M x̄ for σ ∈ 2ω in some model M as in 1.7, we see that the set A
consisting of all coordinates of all the b̄s is countable, whereas the ϕ-types of the
āσ over A witness |Sϕ(A)| ≥ 2ℵ0 .
(3)⇒(2). Suppose ϕ does have the order property. Choose a total ordering of
2≤ω such that for all σ ∈ 2≤ω we have σ < (σ|n) ⇐⇒ σ(n) = 1. (For
example use the order on the real numbers and the injection 2≤ω −→ R map-
ping σ to

∑
i∈domain(σ)

2σ(i)−1
3i .) By compactness, there are a model M of T and

āσ ∈M x̄, b̄σ ∈M ȳ for σ ∈ 2≤ω such that

M |= ϕ(āσ, b̄τ ) ⇐⇒ σ < τ for all σ, τ ∈ 2≤ω.

Then for the binary tree (b̄s)s∈2<ω and all σ ∈ 2ω the set

{ϕσ(n)(x̄, b̄σ|n) | n < ω}

is consistent.
(4)⇒(1) Is left as an exercise to the reader: Find an injection Sϕ(A) −→ ∆[

ϕ(A)
and then count the codomain.
(3)⇒(4)∗. The Cantor-Bendixson rank CB here refers to the one of the patch
space of Sϕ(A). If ψ(x̄) is a Boolean combination of formulas from ∆ϕ(A) and
CB(ψ) ≥ α, then for all β < α there are p, q ∈ 〈ψ〉 ⊆ Sϕ(A) of Cantor-Bendixson
rank ≥ β with p 6= q. From p 6= q we get some b̄ ∈ Aȳ such that ϕ(x̄, b̄) separates
p and q. It follows that ψ ∧ ϕ(x̄, b̄) and ψ ∧ ¬ϕ(x̄, b̄) have Cantor-Bendixson rank
≥ β.

Consequently, if there is no K ∈ N that bounds the Cantor-Bendixson rank of all
Sϕ(A), then one can find binary trees of arbitrary large finite size. By compactness,
ϕ has the binary tree property.
(4)∗⇒(4) is a weakening.
[Here is an alternative proof of (1)⇒(4). Suppose Sϕ(A)con is not scattered. Then
it has a perfect subsets and in the Boolean space Sϕ(A)con, we can find a countable
Boolean algebra B of clopen subsets, such that B has no atoms. Take A0 ⊆ A
such that all members of B are named by Boolean combinations of formulas with
parameters from A0. Obviously then Sϕ(A0) has size ≥ 2ℵ0 , which contradicts (1).]
(2)⇐⇒ (5) Property (2) holds for ϕ just if it holds for ϕopp, because if

ϕ(āi, b̄j) ⇐⇒ i ≤ j for all i, j ∈ {0, . . . , n},

then with c̄i = b̄n−i, d̄i = ān−i we have

ϕopp(c̄i, d̄j) ⇐⇒ ϕ(d̄j , c̄i) ⇐⇒ n− j ≤ n− i ⇐⇒ i ≤ j for all i, j ∈ {0, . . . , n}.

Since we already know that (2) is equivalent to (1), we get the assertion.
(2) ⇐⇒ (6) Property (2) holds for ϕ just if it holds for ¬ϕ as is easily verified.
Hence we know that all conditions (1)-(6) (and their decorations) are equivalent.
(7)⇒(1) is clear and (1)⇒(7) follows from the fact that there is a surjective map
Sϕ(A)×Sψ(A) −→ Sϕ∧ψ(A): We map (p, q) to r∩∆ϕ∧ψ(A), if there is a complete
type r ∈ Sx̄(A) lying over p and q (r might then not be unique, we just pick one).

Hence we know that all conditions (1)-(7) (and all their decorations by superscripts)
are equivalent.
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Items (8) and (9) both imply that all ϕ-types over models are definable. Hence
under either of these assumptions we can count ϕ-types over a model by counting
definable sets over M . Consequently we know that (8)⇒(1) and (9)⇒(1).
(3)⇒(8). For every formula ϑ(x̄) (possibly with parameters from some model), let

D(ϑ) = max

{
k ∈ ω | there is a binary tree (b̄s)s∈2<k of ȳ-tuples with entries in M

such that for all s ∈ 2k there is an element in

Cs = ϑ(Mn) ∩⋂
i<k

ϕs(i)(Mn, b̄s|i)

}
Since ϕ does not have the binary tree property, this maximum does indeed exist
(use compactness). Now let

d = min{D(ϑ) | ϑ ∈ p[},

where p[ is the ultrafilter of ba(∆ϕ(A)) that intersects ∆ϕ(A) in p. Choose ϑ ∈ p[

with d = D(ϑ).
Claim. For b̄ ∈ Aȳ we have ϕ(x̄, b̄) ∈ p ⇐⇒ d = D(ϑ ∧ ϕ(x̄, b̄)).
Proof. ⇒. It is clear that D(ϑ ∧ ϕ(x̄, b̄)) ≤ D(ϑ) = d and as ϕ(x̄, b̄) ∈ p the
minimality of d implies d = D(ϑ ∧ ϕ(x̄, b̄)).
⇐. Suppose ϕ(x̄, b̄) /∈ p. Then ¬ϕ(x̄, b̄) ∈ p[ and again the minimality of

ϑ implies d = D(ϑ ∧ ¬ϕ(x̄, b̄)). But then d = D(ϑ ∧ ϕ(x̄, b̄)) would imply that
D(ϑ) ≥ d+ 1, in contradiction to the choice of ϑ. �

By the claim it remains to show that there is a formula ψ(ȳ) with parameters in
A such that

d = D(ϑ ∧ ϕ(x̄, b̄)) ⇐⇒ |= ψ(b̄).

However this is straightforward, because the property “there is a binary tree
(b̄s)s∈2<d (of ȳ-tuples from M) witnessing d = D(ϑ ∧ ϕ(x̄, b̄))” can be written
as a formula ψ.

Notice that ψ has the same parameters as ϑ and these are all from A; further
notice that this ψ introduces new quantifiers, so it is not in ba(∆ϕopp(A)) (where
ϕopp is ϕ with interchanged role of x̄ and ȳ).

(2)⇒ (9) Let m = o(¬ϕ)opp as in 1.5. Let

ϕ(ᾱ,M ȳ) = {b̄ ∈M ȳ | ϕ(x̄, b̄) ∈ p}

be the external ϕ-fibre above ᾱ (recall that p = tpϕ(ᾱ/M)).
Claim. For each γ(x̄) ∈ tp(ᾱ/M) there are ā1, . . . , ām ∈ γ(M x̄) with

⋂m

i=1 ϕ(āi,M
ȳ) ⊆ ϕ(ᾱ,M ȳ).

Proof. We deploy (2)+. Let E ⊆ M ȳ \ ϕ(ᾱ,M ȳ) be finite, i.e., N |=∧∧
b̄∈E ¬ϕ(ᾱ, b̄). Since M ≺ N , there is some ā ∈ M x̄ with M |= γ(ā) ∧∧∧
b̄∈E ¬ϕ(ā, b̄). This means that assumption in (2)+ is satisfied for X = M ȳ \

ϕ(ᾱ,M ȳ), Y = γ(M x̄) and the formula (¬ϕ)opp. Hence by (2)+ we get the claim.
�

We rewrite the claim: We write z̄ for the m× |x̄|-tuple of variables (x̄1, . . . , x̄m)
and c̄ for a z̄-tuple (ā1, . . . , ām) of elements of M . Further we let

ϕ̂(z̄, ȳ) be ϕ(x̄1, ȳ) ∧ . . . ∧ ϕ(x̄m, ȳ).
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Hence for each z̄-tuple c̄ = (ā1, . . . , ām) ∈M z̄, the set ϕ̂(c̄,M ȳ) is the intersection of
them definable fibres ϕ(ā1,M

ȳ), . . . , ϕ(ām,M
ȳ) of ϕ. Now, if b̄1, . . . , b̄k ∈ ϕ(ᾱ,M ȳ)

and we apply the claim with γ(x̄) ∧ ϕ(x̄, b̄1) ∧ . . . ∧ ϕ(x̄, b̄k) instead of γ(x̄), we get
some c̄ = (ā1, . . . , ām) ∈ γ(M x̄)m with ϕ̂(c̄,M ȳ) ⊆ ϕ(ᾱ,M ȳ) and |= ϕ(āi, b̄j) for all
i, j. This shows that

(†) For all finite sets E ⊆ ϕ(ᾱ,M ȳ), there is c̄ ∈ γ(M x̄)m with
E ⊆ ϕ̂(c̄,M ȳ) ⊆ ϕ(ᾱ,M b̄).

Since finite conjunctions of stable formulas are stable by (7) we know that ϕ̂ is
stable. By (5), also (ϕ̂)opp is stable. But now by (2)+ applied to the sets X =

ϕ(ᾱ,M ȳ) and Y = {c̄ ∈ γ(M x̄)m | ϕ̂(c̄,M ȳ) ⊆ ϕ(ᾱ,M b̄)}, we know from (†) that
ϕ(ᾱ,M b̄) is the union of at most o((ϕ̂)opp) fibres of ϕ̂. Hence we may choose
K = max{m, o(ϕ̂)} (by repeating some of the āij entries if necessary). This shows
(9). �

1.9. Corollary. Let ϕ(x̄, ȳ) be stable for T , letM ≺ N |= T and A ⊆M ⊆ B ⊆ N .
Then for any p ∈ Sϕ(M) that is defined over A, the set

q = {ϕ(x̄, β̄) | N |= dpx̄ϕ(x̄, β̄)}
is in Sϕ(B) satisfying q∩∆ϕ(M) = p and dqx̄ϕ(x̄, ȳ) = dpx̄ϕ(x̄, ȳ). In particular q
is again defined over A and it is the unique extension of p on B that has the same
definition as p.

Proof. It suffices to show that the set

q ∪ {¬ϕ(x̄, β̄) | ϕ(x̄, β̄) ∈ ∆ϕ(B) \ q}

is finitely satisfiable inN . Otherwise there are n,m ≥ 0 and β̄1, . . . , β̄n, β̄
′
1, . . . , β̄

′
m ∈

Bȳ with

N |=
n∧∧
i=1

dpx̄ϕ(x̄, β̄i) ∧
m∧∧
j=1

¬dpx̄ϕ(x̄, β̄
′
j) ∧ ∀x̄¬

( n∧∧
i=1

ϕ(x̄, β̄i) ∧
m∧∧
j=1

¬ϕ(x̄, β̄
′
j)

)
Since dpx̄ϕ(x̄, ȳ) ∈ L (A) and A ⊆M there are also b̄i, b̄

′
j ∈M ȳ with

M |=
n∧∧
i=1

dpx̄ϕ(x̄, b̄i) ∧
m∧∧
j=1

¬dpx̄ϕ(x̄, b̄
′
j) ∧ ∀x̄¬

( n∧∧
i=1

ϕ(x̄, b̄i) ∧
m∧∧
j=1

¬ϕ(x̄, b̄
′
j)

)
But this means

ϕ(x̄, b̄i) ∈ p 63 ϕ(x̄, b̄
′
j) (1 ≤ i ≤ n, 1 ≤ j ≤ m) and

M |= ∀x̄¬
( n∧∧
i=1

ϕ(x̄, b̄i) ∧
m∧∧
j=1

¬ϕ(x̄, b̄
′
j)

)
,

which is not the case. �
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1.10. Corollary. (Heir-coheir symmetry) If ϕ(x̄, ȳ) is stable for T and M |= T ,
then for all p ∈ Sϕ,x̄(M) and q ∈ Sϕ,ȳ(M) we have

q |= dpx̄ϕ(x̄, ȳ) ⇐⇒ p |= dqȳϕ(x̄, ȳ)

Proof. Firstly, observe that dpx̄ϕ(x̄, ȳ) ∈ ∆`
ϕopp(M) ,dqȳϕ(x̄, ȳ) ∈ ∆`

ϕ(A) by 1.8(9),
hence the statement does make sense.

Let N �M be |M |+-saturated and let p′, q′ be the unique extensions of p, q on
B that have the same definition as p, q respectively, according to 1.9. By saturation
of N we can inductively find ᾱi ∈ N x̄, β̄i ∈ N ȳ, i ∈ ω, starting with ᾱ0, such that

ᾱn |= p′ �Mβ̄0 . . . β̄n−1

β̄n |= q′ �Mᾱ0 . . . ᾱn.

Then
(a) For all j > i we have

N |= ϕ(ᾱj , β̄i) ⇐⇒ ϕ(x̄, β̄i) ∈ p′ ⇐⇒ N |= dpȳϕ(x̄, β̄i) ⇐⇒ q |= dpx̄ϕ(x̄, ȳ),

and
(b) for all j ≤ i we have

N |= ϕ(ᾱj , β̄i) ⇐⇒ ϕ(ᾱj , ȳ) ∈ q′ ⇐⇒ N |= dqȳϕ(ᾱj , ȳ) ⇐⇒ p |= dqȳϕ(x̄, ȳ).

Now assume that the equivalence claimed in the corollary fails, say p |= dqȳϕ(x̄, ȳ)
and q 2 dpx̄ϕ(x̄, ȳ). Then we get from (a) and (b) that

j ≤ i ⇐⇒ N |= ϕ(ᾱj , β̄i) for all i, j,

which contradicts the assumption that ϕ does not have the order property. �

1.11. Corollary. If ϕ(x̄, ȳ) is stable for T , and M |= T , then for all sets B ⊇ M
from some elementary extension N of M there is a spectral section s : Sϕ(M) −→
Sϕ(B) of the natural map Sϕ(B) −→ Sϕ(M). Explicitly, for p ∈ Sϕ(M) we have

s(p) = {ϕ(x̄, β̄) | the formula from ∆`
ϕ(M) defining ϕ(M x̄, β̄) is in p`}

= {ϕ(x̄, β̄) | N |= dpx̄ϕ(x̄, β̄)}.

Proof. By 1.8(1)⇒(9), the inclusion ∆ϕ(M) ↪→ ∆ϕ(B) induces a retract π :
∆`
ϕ(B) � ∆`

ϕ(M) mapping a finite lattice combination
∨∨
i

∧∧
j ϕ(x̄, β̄ij) of instances

of ϕ to ⋃i⋂j ϕ(M x̄, β̄ij). Hence π is a homomorphism of bounded distributive
lattices and by Stone duality it induces a spectral section s : Sϕ(M) −→ Sϕ(B) of
the natural map Sϕ(B) −→ Sϕ(M). For p ∈ Sϕ(M), we compute

s(p) = π−1(p) ∩∆ϕ(M)

= {ϕ(x̄, β̄) ∈ ∆ϕ(B) | the formula from ∆`
ϕ(M) defining ϕ(M x̄, β̄) is in p`}

Now observe that the formula from ∆`
ϕ(M) defining ϕ(M x̄, β̄) is dqȳϕ(x̄, ȳ) for

q = tpϕopp(β̄/M). Hence by 1.10, p |= ϕ(M x̄, β̄) is equivalent to q |= dpx̄ϕ(x̄, ȳ),
which just says N |= dpx̄ϕ(x̄, β̄) �
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1.12. Theorem. (Local separation of parameters) Let ψ(x̄) be an L -formula, let
M |= T and let A ⊆M be the set of all entries of tuples from ψ(M x̄). If ϕ(x̄, ȳ) is
stable for T and b̄ ∈M ȳ, then the set ϕ(M x̄, b̄) ∩ ψ(M x̄) is definable over A.

One can apply the theorem also to a parametrically definable set D, defined using
parameters c̄: Deploy the theorem for the theory Th(M, c̄).

Proof. By 1.8(5),(8), the type q = tpϕopp(b̄/A) is definable over A by some L (A)-
formula dqȳϕ(x̄, ȳ) ∈ L (A). This means that for all ā ∈ Ax̄ we have ϕ(ā, ȳ) ∈
q ⇐⇒ dqȳϕ(ā, ȳ). But then for all ā ∈M x̄ we have

ϕ(ā, b̄) ∧ ψ(ā) ⇐⇒ dqȳϕ(ā, ȳ) ∧ ψ(ā),

and we may take dqȳϕ(x̄, ȳ)∧ψ(x̄) as a defining formula for ϕ(M x̄, b̄)∩ψ(M x̄). �

1.13. Definition.
An L -theory T is called stable if all L -formulas are stable for T .

1.14. Stably embedded sets Hence if T is stable, then by 1.12, every paramet-
rically definable subset of a ∅-definable subset D of Mn can be defined by using
parameters from D (which has to be understood as “from the set of entries of tuples
from D”). This property of 0-definable sets is sometimes referred to as saying that
the set is stably embedded.

1.15. Some stable formulas Let M be an L -structure that eliminates ∃∞. For
example M could be o-minimal or a p-adically closed field. Let ϕ(x̄, ȳ) be an
L -formula, let D = ϕ(M x̄ ×M ȳ) and let π : M x̄ ×M ȳ −→M x̄ be the projection.
(1) If ϕ has the order property, witnessed by (āni, b̄ni)i≤n, then π(D) is infinite

and π|D has infinitely many infinite fibres.
Proof. π(D) is infinite because it contains all the āni and āni 6= ānj for
i < j ≤ n.

Suppose π|D has only K infinite fibres. Since M eliminates ∃∞ there
is some N ∈ N such that all other fibres are of size ≤ N . Then one of
the fibres above āK+N+2,1, . . . , āK+N+2,K+1 is finite, say the fibre above
āN+K+2,i, i ∈ {1, . . . ,K + 1}. But this is not true because this fibre con-
tains b̄K+N+2,K+1, . . . , b̄K+N+2,N+K+2. �

(2) If M is o-minimal and D is the graph of a function with domain π(D), then
ϕ is stable. This follows from (i)

(3) If M is o-minimal and dim(D) ≤ 1, then ϕ is stable. This follows from (i).
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2. Heirs and Co-heirs

We work with an arbitrary theory T here without finite models.

2.1. Definition. Let M ≺ N |= T and M ⊆ B ⊆ N . Let q ∈ Sx̄(B) with
restriction p = q � M on M . Then q is called an heir of p if for every formula
ϕ(x̄, ȳ, ā) with parameters ā from M and all b̄ ∈ M ȳ with ϕ(x̄, b̄, ā) ∈ q there is
some c̄ ∈M with ϕ(x̄, c̄, ā) ∈ p.

2.2. Notation. For each partitioned L -formula ϕ(x̄, ȳ) let Dϕ be a new relation
symbol of arity |ȳ| and let LD be the extension of L by all these new relation
symbols.

If M is a structure and p ∈ Sx̄(M) we define the LD-structure (M,Dp) to be
the expansion of M that interprets Dϕ as

Dϕ
p (ā) ⇐⇒ ϕ(x̄, ā) ∈ p (ā ∈M ȳ).

2.3. Observation. Let M ≺ N , let q ∈ Sx̄(N) and let p = q � M . Then q is an
heir of p if and only if (M,Dp) is existentially closed in (N,Dq). This is routine
checking. (Notice that for every n, all 0-definable subsets S ⊆ Mn are quantifier
free definable without parameters in (M,Dp): If S is defined by ϕ(ȳ), then S is
defined in (M,Dp) by Dϕ

p .)
If (M,Dp) is even an elementary substructure of (N,Dq), the q is a called a

strong heir of p.

2.4. Remark. By general model theory, using 2.3, if q ∈ Sx̄(N) is an heir of
p ∈ Sx̄(M), then there is an elementary extension N∗ � N and a strong heir r
of p on N∗ extending q: As (M,Dp) is existentially closed in (N,Dq) there is an
elementary extension N ∗ of (M,Dp) and an embedding of (N,Dq) into N ∗ over
M . Then we define r = {ϕ(x̄, c̄) | N ∗ |= Dϕ(c̄)} and check that r ∈ Sx̄(N∗)
extends q, where N∗ = N ∗ � L , and that (N∗, Dq) = N ∗.

Similarly one checks that each type has an heir on every elementary extension.
However we can do better, see 2.10

As a consequence of 2.4 we also get the existence of

2.5. Heir-Coheir Amalgams [Hodges1993, Thm. 6.4.3, p. 289] To see this, let
A ≺ B,C in the notation of [Hodges1993, Thm. 6.4.3, p. 289]. We may assume
that B,C ≺ Ω for some resplendent structure Ω of sufficiently high cardinality. By
2.4 there is some B′ ⊆ Ω such that tp(B′/C) is an heir of tp(B/A). Take an A-
automorphism σ of Ω that restricts to an isomorphism B′ −→ B and choose C ′ =
σ(C). Then A ≺ B,C ′ ≺ Ω is an heir-coheir amalgam as claimed in [Hodges1993,
Thm. 6.4.3, p. 289]: Let ψ(x̄, ȳ) be an L -formula, take b̄ ∈ Bx̄ and c̄′ ∈ C ′ȳ with
|= ψ(b̄, c̄′). Then |= ψ(σ−1b̄, σ−1c̄′) and as σ−1b̄ ⊆ B′, σ−1c̄′ ⊆ C there is some
ā ∈ Aȳ with |= ψ(σ−1b̄, ā). As σ is over A we get |= ψ(b̄, ā) as required.



STABLE FORMULAS AND THEORIES 15

2.6. Characterization of definable types [Poizat2000, Theorem 11.7] Let p ∈
Sx̄(M). The following are equivalent.
(i) p is a definable type, i.e. all ϕ-types induced by p are definable, or in the

terminology of 2.2: (M,Dp) is a definable expansion of M (but notice that
the definition is with parameters!).

(ii) p has exactly one heir on every B ⊆M
(iii) p has at most one strong heir on every N ⊇M .

Proof. (i)⇒(ii). For ϕ(x̄, ȳ) ∈ Fml(L ), take an L (M)-formula dp(ȳ) defining
Dϕ
p (M ȳ). Take N � M and M ⊆ B ⊆ N and define q = {ϕ(x̄, b̄) | ϕ(x̄, ȳ) ∈

Fml(L ), N |= dp(b̄)}. One verifies that q is the unique heir of p on B.
(ii)⇒(iii) is a weakening.
(iii)⇒(i). If p is not definable, then (M,Dp) is not a definable expansion of M .
By the Svenonius definability theorem ([Poizat2000, Theorem 9.2], [Hodges1993,
Corollaries 10.5.2,10.5.3, p. 516]) there is an elementary extension N of the LD-
structure (M,Dp) and an L -automorphism σ of N = N � L over M such that
σ does not respect the LD-structure N . Then we define q = {ϕ(x̄, b̄) | ϕ(x̄, ȳ) ∈
Fml(L ), b̄ ∈ N ȳ, N |= Dϕ(b̄)}. One checks that q is an extension of p and
N = (N,Dq). Consequently q is a strong heir of p.

Let N1 be the LD-structure expanding N with N1 |= Dϕ(b̄) ⇐⇒ N |=
Dϕ(σ−1(b̄)) (i.e. ϕ(x̄, σ−1(b̄)) ∈ q). Then σ is an LD-isomorphism N −→ N1

and therefore N1 � (M,Dp). Now define q1 for N1 just like q was defined for N .
Again q1 is an extension of p on N and N1 = (N,Dq1), thus q1 is a strong heir
of p. On the other hand σ is not an LD-automorphism of N , which means that
N 6= N1 and therefore q 6= q1, i.e. p has distinct strong heirs on N . �

2.7. Remark. If q is a strong heir of p, then p is definable if and only if q is definable.

Proof. This is clear in one direction. If q is definable, then take an L -formulas
ϕ(x̄, ȳ), ψ(ȳ, z̄) and some b̄ ∈ N such that (N,Dq) |= ∀ȳ(Dϕ(ȳ) ↔ ψ(ȳ, b̄)). Then
(N,Dq) |= ∃z̄ ∀ȳ(Dϕ(ȳ)↔ ψ(ȳ, z̄)) and so also (M,Dp) |= ∃z̄ ∀ȳ(Dϕ(ȳ)↔ ψ(ȳ, z̄)).
This implies that p is definable. �

2.8. Corollary. The following are equivalent for every theory T .
(i) T is stable.
(ii) Heirs and coheirs coincide.
(iii) Every strong heir is a coheir.

Proof. (i)⇒(ii). If T is stable, then indeed heirs and coheirs are the same thing, as
follows from 1.10.
(ii)⇒(iii) is a weakening.
(iii)⇒(i) Suppose T is not stable. Then there is a model M of T and a type
p ∈ Sx̄(M) that is not definable. By 2.6, p has two distinct strong heirs on some
elementary extension and by 2.7 none of them is definable. Hence we can apply
the same reasoning to these strong heirs. In fact the process can be iterated trans-
finitely: at limit ordinals we take unions of models and strong heirs, which lead
again to strong heirs by the elementary chain lemma.

We see that there is an elementary extension N of M such that p has strictly
more that 22card(M)

many strong heirs onN . By assumption, then p has also 22card(M)

many coheirs on N . But this is not possible, because the coheirs of p on N are
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all in the closure of M x̄ in Sx̄(N) and there are at most 22card(M)

points in that
closure. �

2.9. Weak independence theorem (for arbitrary structures) Let M0 ≺M ≺ N
and let M0 ⊆ B ⊆ N . Let p ∈ SI(M) be a strong heir over M0 and let q ∈ SI(B)
be an heir over M0 with p �M0 = q �M0.

Let N be an elementary extension of (M,Dp) that has N as an elementary L -
substructure (the reader should verify that such an N always exists). Suppose that
tpN (B/(M,Dp)) is an heir over M0.[4]

Then there is an heir r of p on N containing q.

r ∈ SI(N)

q ∈ SI(B) p ∈ SI(M)

q �M0 = p �M0

heir

strong heirheir

Proof. We may replace N by the restriction of N to L if necessary. Let

Γ := {ϕ(x̄, ā, z̄) | ϕ(x̄, ȳ, z̄) ∈ Fml(L ), ā ∈M ȳ and

ϕ(x̄, ā, ā1) /∈ p for all ā1 ∈M z̄}.
Notice that for all ϕ(x̄, ȳ, z̄) ∈ Fml(L ) and each ā ∈M ȳ we have

(+) ϕ(x̄, ā, z̄) ∈ Γ ⇐⇒ (M,Dp) |= ∀z̄¬Dϕ(ā, z̄) ⇐⇒ N |= ∀z̄¬Dϕ(ā, z̄).

We only needs to check that the set of Lx̄(N)-formulas q∪{¬ϕ(x̄, ā, c̄) | ϕ(x̄, ā, z̄) ∈
Γ, c̄ ∈ N z̄} is finitely satisfiable in N (because this set also contains p). Otherwise
there are some L -formula ψ(x̄, v̄), some b̄ ∈ Bv̄ with ψ(x̄, b̄) ∈ q and finitely many
ϕi(x̄, ā, z̄) ∈ Γ and some c̄ ∈ N z̄ with

N |= ∀ū
(
ψ(ū, b̄)→

∨∨
i

ϕi(ū, ā, c̄)

)
.

(so here ū is an x̄-tuple of variables). Let ϑ(ȳ, v̄, z̄) be the L -formula

∀ū
(
ψ(ū, v̄)→

∨∨
i

ϕi(ū, ȳ, z̄)

)
.

Using (+) we get
N |= ∃z̄ϑ(ā, b̄, z̄) &

∧∧
i

∀z̄¬Dϕi(ā, z̄),

in other words

∃z̄ϑ(ā, ȳ, z̄) &
∧∧
i

∀z̄¬Dϕi(ā, z̄) ∈ tp(B/(M,Dp)).

Since tp(B/(M,Dp)) is an heir over M0 there is some d̄ ∈M ȳ
0 with

(∗) N |= ∃z̄ϑ(d̄, b̄, z̄) &
∧∧
i

∀z̄¬Dϕi(d̄, z̄),

[4]Note that for this condition to hold, we need in the first place thatM0 carries an elementary
L D-substructure of (M,Dp). For that reason we need that p is a strong heir of p0. Nowhere else
in the proof do we need that p is even just an heir over M0.
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in particular N |= ∃z̄ϑ(d̄, b̄, z̄). Consequently q contains ψ(x̄, b̄) & ∃z̄ϑ(d̄, b̄, z̄). As
q is an heir over its restriction to M0, there is some ā0 ∈M ȳ

0 with

ψ(x̄, ā0) ∧ ∃z̄ϑ(d̄, ā0, z̄) ∈ q �M0.

But then M0 |= ∃z̄ϑ(d̄, ā0, z̄) and so there is some ā1 ∈M z̄
0 with

M0 |= ∀ū
(
ψ(ū, ā0)→

∨∨
i

ϕi(ū, d̄, ā1)

)
.

This says that for any ū-tuple ᾱ from some elementary extension of M0 with |=
ψ(ᾱ, ā0) we get |=

∨∨
i ϕi(ᾱ, d̄, ā1). We now choose ᾱ to be a realization of p. Then

|= ψ(ᾱ, ā0), because ψ(x̄, ā0) ∈ q � M0 ⊆ p. Thus |=
∨∨
i ϕi(ᾱ, d̄, ā1). Hence for

some i we get |= ϕi(ᾱ, d̄, ā1), meaning ϕi(x̄, d̄, ā1) ∈ p. Consequently ϕi(x̄, d̄, z̄) /∈ Γ
and by (+) this means N 2 ∀z̄¬Dϕi(d̄, z̄). However this contradicts (∗). �

2.10. Existence of heirs [Poizat2000, Theorem 11.2] Let M ⊆ B ⊆ N , M ≺ N
and let q ∈ SI(B) be an heir of p. Then there is an heir r of p on N containing q.

Proof. This exactly the content of 2.9 in the case M0 = M . �
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3. Rank functions

3.1. List of definitions of (local) rank functions
(i) Rϕn(ψ(x̄, b̄))) (where ϕ = ϕ(x̄, ȳ), with |x| = n) is defined in [Pillay1983, 2.8],

which is extended to types p ∈ Sn(M) by min{Rϕn(ψ) | ψ ∈ α}, and then this
is Shelah’s Rn(p, ϕ, 2). (Sometimes Rϕn is just written as Rϕ in this book, e.g.
in [Pillay1983, 6.19].)

(ii) Rϕℵ0(ψ) is defined in [Pillay1983, 6.13] and extended to types via [Pillay1983,
6.22].

(iii) Dn(ψ) is defined in [Pillay1983, 6.14] and extended to types via [Pillay1983,
6.22].

(iv) RMn(ψ) is defined in [Pillay1983, 6.16] and extended to types via [Pillay1983,
6.22].

(v) Rϕ(ψ) (resembling Morley rank) is defined in [TenZie2012, Exercise 8.2.10].
(vi) R∆ is defined in [Buechl1996, 5.1.1]
(vii) The (∆, µ)-rank on formulas is defined in [Baldwi1988, Def. 2.2]

3.2. Local Rank = Local Morley Rank We will be using the definition of
Rϕℵ0(ψ) from [Pillay1983, 6.13]. Let T be an L -theory, let ϕ(x̄, ȳ) be an L -formula
and let M |= T be ℵ0-saturated. Then for ψ(x̄) ∈ L (M) we have

Rϕℵ0(ψ) = CB(π(〈ψ〉)),

where π : Sn(M) −→ S[ϕ(M), π(p) = p ∩∆[
ϕ(M) is the restriction map.

Proof. Firstly, in [Pillay1983, 6.13], the notion “ϕ-formula” is used. This means
“formula of the form ϕ(x̄, b̄), b̄ ∈ M ȳ”, where M is a monster model. However, for
the purpose of that definition, ℵ0-saturation of M suffices. (The reader may check
this similar to the proof of [MTofDiffFields, 2.7.8](ii).)

We now check by induction on α that

Rϕℵ0(ψ) ≥ α ⇐⇒ CB(π(〈ψ〉)) ≥ α.

Only the induction step needs a proof. Recall from [MTofDiffFields, 2.5.5] for the
Boolean space X = π(〈ψ〉) that CB(π(〈ψ〉)) ≥ α+1 if and only if there are infinitely
many disjoint clopen subsets Zi of X with CB(Zi) ≥ α. Now each Zi is a finite
union of sets of the form X ∩ V (Φ), where Φ is a finite conjunctions of formulas
of the form ϕ(x̄, b̄) or ¬ϕ(x̄, b̄) with b̄ ∈ M ȳ. Since the Cantor-Bendixson rank
of a closed set is the maximum of the Cantor-Bendixson ranks of its points, we
may assume that each Zi is equal to X ∩ V (Φi) where Φi is a finite conjunction of
formulas of the form ϕ(x̄, b̄) or ¬ϕ(x̄, b̄) with b̄ ∈M ȳ.

Now X ∩ V (Φi) = π(〈ψ ∧ Φi〉). Hence by induction we know that CB(Zi) ≥
α ⇐⇒ Rϕℵ0(ψ ∧Φi) ≥ α. But now by definition of Rϕℵ0(ψ) ≥ α+ 1 in [Pillay1983,
6.13(iii)] we see that CB(π(〈ψ〉)) ≥ α+ 1 is equivalent to Rϕℵ0(ψ) ≥ α+ 1. �
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