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1. INVARIANCE GROUPS IN ORDERED ABELIAN GROUPS

By a cut ¢ of a totally ordered set X we mean a pair & = (¢4, ¢F), where
ELUER = X and €8 < ¢ . If S is a subset of X, then the upper edge of S,
denoted by S* is defined as the cut & of X with ¢f = {z € X | § < z}. Similarly,
the lower edge of S is defined and denoted by S~. In particular, the upper edge
of 0 is (B, X) (also denoted by —oo) and the upper edge of X itself is (X, ) (also
denoted by +o0). The principal cuts of X are defined to be +o00, —oco and all
the cuts x1, = where v € X. If X C Y are totally ordered, then a cut £ of X is
realized by y € Y if ¢ < y < €%, if there is no such y we say that ¢ is omitted
inY. A cutnof Y extends ¢ if ¢¥ =P N X and ¢ = nffn X.

Let G be an abelian ordered group. If £ is a cut of G, then —¢ denotes the cut
(=B, —¢1). If S C G, then —(S1) = (—S)~. Further, G acts on the set of its cuts
via g+ & == (g + &5, g+ 7). We write g — € for g + (—¢). The stabilizer of £ under
the action is called the invariance group of ¢ and is denoted by G(£). Clearly
G(€) is a convex subgroup of G. The upper edge of G(§) is denoted by

£=G(O"
If G C H is an extension of abelian ordered groups and h € H \ G, then we write
G(a/Q) for the invariance group of the cut of H that is realized by h.

1.1. Lemma. Let G be an abelian ordered group and let U be a convex subgroup of
G. Then the following are equivalent.

(i) UT is realized in the divisible hull G ®7 Q.

(i) G/U has a smallest positive element.
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(iii) there is some g € G with Ut =g+ U~.

(iv) there is some g € G,g > U such that for all gy € G with U < 2gg we have
299 > g. In other words, there is some g € G with g > U such that no go € G
satisfies U < 2g9 < g.

(v) There is some g € G with g > U which is not the sum of two elements > U.

(vi) there is some abelian ordered group H O G, such that the largest extension of
UY on H is not the upper edge of a convex subgroup of H.

If this is the case, then for each g € G the following are equivalent:

Ut=g+U".

9 realizes U™

2 realizes Ut for all n > 2.

gmod U is the smallest positive element of G/U.

g > U and for all gy € G with U < 2gy we have 2gy > g.
g > U is not the sum of two elements > U.

Note that it may happen that (i) holds, but the convex hull of U in some H 2 G is
not the only convex subgroup of H lying over U. For ezample if Z. = G C Q((t®))
and U = {0}. Then the infinitesimal elements of Q((tQ)) witness this.

Proof. Let g € G, g > 0.

(i)=(ii). If U™ is realized in G ®z Q, then clearly there is some gg € G, such that
go/2 realizes U™T.

Suppose g/2 realizes UT and 0 < hmodU < gmodU for some h € G. Then
h>Uand g—h > U, thus h > g/2 and g — h > g/2. But g — h > g/2 implies
29 — 2h > g, thus g > 2h, a contradiction.

(il)=(iii). If gmod U is the smallest positive element of G/U and h € G, h > U,
then g — u < h for some u € U. In other words UT =g+ U~.

(iii)=(iv). f Ut =g+ U~ and gy € G with U < 2g, then go > U and g — u < go
for some v € U. Thus 2g9 > g+ go —u > g.

(iv)=(v). An element g as in (iv) cannot be the sum of two elements g1,g2 > U
because if g; < g2 we had 2¢g; < g.

(v)=(). If g > U is not the sum of two elements > U, then g/2 realizes U™:
Otherwise there is h > U with h < g/2, thus 2h < g. But then g = h+ (g — h) and
g—h > h>U, a contradiction.

(i)=(vi). Take H = G ®7 Q.

(vi)=(i). Take h € H realizing U™ such that 2h is not a realization of U™. Hence
there is some g € G with U < g < 2h and U™ is realized by g/2.

Hence we know that (i)-(vi) are equivalent. Moreover, our proof shows the second
set of equivalences. ([

1.2. Corollary. Let G be an abelian ordered group and let U be a convex subgroup
of G. The convex hull of U in G ®z Q is the unique convex subgroup of G Rz Q,
lying over U.

Proof. This is clear if U™ is not realized in G ®z Q and follows from 1.1 in the
other case. (]
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1.3. Definition. Let G be an ordered abelian group and let £ be a cut of G. We
define the signature of £ as

1 if € = g+ £ for some g € G and € is omitted in G ®z Q.

—1 if & =g — ¢ for some g € G and £ is omitted in G @7 Q.

0 1ftherelsnogeGW1th§—g—|—§or§—g §

oo otherwise.

sign¢ =

Observe that by 1.1(i)<(iii), the first two cases in this definition cannot occur
simultaneously. Therefore sign ¢ is a well defined element of {—1,0, 1, 00}.

If G C H is an extension of abelian ordered groups and h € H \ G, then we write
sign(a/G) for the signature of the cut of H that is realized by h.

1.4. Remarks.
(i) If £ is a cut of G, g € G and U is a convex subgroups of G with £ =g+ U™
or £ = g— U™ (which is equal to g + U™), then obviously U = G(§).
(ii) If G is divisible by n for some n € IN, n > 2, then no edge of a subgroup of G
is realized in G ® Q, in particular no cut of G has signature co. This follows
immediately from the equivalent conditions characterizing realisations in 1.1.

1.5. Corollary. Let G be an abelian ordered group and let £ be a cut of G. If
sign& = 0, then £ is omitted in G Rz Q.

Proof. Let U := G(£) and suppose U™ is realized in G ®7z Q. By 1.1, there is some
g € G, such that ¢ > U and gmodU is the least positive element in G/U. As
g > G(&) there is some h € G with h < £ < h+g We claim that £ = h—i—f
Clearly h + § < ¢. Conversely let g1 € G with h —|—§ < g1 Then g1 — h > 5, thus
(91 —h)modU > 01in G/U. So (g1 —h)modU > gmod U and there is some v € U
with g1 —h>g—wu. It follows g1 > h+g+u>&+u=E¢. (]

Hence by 1.5, the signature of a cut £ is oo if and only if é is realized in G ®z Q.
In general, there are cuts £ of G with sign& = 0 which are realized in G ®7 Q.
For example if n € IN, n > 2 and G is the additive group of the localizatin of Z at
n. Then for any prime p, which does not divide n, the cut & of G realized by %,
has signature 0: G is dense in Q and divisible by n.
1.6. Example. Here is an example, where the signature is co. Let w > R be an infi-
nite element and let K := Q(w). Let G := (K>°,-,1,<) and H := (K (y/w)>?,-,1,<
). Let U be the convex hull of Q in K and let £ := UT. Then U < \/w < £ but

w = (y/w)? € ¢F. Note that G and H are densely ordered in this example. Related
to this example, also see 2.3 (and 2.4), and 2.5.

1.7. Observation. Let G be an abelian ordered group and let £ be a cut of G. The
following are equivalent.

(i) For all £ < a there is some £ < b < a with 2b —a < &.
(i) sign(¢) € {0,1}.
(iii) £+ g—& forallg € G.
Proof. (ii) and (iii) are equivalent by definition and 1.1.
(iii)=(i). Let U = G(€) and pick & < a. Since & # a — £, there is some ¢ € G with
E<c<a—¢ Since a—c¢ > U, there is some b > £ with b — (a — ¢) < £. By
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shrinking b if necessary we may assume that b < c. Then £ < b < ¢ < a and
2b—a=b—(a—c)+b—c<b—(a—c) <&

(i)=(iii). Assume & = g — ¢ for some g € G. Then & < g and by (i) there is some
bermthg §<b<gand2b g < &. But then g — §<b<glmphesb geU
and so g — f < b implies £ = g — § < b+ (b—g) = 2b— g, which is impossible. [

1.8. Proposition. Let G C H be an extension of abelian ordered groups and let £
be a cut of G. Then
(i) If n is an extension of & on H, then G(n) NG C G(&).
(i) If m is the least or the largest extension of & on H then 7 is the least or the
largest extension ofé on H.
(iii) If & is omitted in H and n is the unique extension of & on H, then 7 is the
largest extension ofé on H. If in addition sign& = 0, then signn = 0, too.
(iv) Let sign& = 0 and let ny,m2 be the least and the largest extension of & on H.
Then 71 = 72 is the largest extension of éon H and for every realization h of
& i H we have ny = h — 11, 12 = h+ 12 and ne = 2h — 1.
(v) Let sign& =1 and let ny,me be the least and the largest extension of & on H.
Then 11 s the least extension ofé on H and 7y is the largest extension ofé
on H.
Moreover, if g € G with £ = g + é, then m1 = g + 1 is of signature 1 and
Ne = g + M2 is of signature 1.
(vi) Let sign& = —1 and let ny,n2 be the least and the largest extension of & on H.
Then 7)1 is the largest extension off on H and 7js is the least extension 0f§
on H.
(vii) Letsigné = oo and let g € G such that gmod G(§) is the least positive element
of G/G(&). Let m,ma be the least and the largest extension of & on H. Then
M = 72 is the least extension 0f§ on H and 12 = g — 7.
Further, there is some go € G such that € = go —|—§ =go+g9g— f and for
each such go we have m, = go+ V™ and o = go + g+ V™, where V is the
convex hull of G(§) in H.

Proof. If g € G and g +n =, then g+ &L C (g+7) NG CnE NG = ¢E. This
proves (i).

Claim. If 7 is the least or the largest extension of £ on H, then 7} extends é .

Proof. Let g € G(£) be positive. If n = conv. hully ¢* then g + n* = nl. If
nft = conv. hully €% then —g + 7 = n®. In any case g +7 = n. This proves the

claim. O

(iii). Take some h € H with h +n > n. Since ¢ is omitted in H, there is g1 € G
with g1 < & such that h + g1 > 1. Since £ is omitted in H there is go € G with
h+g1 > g2 >mn. Hence h > g2 — g1 > G(&) and h cannot be a realization of é.
Now the claim implies that 7 is the largest extension of £ on H.

Suppose now that £ is omitted in H and sign& = 0. Suppose 7 = h + 7 for some
h € H. As £ is omitted in H, there is some g € G with h < g <& Thusn=g+1
and this implies that £ = g + é , a contradiction.
(iv). By 1.5, and 1.1(v), the largest extension of é on H is the upper edge of a
convex subgroup Hy of H. By the claim we know that 7; extends é . Let hg € Hy
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be a realization of é Since sign€ = 0, and k-hg € Hy for all k € Z, £ is omitted in
the subgroup G(hg) generated by G and hy of H. Let n be the unique extension
of £ on G(hg). Hence 11,19 are the least and the largest extension of  on H. By
the claim we know that hg + 71 = 7. By the claim applied to n we get hg +n; = n;
(i = 1,2). This shows that 71 = fjs = H;.

Now let h € H be a realization of £. We already know h + Hy < 1. Suppose
there is some hy € H with h + Hy < hy < 12. Then h; — h is not a realization of
é. Take g € G with hy —h > g > f Then h + g < hy, but h + g does not realize &,
a contradiction.

(v) and (vi) are immediate consequences of 1.1.

(vii). We write U = G(£). Using 1.5, we know that £ = g1 +U T or £ = gy + U~ for
some g1 € G. By 1.1 we know that UT = g+ U~. Hence if £ = g; + U™, then we
may choose go = g1 and get E = go+UT. IfE =gy + U, then £ = g1 +(—g+U™)
and we may choose gg = g1 — g, thus § = go + U ™.

Hence there i some gy as claimed and for the rest of the proof of (vii) we may
thus assume that gy = 0, hence £ = Ut = g+ U~ with U = G(£). Tt is then clear
that n; is the upper edge of the convex hull V of U in H. and that no =g+ V™.
Thus (vii) follows.

(ii) follows by the descriptions of the invariance groups of the least and the largest
extension of £ on H in (iv)-(vii). O
1.9. Definition. Let G C H be totally ordered abelian groups and let £ be a cut
of G. We define

Ry (&) = {h € H | h realizes ¢}.
Hence Ry (§) € H \ G is the set of realizations of ¢ in H. Further we define

Gu(&) = Ru(§) — Ru(§) = {h1 — ha | b, hy € Ru(£)}-

1.10. Corollary. Suppose Ry (€) # 0.
(i) If sign(&) # oo, then Gy (&) is the largest convex subgroup of H lying over
G(¢).
(ii) If sign(€) = oo, then there is some g € G such that € = g — & and for each
such g we have

Gu(§) ={hc H | |h] <g+G(&)}

Notice that if H contains a realization ofé from the divisible hull of G, then
G (&) is not a convex subgroup of H.

Proof. (i). Let W be the largest convex subgroup of H lying over G(§).

If sign = 0 and h € Ry (&), then Ry(§) = h+ W by 1.8(iv) and so Gy (&) =
Ry (§) — Ru(§) =W.

If sign = 1 and h € Ry (£), then by 1.8(v) we have Ry (£)N[h, +o0)g = h+W=0.
Hence

Gr(€) = L‘J Ry (&) N [h,+00)r — R (€) N [h, +00)py = W.
hi=¢

If sign £ = —1, apply the previous case and Gy () = Gy (=£).
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(ii). If sign(€) = oo, then let V be the convex hull of G(§) in H and take g, go as
in 1.8(vii). By 1.8(vii) we then have Ry(§) =go+{h € H |V <h<g+V} Itis
then straightforward to see that

Gu(§) =Ru(§) —Ru(§) ={he H | |h| <g+V}
]

1.11. Definition. Let f : X — Y be a monotone map between totally ordered
sets let 7 be a cut of Y. Then clearly (f~1(n), f~1(n?)) is a cut of X, which we
denote by f~*(n). Hence by definition f~1(n)* = f~1(n’) and f~1(n) = f~1(n).

1.12. Lemma. Let f : G — H be a homomorphism between totally ordered abelian
groups.

(i) If 51,52 € G, then f(S1+ S2) = f(S1) + f(S2).

(ii) If Ty C f(G) and To C H, then f~Y Ty +To) = f~YTy) + f~1(T2).
Notice that the sets S; and T; considered here may also be empty, because the
complex operation induced by addition of G on the powerset of G is defined as
S1+Sy={g€G|3s1 € 51,52 € S2:g9=s51+52}. In particular D+S = S+0 = 0.

Proof. (i) is clear. To see (ii), take g € G. If g; € f~1(T;) with g = g1 + g2,
then f(g) = f(g1) + f(g92) € T1 + Ty, thus g € f~1(T1 + Tz). Conversely, if
g < fﬁl(Tl —|—T2), then there are t; € T1,ts € Ty with f(g) =t1+ta. AsTy C f(G),
there is some g1 € G with f(g1) = t1. Then g = g1 + g2 with go = g — ¢1 and
flg2) = f(g) — flg1) = t1 + ta — t1 = t3, confirming g € f~(T1) + f~1(T2). O

1.13. Proposition. Let G be a totally ordered abelian group and let U be a convex
subgroup of G.
(i) Ifnis a cut of G/U, then G(n=1(n)) = 7~ 1(G(n)) and sign(r~1(n)) = sign(n).
(ii) If € is a cut of G, then & = = 1(n) for some cut n of G/U if and only if
U CG().

Proof. (i) To verify G(r~1(n)) = 7=1(G(n)) it suffices to check that for g € G we
have

g+mtnh) = 7T‘1(77L) = nw(g) +n" ="
Since 7 is surjective we know that n* = (71 (n%)).
=. 7(g) + 1t = 7lg) +w(x (1)) "2V w(g + 7 (h)) = w(x - (nh)) = nt.
e w7 by = 7 (m(g) +nb) VB 7 (w(g) + 7 (0E) = g+ U+ 7L (nk) =
g+ t(n).

Now we show sign(7w~1(n)) = sign(n). Firstly sign(n) = co <= 1 is realized
in (G/U) @ Q iff (G/U)/G(n) has a smallest positive element iff G/7~1(G(n)) has
a smallest positive element iff sign(7=1(n)) = oco. Hence we may assume that
sign(n), sign(7~1(n)) # oo. But then sign(m~!(n)) = sign(n) is immediate from 1.5
and definition 1.3.

(ii) is an easy exercise. O

1.14. Proposition. Let G C H be totally ordered abelian groups and let U be a
conver subgroup of H. Let 7 : H — H/U be the natural map and let h € H with
w(h) € w(G). Let n be the cut of w(G) realized by w(h). Let & be the cut of G
realized by h. Let my be the restriction of m to G. Then

(i) € =mg " (n") and €% = n5 " ().
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(ii) G(§) = mg " (G()).

fiii) sign(€) = sign(n).
Proof. (i) To see ¢ = 75 (n"), we need to show that g < h <= 7(g) < n(h)
for all g € G. This is obvious, since 7 is order preserving and 7(g) = w(h) cannot
occur by assumption. Similarly ¢ = 771 (nf?).
(ii) We assume that n’ # (), otherwise we proceed with —¢ and —. For g € G we
clearly have

(*)  molg+m5 (")) = mo(g) +n" and 75 (mo(g) + n*) = g+ 75 ' (n").
Hence
GEGE) = g+t =" LY gLl = mp () =

(%) B
<= mo(g) + 0t =nF = gem (G).

(iii) follows (i),(ii) and 1.13. (Exercise) O
2. CUTS IN ORDERED FIELDS, G(£) AND V (§)

2.1. Lemma. Let K be an ordered field, let G be the multiplicative group of positive
elements of K. If H is a convex subgroup of G with 2 € H, then HT is omitted in

G ®y Q
Recall from 1.6 that the assumption 2 ¢ H cannot be dropped.

Proof. Suppose HT is realized in G ®z Q. By 1.1, there is some realization v of
HT in the real closure R of K, such that v?> € K. Since 2 ¢ H, H — 1 is a convex
subgroup of (K, +, <). Since (K, +) is divisible, 3-(y — 1) realizes (H — 1)™. Since
1 <14~ <3wehave (y—1) < (y—1)(v+1) <3:(y—1), hence also (y—1)(y+1)
realizes (H — 1)T. But this is impossible, since (y —1)(y+1)=+?>-1€ K. O
2.2. Definition. If K is an ordered field and £ is a cut of K then we define the
multiplicative invariance group of £, written as G*(£), as the invariance group
of |¢| wr.t. (K20, -, <). Explicitly we have

G'¢)={acK|af=¢E}

(This also applies if £ < 0).
The multiplicative signature of ¢ is defined as

sign* ¢ := the signature of |¢| w.r.t. (K70, <).

If K C L is an extension of ordered fields and o € L\ K, then we write G*(a/ K') and
sign*(a/K) for the multiplicative invariance group and the multiplicative signature
of the cut of K that is realized by a.

2.3. Corollary. Let K be an ordered field and let & > 0 be a cut of K with
sign*(§) = o00. Then =€ and € > Q or 71 > Q.

Proof. By 2.1 we have 2 € G*(£), which is equivalent to £ = E.
If £ > 1, then 2 € G*(£) also implies € > Q. If £ < 1, then as sign*(£71) = sign*(€)
we get £ > Q. (]

The multiplicative signature is only a new invariant for cuts with |£] = é :
2.4. Proposition. If £ is a cut of an ordered field with & > é, then
sign & = sign™ &.
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Proof. By 2.3 we know that sign™ £ # oco. Since (K, +) is divisible, also sign £ # oc.

Let G := G(&). If sign = 1, then there is some a € K, a > G with £ =
a+ Gt Since 1 ¢ 1.G, 1+ 1.G is a convex subgroup of (K>, <). Hence
¢=a(l+ 1-G") =a(1+1.G)" has multiplicative signature 1.

If sign £ = —1, then there issome a € K, a > G with{ =a+G~. Since 1 ¢ %-G,
1+1.G is a convex subgroup of (K0, -, <). Hence £ = a-(1+1-G7) = a-(1+1.G)~
has multiplicative signature -1.

If sign® € = 1, then £ = a-H ™ for a convex subgroup H of (K>, . <) and some
a > 0. Since & > f, 2 ¢ H and G := H — 1 is a convex subgroup of (K, +, <).
Hence £ = a-(1 + G") = a+ (a-G)* has signature 1.

If sign* € = —1, then £ = a-H~ for a convex subgroup H of (K~?, -, <) and some
a>0. Since ¢ > &, 2¢ H and G := H — 1 is a convex subgroup of (K, +,<).
Hence £ = a-(14+ G7) = a+ (a-G)™ has signature —1.

Hence we know that sign =1 <= sign* ¢ = 1 and signé = —1 <= sign*{ =
—1. This shows the proposition. U

2.5. Example. Let K be an ordered field and let a € K, a > 0 be an element from
the real closure of K such that ™ € K. Suppose 1 < a < n for some n € IN. Let &
be the cut of K realized by a. Then sign & = sign* ¢ = 0.

Proof. Since 1 < a < n, we have £ > é, hence by 2.4, sign* £ = sign # co. Since
¢ is realized in the divisible hull of the multiplicative group of positive elements of
K, £ cannot have signature 1 (otherwise %-f would be the upper edge of a convex
subgroup of K>, realized in the divisible hull of K>%). The same argument shows
that sign* £ # —1. Hence sign* £ = 0. O

The multiplicative invariance group can be computed from the additive invariance
group, provided [¢] > &: Let K be an ordered field. Firstly, recall from [6, proof of

(3.5)]:
The set of convex subgroups of (K, +, <) that do not contain 1 is in bijection
with the convex subgroups of (K9, - <) that do not contain 2. The bijection is

given by G — 1 4+ G. Moreover we have

2.6. Proposition. Let K be an ordered field and let & be a cut of K with |¢] > £.
There is some ¢ € K such that

G (§) =G+ 1 (={cat+1]acC(E)})
Proof. By [6, (3.5)]. This is included here for completeness:

We may assume that & > . Let H := G*(£). Since £ > £ we have 2 ¢ H.

Claim 1. H —1 is a convex subgroup of (K, +, <).

H —1 is convex, since H is convex. Hence we only have to show that 2-(H —1) C
H-land H—1= —(H-1). Lete € H—1,¢ > 0. Then 0 < 2 < (14+¢)2—1 € H-1,
hence 2¢ € H — 1. Since 2 ¢ H we have % <e¢g, thus 1 < 1; :1+5+15—_25 <
1+2c € H. We get 1—:6 € H, therefore —c € H — 1.

If5>OWith75€H71,then1<1+5<1ig€H,thatiss€H71.

Claim 2. H—1={aec K ||al€ <} ={ae K ||a]-€ <E}.
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The second equality holds since & > é . To see the first equality we may assume
that a > 0. If a-¢ < &, then easily (1+a)-¢ = . Conversely take h € H and assume
(h—1)€> &,

First suppose h > 1. Then there is some 0 < hy < £ with (b — 1)h; & G(§),
hence there is some hy € K, 0 < hy < hy < £ with hy + (h — 1)h; > €. Tt follows
& =h& > hhy = ho+ (h—1)hy > ho + (h — 1)hy > &, a contradiction.

This argument shows that A > 1 and h-¢ = ¢ imply (h —1)-¢ < &, thus (h —
1)€< é On the other hand, if 0 < A < 1 and h-{ = £ then by claim 1 we have
1—h=—(h—1)€ H—1, whence (2—h)-£ =& and 2 — h > 1. By what we have
just proved it follows (1 — h)-£ < é.

Now we prove the proposition. Let ¢ := HT — 1. By claim 1 it is enough to
find some ¢ € K with ¢ = c-é . By elementary real algebra, there is an ordered field
L containing K and realizations «,~y of f and & respectively. By claim 2 we know
that 3 := £ realizes ¢. Let G’ be the convex hull of G(¢§) in K(a,7) and let o
be a realization of G't from an ordered field extension of L. Note that o’ < a.
Certainly % is a realization of %'G”r, hence of U, where U := K N %G'. Since U
is a convex subgroup of (K, +, <) and & > é, the element v = % is not a realization

’

of U™, hence % <a< % for some a € K. As a and o realize é it follows that a-8

realizes f . Since S realizes ¢ this means ¢ = éé . O
2.7. Definition. Let K be an ordered field and let G be a convex subgroup of
(K,4+, <). The invariance ring of G is defined as

V(G) :={a€e K| aGCG}.

If ¢ is a cut of K, then the invariance ring of £ is defined as the invariance ring of

G(&):

We also write V¢ for V(§).
If K C L is an extension of ordered fields and o € L\ K, then we write V(a/K)
for the invariance ring of the cut of K that is realized by «.

2.8. Remark. Let G be a convex subgroup of (K, +, <). Obviously V(G) is a convex
subring of K and the set of units of V(G) is

V(@) ={a € K|aG=G}.
It follows that the set of positive units of V(G) is the multiplicative invariance
group of the upper edge GT of G:
V(G)x>0 — G*(G+)-
We write m(G) and m(&) for the maximal ideal of V(G), V(£), respectively.
2.9. Proposition. Let K C L be ordered fields and let € be a cut of K. Let n be

the least or the last extension of & on L. Then 1) is the least or the largest extension
of & on L and V,]Jr is the least or the largest extension of Vg‘ on L. In particular

(Kv fLa G(€)7 va) g (L’nLv G(n)a VU)

Moreover, if m,m2 are the least and the largest extension of & on L and V,, =V,
(for example if L/K is algebraic), then either 1y = fja or there is some a € L with

= a/mnz.
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Proof. Everything except the additions follows from 1.8(ii). So let V;,, = V,,,. This
means that the invariance groups of 7; and 7, w.r.t. (K0 .) are the same. By
1.8(v),(vi), the multiplicative signature of £ is either 0 or co and the proposition
follows from 1.8 (iv),(vii) applied to € and (K>°, ., <). O

2.10. Lemma. Let K be an ordered field and let G be a convex subgroup of (K, +, <
). The following are equivalent.

(i) sign* Gt = —1 orsign* Gt = o0

(ii) There is some a € K such that G = a-m(§).

Proof. The cut m(G)™ is the lower edge of the multiplicative invariance group
V(G)*>Y of GT. Hence if G = a-m(£), then sign®* GT = —1 or sign* Gt = oo.
Conversely, sign®* GT = —1 and sign®* G = oo imply that GT = a-G*(£)~ for some
a>0. [

2.11. Definition. Let K be an ordered field with real closure R and let £ be a cut
of K. We define the degree of £ to be the infimum of all d € IN such that £ is
realized by some « € R, with [K(a) : K| = d. If £ is not realized in R, we define
the degree of £ to be co. We write degé € INU {oo} for the degree of &.

A realization « of £ in some ordered field extension L of K is called £-generic
if [K(a) : K] = deg&.

An element « of some ordered field extension L of K is called K-generic, or
generic over K, if a € K or if «a is £-generic for the cut £ of K realized by a.

2.12. Ezample. Here is an example of an irreducible polynomial f(7T) over an or-
dered field K with two roots from the real closure, realizing the same cut over K.
Let K = k(X) where k is an arbitrary ordered field and X > k. Let £ be the cut
of K realized by v/ X. Then both v X + v X and VX — v/ X realize £&. Moreover
both elements are roots of the minimal polynomial f of v X + v X over k(X). We
compute f: We have

p(T) = (T - (VX + VX)) (T - (VX - VX)) = (T -VX)* VX
On the other hand
g(T) := (T — (—VX +iVX)T - (—VX —iVX)) = (T+VX)? + VX
Then
p(T)q(T) = (T? + X — 2TVX + VX)) (T? + X + 2TVX + VX)) =
=(T*+ X)) - 2TVX +VX)?? = (T* + X)) - X(2T +1)? =
=T*+2T%2X + X2 —4AXT? —4XT - X =
=T —2XT? —4XT+ X*-X

It is clear that no proper polynomial factor of f has coefficients in K = k(X), so
f(T)=p(T)q(T) = T*—2XT? —4XT + X? — X is irreducible over K and vanishes

in the realizations v X + vX and VX — VX of &.

Observe that degé > 2 for all cuts £ of ordered fields.

2.13. Lemma. Let K C L be ordered fields and let £ be a cut of K. Let a,8 € L
be realizations of & and let f(T),g(T) € K[T] be polynomials with f(T)/g(T) ¢ K.
If deg f(T'),deg g(T) < deg& then the cut determined by f(a)/g(e) over K is equal
to the cut determined by f(8)/g(B) over K.
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Proof. Observe that the statement makes sense, since f(a)/g(a), f(8)/9(B) ¢ K
by the degree assumption and f(T)/g(T) ¢ K. Clearly we may assume that L is
real closed. Suppose there is some a € K with f(a)/g(a) < a < f(8)/9(8). Since
deg g < degé, g does not have zeroes in the closed interval determined by « and S
in L. By the mean value property for real closed fields, there is some v € L between
« and 8 with f(v)/g(v) = a. Hence 7 is a zero of h(T) := a-g(T) — f(T) and ~
realizes £. Since degh < deg¢ this is not possible. (I

2.14. Definition. Let K be an ordered field and let £ be a cut of K. Let h(T) €
K(T) \ K, such that there are f(T'),g(T) € K[T] with deg f(T"),degg(T) < deg¢
and h(T) = % We define the cut h(§) of K to be the cut determined by
f(a)/g(a), where « is a realization of £ in some ordered field extension L 2 K, By
2.13, this makes sense.

2.15. Definition. Let K be an ordered field with real closure R and let & be a cut
of K. Let s : R — R be semi-algebraic. We say that s is strictly increasing
in £ if for all realizations a < f from any ordered field extension L of R we have
s(a) < s(f).

We say that s is strictly decreasing in ¢ if for all realizations a < § from any
ordered field extension L of R we have s(a) > s(f).

We say that s is strictly monotonic in £ if s is strictly decreasing or strictly
increasing in &.

We say that s is constant in £ if s is constant on all realizations of £ in any
ordered field extension L of R.

We say that s is defined at ¢, if for all realizations «, 8 of £ from some real
closed field, s(a) and s(B) induce the same cut of K. In this case we may define
s(€) to be this cut.

Note that if £ is omitted in R, then s is constant or strictly monotonic in £.
Note also that a polynomial with coefficients in K is in general neither constant
nor strictly monotonic nor defined in a given cut of K.

2.16. Definition. Let K be an ordered field with real closure R. Amaps: R — R
is called piecewise K-rational if there is a decomposition of R = I;U...ul into
intervals with endpoints in K U {£oo} such that for each j there is some Q € K(T)
without poles on I; such that s|;, = Q|r;. In particular s(K) C K.

2.17. Lemma. Let K be an ordered field with real closure R and let £ be a cut of
K. Let s: R —> R be piecewise K -rational.

(i) If € is principal then & is omitted in R and either s(n) € K or s(n) | K is a
principal cut of K, where n is the unique extension of & on R.

(i) If € is a non principal cut of (K, +) and s is strictly monotonic in &, then there
are a piecewise K -rational, strictly monotonic homeomorphism t : R — R
and elements a < § < b in K such that s|jq 4 = t|[a,p) i a K-rational map on
[a,b] (so equal to some Q € K(T) on [a,b]).

If in addition, s is defined in £, then

5(€) = s(¢fnfa,+00))T = (€8N (—00,b))” if s is increasing in [a, b],
s(€f N (o0, b))t = s(é8 N a, +00))™  if s is decreasing in [a,b].
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Proof. (). We may assume that £ > K. Clearly ¢ is omitted in K. Let a :=
lim; s 1 o0 5(t) € RU{+00}. If a = 400, then s(n) = 400 and we are done. If a € R
then, as s is piecewise K-rational, a € K and s(n) = a™ or s(n) = a~. In any case,
(i) holds.

(ii). We assume that s is strictly increasing in . As s is piecewise K-rational,
there are a < £ < b and some Q(T') € K[T] such that s| ) = Ql(ap). Let p be a
cut of R, lying over £. As s is strictly increasing in £ we must have @’ > 0 € p (here
we counsider p as a 1-type over R, observe that p is not realized, hence Q' =0 ¢ p).
In particular, if p;,pe are the least and the largest extension of ¢ on R, we have
Q' > 0 € py,po. Since ¢ is not principal, we can shrink the interval (a, b) such that
Q' > 0on (a,a;)U(by,b) for some ay,b; € R with p; < a1,b; < pa. But then, since
s is strictly increasing in &, () must be strictly increasing in (a,b) C R. Now a map
t as claimed can easily be patched together.

Finally assume that s is also defined at &. The only thing we need to show is
that there are no elements ¢ € K between s(¢X'N[a, +00)) and s(6#N(—o0,b]). Say
s is increasing in £ and suppose

s(¢" N [a, +00)) < e < s(¢7 N (—00, b))
Since £ is non-principal and s is strictly increasing in [a, b] we have
s(&F N fa, +o0)) < ¢ < s(£ N (—o0,b]).

Take realizations o and 8 of the cuts ¢, ¢ from some real closed field S. Since
s is strictly increasing and continuous in [a,b]s, there are ag,By € [a,b]s with
s(ag) = a, s(Bo) = B, ¥ Na, +00) < ag and By < £ N (—o0,b]. But then ag, Bo
realize &, whereas s(ag) < ¢ < s(fp), i.e. s is not defined at &. O

2.18. Definition. A cut £ of an ordered abelian group is called dense if £ is not
principal and G(§) = {0}.

2.19. Corollary. Let K be an ordered field with real closure R, let & be a cut of
K omitted in R and let n be the unique extension of & on R. Let s : R — R be

piecewise K -rational and nonconstant in . Then s(n) is the unique extension of
s(n) | K and

(i) & is principal if and only if s(n) | K is principal.
(i) & is dense if and only if s(n) | K is dense.

Proof. All statements hold true by 2.17(i), if £ is principal. So we assume that £ is
not principal. As £ is omitted in R, s is strictly monotonic and defined in . Say s
is strictly increasing in £. By 2.17(ii) we may assume that s is a strictly increasing
homeomorphism R — R. Then s(n) = (s(n%),s(n')) and s(n) | K = s(¢X)*+ =
s(¢f)~. Consequently s(n) is the unique extension of s(n) | K and (i) holds.

Now we prove (ii). From the o-minimal case we know that 7 is dense is and only
if s(n) is dense. But ¢ is dense if and only if 7 is dense (by (i) and since 7 lies over

€). As s(n) | K is omitted in R it follows that s(n) | K is dense if and only if s(n)
is dense. Altogether we get (ii). O

2.20. Theorem. Let K C L be ordered fields and let € be a cut of K. Then

(i) If f,g € K|T] with 1 < deg f + degg < deg& and g has no zero in &, then
f/g is strictly monotonic on the realizations of £ in L. In particular there is
at most one zero of f realizing &.
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(i) If f € K[T], 1 <deg f < deg& and L is real closed, then f maps the realiza-
tions of & in L onto the realizations of f(§) in L.

(i) Let o, B € L, a # [ be algebraic with minimal polynomial p., pg respectively.
If a, B are &-generic, then either j, and pg are strictly increasing on the
realizations of € in L or p, and pg are strictly decreasing on the realizations
of & in L. Moreover p1o and pg are coprime.

Proof. (1). As 0 < deg(gf’ — ¢'f) < deg&, (f/g)’ does not have zeroes in the
realizations of £ in the real closure of L. Hence (i) follows.

(ii). We assume that L is the real closure of K first. If £ is omitted in L then (ii)
holds by 2.19. So we may assume that £ is realized in L, hence £ is not principal.
By 2.13, f maps the realizations of ¢ in L into the realizations of f(§) in L. By
(i), f is strictly monotonic in £. Hence by 2.17, there are ¢ < £ < b in K and a
piecewise K-rational, strictly monotonic homeomorphism ¢t : R — R such that
flia,p) = tlja,p)- Thus every realization of f(&) is the image of a realization of & in

Now let L be an arbitrary real closed field extending K and let R be the real
closure of K in L. Let 11,72 be the least and the largest extension of £ on R. Let
17,75 be the least and the largest extension of £ on L. By what we have shown,
f(n1) and f(n2) are the least and the largest extension of f(£) on R - possible in
the reverse order. Since f is strictly monotonic in & we get that f(n1) and f(n})
are the least and the largest extension of f(§) on L - possible in the reverse order.
This proves (ii).

(iii). Suppose o < B and suppose pig, () > 0 > p(B8). By (i), pa is strictly
increasing in & and pg is strictly decreasing in €. Since pq (o) = pg(8) = 0 there
must be some «y in the real closure of L with oo < v < 8 such that pa(y) = ps(v).
But then [K(7) : K] < deg(pa — p1g) < deg po = deg g = degé, a contradiction.

The same argument gives a contradiction if uy, (o) <0 < pj(8). By (i) it follows
that p, and pg are strictly increasing on the realizations of £ in L or p, and pg
are strictly decreasing on the realizations of £ in L.

By (i), pto and pg are coprime. O

2.21. Corollary. Let K be an ordered field with real closure R and let & be a cut of
K. Let a € R be a &-generic realization of §&. Then for every polynomial g € K[T)]
of degree < deg& the least and the largest extension of € on R is mapped via g onto
the least and largest extension (possibly in reverse order) of the cut induced by g(a)

on K.
Proof. By 2.19 and 2.20(ii). O

2.21 says: & can be moved to all cuts of K, realized in some K(«), o &-generic,
in such a way that the movement is perfectly witnessed in R. By 2.9, we can then
use the theory of cuts of real closed fields. Here an example

2.22. Definition. If K C L is an extension of ordered fields, then we write

Vik = M V(e/K).
a€L\K
2.23. Proposition. Let K C L be ordered fields and let £ be a cut of K. Let « € L
be a &-generic realization of £. If L = K(«), then

Vik = V().
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Proof. First recall from [8, Thm. 5.1], that this is true if K is real closed (and
actually not difficult to prove directly in that case).

Case 1. £ is not realized in the real closure R of K

Let n be the unique extension of £ on R and let 8 € L\ K. As « is transcendent
over K. Take a rational map f : K — K with 8 = f(a). By 2.19, fr(n)
is the unique extension of f(£) on R. From the real closed field case, we know
that V(fr(n)) = V(n). From 2.9 we know that V(fr(n)) lies over V(f(€)). Thus
V(B/K) = V(£(€) = V(€).

Case 2. £ is realized in the real closure R of K.

By assumption a € R is a generic realization of . Let 8 € L\ K and take a
polynomial f(T) € K[T] of degree < deg(§) such that 8 = f(«). By 2.21, the least
and the largest extension 71,72 of £ on R is mapped via f onto the least and largest
extension (possibly in reverse order) of the cut induced by f(«) = § on K. Again,
from the real closed case we know that V(fr(n;)) = V(n1). Again 2.9 shows that

V(fr(n:)) lies over V(f(£))- O

2.24. Example. Without the genericity, 2.23 fails: Let K be an ordered field. If £
and 7 are cuts of K realized in the real closure of K, then V(§) # V() in general.
To see an example let Ky be any ordered field and let =,y be from an ordered field
extension with Ky < z and Ky(x) < y. Take K = Ky(z,y), £ the cut of K realized
by o := y/x and 7 the cut of K realized by £ := ,/y. Then £ and 7 are upper edges
of distinct convex valuation rings of K.

2.25. Ezample. In general the &-generics are not convex: To see an example (also
cf. 2.24) let Ky be any ordered field and let x,y be from an ordered field extension
with Ko < x and Ko(z) < y. Take K = Ko(x,y) and let £ be the cut of K realized
by o := \/x. Let § := ,/y. Then o, «+1 and a4 1/ are realizations of {. o, +1
are ¢-generic, but « 4+ 1/ is not.

3. DENSE CUTS AND THE ORDER COMPLETION.

3.1. Proposition. Let K be an ordered field and let & be a cut of K. Then the
following are equivalent.
(i) & is dense, i.e. £ is not principal and G(§) = 0.
(ii) There is an ordered field extension of K such that & has a unique realization
in that field.

If this is the case, then & has at most one realization « in every ordered field
extension L of K which is archimedean over K and K is dense in K(«).

Proof. (ii)=-(i) is easy.

Now suppose £ is dense. Then £ can be realized in an ordered extension field of
K, which is archimedean over K (if £ is realized in the real closure R of K we can
take the real closure; if £ is omitted in the real closure, then the unique extension
of £ on R is again dense, hence K is archimedean in R < a realization of £ >). If
L is any ordered field extension of K, archimedean over K and o < (8 are from K,
then there is some a € K with 0 < a < f—a. As G(§) =0, o and 8 cannot realize
¢ at the same time. This shows that (i) implies (ii) and it remains to show that K
is dense in K (o) if a = £ and K(«) is archimedean over K.

Case 1. £ is omitted in the real closure R of K. As £ is dense, the unique
extension of £ on R is dense, too. In particular R is archimedean in R{a). Then K
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is archimedean in R(«). Take rational functions f, g € K(T') such that f(a) < g(a),
both not in K. Take some a € K such that f(a) +a < g(a). By 2.19(ii), the cut
defined by f(«) over K is dense, too. Hence g(a) cannot define the same cut as
f(a) over K and there must be some a € K with f(a) < a < g(a) as desired.

Case 2. £ is realized in R, by r say. Then r is the unique realization of £ in R
and o — r is infinitesimal over R. Let p be the minimal polynomial of r over K.
If a # r, then p(a) # 0 is infinitesimal over R, in contradiction to our assumption
that K is archimedean in K(«). Hence « = r € R is the unique realization
of £ on R. In particular [K(a) : K| = deg&. Take polynomials f,g € K[T],
deg f,degg < [K(«a) : K] such that f(a) < g(a), both not in K. By 2.20(ii) we
know that f(«) is the unique extension of the cut of f(«) over K. Hence there is
some a € K with f(a) < a < g(«a). O

Observe that K need not be archimedean in K («) if « realizes a dense cut over
K. For example if ¢ is infinitesimal, K = Q and o« = v/2 +¢. Then o® — 2 =
2v/2¢ + €% € K(a) is infinitesimal over K.

3.2. Corollary. Let K C L C M be ordered fields and let X C M. If K is dense
in K(x) for allx € X and if K is archimedean in M then L is dense in L(X).

Proof. We work inside the real closure M of M. We may assume that X is finite,
X ={z1,...,z,} and we do an induction on the cardinality of X. First let X = {z},
x & L, let & be the cut of x over K and let 1 be the cut of z over L.

By assumption, K is archimedean in L(z). Hence by 3.1, z is the unique real-
ization of £ in L(z). Thus z is the unique realization of n in L(x). Again by 3.1, L
is dense in L(z).

So we know the corollary in the case n = 1. Now suppose K is dense in K(x)
for every x € X and K is dense in K(y). By induction L is dense in L(X), hence
K is archimedean in L(X). So from the case n = 1 we get that L(X) is dense in
L(X U{y}), thus L is dense in L(X U {y}). O

If K is an ordered subfield of an ordered field M and K is archimedean in M,
then by 3.2, for all fields K C Ly, Lo C M with the property that K is dense in L
and in Lg, K is also dense in the compositum L;i-Lo € M. Applying Zorn’s lemma
therefore shows that there is a largest subfield L of M such that K is dense in L.

For an ordered field K we may now define the dense closure (also called the
continuous closure or the completion) of K as follows: Let K be the real

closure of K and let K be the completion of K (see [7, section 3]). Notice that K

is archimedean in K. We define the dense closure K of K as
K = the largest subfield of ? that contains K as a dense subfield.

3.3. Proposition. If K C L are ordered ﬁeldsAand K is dense in L, then there is
a unique K-embedding of ordered fields L — K.

Proof. Uniqueness is clear. To see existence of such an embedding, let {2 be the
real closure of L. Then there is a K-embedding of K into {2 and we may assume
that K C Q. Since K is archimedean in Q we know from 3.2 that K is dense in
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K-L. Tt follows that K is dense in K-L (see the description of S in [7, Cor 3.2])).
By [7, Cor 3.3], there is an embedding

o KL -—K

over K. Hence the restriction of ¢ to L maps L onto a subfield of K that contains
K as a dense subfield. By definition of K we therefore have ¢(L) C K. O

3.4. Corollary. [3]
If K C L are ordered fields and K s dense in L, then the real closure K of K is
dense in the real closure L of L.

Proof. By 3.3 we may assume that L C K. Now we have
KCLCKCK
and ? is real closed. Consequently
KCILCK,
i.e. K is dense in L. U
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4. CONVEX VALUATIONS ON REALIZATIONS OF CUTS

4.1. Proposition. If V is a convez valuation ring of an ordered field K, then the
convex hull W of V' in the real closure R of K is the unique convex valuation ring
of Rwith WNK =1V.

Observe that this does mot mean that VT is omitted in R.

Proof. For a more general reference see [1] (it says that on an algebraic extension
of fields there cannot be a proper inclusions between valuations extending the same
valuation of the base field).

Take o € R with a > V. It suffices to show that for some d € IN and some a € K
we have

V <a<al
Let w be the valuation belonging to the convex hull W of V in the real closure R.
Since « is algebraic over K, there are i > j and ¢;, ¢; € K* with w(c;a') = w(c;ja?),
hence

(+) w(ed ™) = w().
We take d = i +1anda:|ﬁ| As a > V we have w(a) < 0 and by

—J
(*) also w(a) = w(Z) < 0. Since a > 0, this means V' < a. On the other hand
)=

w(a?) = w(a-a w(a)+w(a) < w(a), which implies a < a? as w is compatible
with the order O

Recall from 4.1 that every convex valuation ring V of an ordered field K has a
unique extension to a convex valuation ring of the real closure R of K, namely the
convex hull of V in R.

Throughout this section we fix

e ordered fields K C L

e a convex valuation ring W of L which is the convex hull of V := W N K. The
maximal ideal of W is denoted by m and the residue map W — W/m is
denoted by A.

e A cut ¢ of K and a realization « € L of K.

4.2. Lemma. Ifa,b e K and w(aa —b) € w(kK), then sign(€) # 0.

Proof. Clearly a # 0. Since sign€ is invariant under the map az + b, we may
assume that o > 0 and w(a) € w(K). Then for all ¢ € K with 0 < ¢ < a we have
w(a) > w(c) = w(2c¢) and therefore 2¢ < . Thus a realizes the upper edge of a
convex subgroup of (K, +, <). a

4.3. Lemma. If G is a convex subgroup of (K,+,<), £ =G and V C V(£), then
w(a) € w(K).

Proof. Suppose a € K, a > 0 with w(a) = w(a). Then w($) = 0 and so ¢ and

= are in the convex hull of V. By assumption, ¢ and £ are in the convex hull of

V(€). Take b € V(£) with
<b.

)

SHEs
Qle

Since & < b we have
a
a=—a<balEGT,
«
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because b € V(§) (and b > 1). Hence a € G. But this contradicts
beV (&)

o
a=a—<ab € G<a.
a

(I
4.4. Corollary. If sign(§) # 0 and V. C V(€), then there is some a € K with
w(a—a) € w(K).
4.5. Lemma. If o« € W is a realization of £ and 1 € G(&), then Aa) € A(V).

Proof. Otherwise there is some a € V with @ — a € m, hence o = a + p for some
u€m. Since 1 € G(§), a and « + 2 realize the same cut of K, which contradicts

co=a+pu<a+l<a+p+2=a+2.
O

4.6. Corollary. If V() C V, then there are a,b € K such that ac +b € W and
AMaa+b) € MV).

Proof. Since V(¢) C V, there is some a € K with V(€)* < a-é < V*. Since
ak = aé, there is some b € K with

(%) VOT <af<at+b< VT
Then aa +b € W and 1 € V(§) C aG(§) = G(a€) = G(a& + b). Hence 4.5
applies. O

4.7. Lemma. If o € W, sign(§) =0, G(&) = m(§) and V(§) C V, then Aa) &
A(V).

Proof. Say o > 0. Assume there is some a € K with a — a € m. We may assume
that @ = 0, otherwise we continue to work with £ — a and o — a. Thus we may
assume that o € m. Since sign(¢) = 0, « does not realize (mN K)*. As a € m this
means 0 < £ < (mN K)*. But this contradicts G(§) = m(§) D mN K. O

4.8. Corollary. If sign(§) = 0, sign*(é) € {—1,00} and V(&) C V, then there are
a,b € K such that aa +b € W and Aaa + b) & A(V).

Proof. This is true if V() C V by 4.6. So assume V() = V. As sign*(§) €
{—1,00}, there is some a € K with a-G(§) = m(&) (see 2.10). As a-G(&) = G(a-§)
we have sign(af) = 0 and m(af) = m N K. Consequently there is some b € K with
0 < a€+b< 1, in particular ac +b € W. Now 4.7 applies to a& + b. O

4.9. Lemma. If o € W with AMa) € A(V) then V(&) CV and if V() =V, then
G(&) =mnN K and the cut of \(V) realized by A(c) has invariance group {0}.

Proof. We use 1.14. Let n be the cut of A(V) determined by A(c). Let Ao be
the restriction of A to V. By 1.14(ii) applied to V' C W and m we have G(§) =
Ao 1 (G(n)), which contains m N K = \5'(0).

If G(§) =mnN K, then V(&) =V and G(n) = {0}.

Otherwise, G(n) = A(G(§)) # {0} and so V(n) # ANV). Take a € V with
AMa) > V(n) and b € V, b > 0 with A\(b) € G(n) and A(a)A(b) > G(n). Then
be N (G(n) = GE) and ab > A\ (G(n)) = G(£). Hence a € V(€). Asa €V
this shows V(§) C V. O
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4.10. Conclusion The fact that aa + b does not have a new value and aa + b does
not hzive a new residue w.r.t. K and W, for all a,b € K, is determined by sign &,
sign™ € and the position of V' w.r.t. V(£). In fact we have the following table:

Let K C L be ordered fields, let £ be a cut of K realized by « and suppose

L = K(o). Let V be a convex valuation ring of K and let W be the convex hull of
Vin L.

VeV V=V() VO SV

& principal 'y #T'w 'y #T'w not possible

¢ dense, L/K archimedean immediate Ky # Kw not possible
sign # 0 I'v #I'w 'y #T'w Ky # Kw
sign€ =0, sign* ¢ € {—1, 00} | linear immediate Ky # Kw Ky # KW
sign€ =0, sign* & € {0,1} |linear immediate | linear immediate | Ky # Ky

Here, "linear immediate" stands for the property
Forall a,b € K, w(aa+b) € T'y and, if aa+b € W, then A(aa+b) €

Ky n

Proof. The first two rows are clear and the last column follows from 4.6. Using 4.4,
also the third column follows.

So we are left with the following sub-table:
Vv V=V
sign& = 0, sign* & € {—1, 00} | linear immediate Ky # Kw

signé& = 0, sign* € € {0,1} |linear immediate | linear immediate
If sign& = 0, sign* € € {—1,00} and V(€) = V, then ky # ky by 4.8.

The three remaining cases are linear immediate by 4.2 and 4.9.
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