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The theorem mentioned in the title is

THEOREM 1. Let S = (S, 04,...,0k) be a differential domain in K commuting deriva-
tives, containing Z and let R = (R, 01,...,0k) C (S,01,...,0K) be a differential subring
such that S is differentially finitely generated over R. Then there are R-subalgebras B
and P of S and an element h € B, h # 0 such that:

(a) B is a finitely generated R-algebra and By, is a finitely presented R-algebra.

(b) Sy, = (B-P)y, is a differentially finitely presented R-algebra.

(¢) The homomorphism B Qg P — B-P induced by multiplication is an isomorphism of
R-algebras.

(d) P has the following structure. For each subset A of {O1,...,0k} there is an R-
subalgebra Pa of P such that Pa together with the derivatives from A is a dif-
ferential polynomial ring in these derivatives and finitely many variables (the case
Pa = R is not excluded). The homomorphism

® Py — P

AC{01,...,0K }

induced by multiplication is an isomorphism of R-algebras.

If R is a differential ring as in the theorem, then a differential R-algebra S is a quotient
of a differential polynomial ring R{Y} over R modulo a differential ideal a. One of the
fundamental tools of differential algebra is a reduction process of polynomials F' € R{Y'}
with respect to such ideals as explained in Kolchin’s book [2]; provided Z C R C S and S
is a domain. We translate the result of this reduction in terms of the differential algebra
S. In the case where R = R is the field of real numbers and the number of derivatives K
is 1, our structure theorem can be used to reduce the solvability of an ordinary system
of differential equations to an algebraic question on the system. This is done in [1].
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In section 1 we recall the definition of a characteristic set (in characteristic 0) from
[2]. In section 2 we recall the result of the reduction process with respect to characteristic
sets and how differential prime ideals can be recovered from their characteristic sets. In
section 3 we translate these facts into the proof of Theorem 1.

1. Definition of characteristic sets. Let R be a differential ring in K pairwise

commuting derivatives d1,...,0k. Let Y := (Y7,...,Yn) be a tuple of N indeterminates
over R and let D := {0}' ... 0} | i1,...,ix € Ny} be the free abelian monoid generated

by {01,...,0K}, which we denote multiplicatively. For each D € D and n € {1,...,N}
let DY,, be an indeterminate, where DY,, =Y, if D = 8¢ ...9% by definition. Moreover
let

DY .= {DY, | DeD,1<n<N}.

The differential polynomial ring over R in K derivatives and N indeterminates is the
polynomial ring R{Y} := R]y | y € DY] together with the uniquely determined deriva-
tions 9; such that 9;(r-DY,,) = (0;r)-DY,, +r-(0;D)Y,, 1 <i< K, 1<n<N, r€R).
So R{Y} is a differential ring extension of R and R{Y} is the free object generated by N
elements over R in the category of differential rings with K commuting derivatives. The
set of all powers of variables from DY is denoted by

DY™ :={y’ |y € DY,p € N}.

DEFINITION 1. The rank on DY * is the map rk : DY* — Ng x {1,..., N} x N¥ x N
defined by
tk(O7 .. OFY, )P = (i1 + ... +iKg, Nk, ..., 01, D).

The set O := Ny x {1,..., N} x NX x N equipped with the lexicographic order (hence
the first component is the dominating one) is well ordered. Note that the order type of
the image of rk in O is the order type of N.

DEFINITION 2. We say a variable y € DY appears in f € R{Y'} if y appears in f
considered as an ordinary polynomial (hence Y; does not appear in 0,Y1). The leader uys

of f € R{Y'} \ R is the variable y € DY of highest rank which appears in f. Moreover
deg, . f
up = ufeg 7" € DY* denotes the highest power of uy in f. We extend the rank to

polynomials f € R{Y} by
k(f) :=rk(u}) € O.

DEFINITION 3. If g, f € R{Y'}, g € R are polynomials, then f is called weakly reduced
with respect to g if no proper derivative of u, appears in f. f is called reduced with
respect to g if f is weakly reduced with respect to g and if deg,,, f< deg,, 9.

The polynomial f is called (weakly) reduced with respect to a nonempty set G C
R{Y}\ R if f is (weakly) reduced with respect to every g € G.

A nonempty subset G C R{Y'}\ R is called autoreduced if every f € G is reduced with
respect to all g € G, g # f. If G consists of a single element then G is called autoreduced
as well.

It is easy to see that us # u, (hence rk f # rkg) if f, g are different polynomials from
an autoreduced set. Moreover, by [2], Chap. O, Section 17, Lemma 15 (a) we have
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PROPOSITION 2. Every autoreduced set is finite. m

Let 0o be an element bigger than every element in O and let (OU{c0})N be equipped
with the lexicographic order. We define the rank of an autoreduced set G to be an element
of (O U {oco})N as follows. Let G = {g1,...,q/} withrkg; < ... <rkg. Then

kG := (tkgr,...,tkg,00,00,...).
PROPOSITION 3. There is no infinite sequence G1,Ga, - -+ of autoreduced sets with the
property tk Gy >tk Gy > - - -.
Proof. [2], Chap. I, Section 10, Proposition 3. m

DEFINITION 4. If M C R{Y'} is a set not contained in R, then by Proposition 3 the
set {tkG | G C M is autoreduced } has a minimum. Every autoreduced subset G of M
with this rank is called a characteristic set of M.

PROPOSITION 4. If G is a characteristic set of M C R{Y'} and f € M \ R, then f is
not reduced with respect to G.

Proof. If f € M \ R is reduced with respect to G, then the set {g € G | tkg <
rk f} U {f} is an autoreduced subset of M of rank strictly lower than the rank of G,
which is impossible. m

2. Fundamental properties of characteristic sets. From now on we assume that
R is a differential domain in K derivatives containing Z.

DEFINITION 5. Let f € R{Y}\ R, f = fdu‘; + ...+ fiuy + fo with polynomials
fa,-- ., fo€ Rly €D |y+#uy] and fq # 0. The initial I(f) of f is defined as
I(f) = fa.
The separant S(f) of f is defined as

S(U) = g f = i

Moreover, for every autoreduced subset G = {g1,..., g} of R{Y} we define

! !
H(G) = HI(gi)‘S(gi) and Hg := {H I(gi)™S(g:)™ | ni,mi € No}-
i=1 i=1
Since R is a domain and Z C R the set Hg does not contain 0. Moreover, S(g) and I(g)
are reduced with respect to G (g € G).

THEOREM 5. Let G C R{Y'} be an autoreduced set and let f € R{Y}. Let [G] denote
the differential ideal generated by G in R{Y'} and let (G) denote the ideal generated by
G in R{Y}. Then there is some f € R{Y} which is reduced with respect to G and some
H € Hg such that H-f = fmod[G]. If f is weakly reduced with respect to G, then we can
take H such that H-f = f mod(QG).

Proof. [2], Chap. I, Section 9, Proposition 1. m
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COROLLARY 6. If G is a characteristic set of a differential prime ideal p of R{Y}
with p N R =0 then

p={feR{Y} | HG)" f € [G] for somen € Ny}.

Moreover if f € p is weakly reduced with respect to G, then H(G)™- f € (G) for some
n € Ny.

Proof. From Theorem 5 and Proposition 4, since HgNp = 0. »

3. Proof of Theorem 1. Since S is a differentially finitely generated R-algebra, there
is some N € N and a surjective differential homomorphism ¢ : R{Y7,..., Yy} — S. Let
Y := (Y1,...,Yy) and let p be the kernel of . Since R C S and S is a differential domain,
the ideal p is a differential prime ideal of R{Y'} with pN R = 0. Let G be a characteristic
set of p (c.f. Definition 4). First we define B, P and h. We take h := ¢(H(G)) (H(G) is
defined in Definition 5),

V :={y € DY | y is not a proper derivative of any ugy},
Vg :={y € V | y appears in some g € G},
B :=p(R[Vg]) and P :=(R[V \ Vg]).

Since G is an autoreduced set, a polynomial f € R{Y} is weakly reduced with respect
to G if and only if f € R[V].

CLAIM 1. The restriction of ¢ to the subring R[V \ Vg] of R{Y} is injective.

Proof. Let f € R[V \ Vp] Np. Since [ is weakly reduced with respect to G and all
leaders of elements g € G are in Vg we have that f is reduced with respect to G. Since
G is a characteristic set of p we get f = 0 from Proposition 4 and p N R = 0. This proves
the claim.

CLAaM 2. h # 0 and Sy, = (B-P)y,.

Proof. Since every S(g),I(g) with g € G is reduced with respect to G we have H(G) ¢
p. As H(G) € R[Vp] it follows B> h = ¢o(H(G)) # 0.

Let f € R{Y}. By Theorem 5 there is some f € R{Y} which is reduced with respect
to G and some H € Hg such that H-f = f mod[G]. Since f € R[V] and every I(g),S(g)

is invertible in (B-P); we get ¢(f) € (B-P)p. This shows that S, = (B-P)s.

CLaM 3. Sy, is a differentially finitely presented R-algebra and By is a finitely pre-
sented R-algebra.

Proof. First we prove that .5}, is differentially finitely presented over R. The differential
homomorphism R{Y'} — S < S), maps H(G) onto a unit in S}, hence ¢ can be extended
to a surjective differential homomorphism ¢ : R{Y }[H(G) '] — S}, mapping H(G)~! to
h~1. Since R{Y }[H(G) '] is a differentially finitely generated R-algebra (with generators
Y1,...,Yn, H(G)™1) it is enough to prove that Kert is generated by G as a differential
ideal. As ¢ extends ¢ we have G C Kert. Conversely if f € R{Y} and d € N with
Y(f/H(G)?) = 0 we get f € p from h # 0, hence H(G)"-f € [G] for some n € N
by Corollary 6. This shows that f/H(G)? is in the differential ideal generated by G in
R{Y}HH(G)™'].
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Now we show that Bj is a finitely presented R-algebra. Similar as above we get
a surjective R-algebra homomorphism ¢ : R[VB|gq) — Bn extending ¢|g[y, with
YH(G)™! = h™! and it is enough to show that the ideal Ker is generated by G. If
f € R[Vg] and d € N with o (f/H(G)?) = 0 we get f € p. Since f is weakly reduced
with respect to G we get H(G)™- f € (G) for some n € N from Corollary 6. Since G, f
and H(G) are in R[Vp], f is in the ideal generated by G in R[Vp]x (). This finishes the
proof of claim 3.

Claims 2 and 3 prove assertions (a) and (b) of Theorem 1.

CLAM 4. If by,...,by, € B are linearly dependent over P, then they are linearly
dependent over R.

Proof. Take f; € R[Vg] with ¢f; = b; and p; € R[V \ Vp], not all contained in p
with ¢ :== p1fi + ... + pmfm € p. We may assume that p; € p. Since ¢ € R[V], ¢ is
weakly reduced with respect to G. By Corollary 6 there is some n € N and polynomials
hy € R{Y} (g € G) such that H(G)"-q = > cqhy-g. Since H(G),q € R[V] and
G C R[V] we may assume that each hy € R[V] as well. Since p; # 0 there is an R-algebra
homomorphism ¢ : R[V \ V] — R with ¢(p1) # 0. Clearly ¢ can be extended to an
R[Vg]-algebra homomorphism 1 : R[V] — R[Vp]. Since all p; are in R[V]| we may apply
¥ to the equation H(G)"-(p1fi + ... +Pmfm) = X eq g9 Since H(G), f; € R[VE]
and G C R[Vp] we get H(G)"-(¢¥(p1)f1 + ... + ¥ (Pm)fm) € 2 cc RIVE] 9. Applying
¢ to this equation yields A™- (o(¥(p1))b1 + ... + ©(¥(pm))bm) = 0. Since h # 0 and
o((p1)) = ¥(p1) # 0 the latter equation shows that by, ...,b,, are linearly dependent
over R and claim 4 is proved.

Claim 4 implies item (c) of Theorem 1 as follows. Suppose B ® g P — B-P is not

injective. Take a minimal m € N such that there are b1,...,b,, € B and p1,...,pm € P
with p1by + ... + pmbyn = 0and z := p;1 @by + ... + piy ® by # 0. Then by, ... by,
are linearly dependent over P. So by claim 4 there are rq,...,r, € R not all zero with

rib1 + ...+ 7rmbyn = 0. Say r1 #£ 0. Then m > 1 and r1-2 = (rips — rep1) @ ba + ... +
(r1pm — rmp1) @ by,. From the minimal choice of m we get r1-2 = 0. Let F be the
quotient field of R. Then 1 ® z = % ®riz=0in F Qg (B®g P). By claim 1, P is a
polynomial ring over R, hence a flat R-algebra. As B — F ®p B is injective, it follows
that BQr P — F ®r B ®p P is injective. So 1 @ x =0 in FF ®r B ®r P implies x = 0,
a contradiction.

Finally we show that P = R[V \ Vp] can be decomposed as claimed in (d). Let p € N
be strictly bigger than every ord;u, (1 <i < K, g € G). Here ord; (8 ...0%5Y;) == k;.
Let Vp :={yeV\Vp | ord;y < p (1 <i<K)} and let

W:={yeV|odiy<p(l<i<K)and
ord; y = p for at least one i € {1,..., K}}.
For every nonempty subset A of {91,...,0k} let
Wa={weW|odiw=p < 0,6 A(1<i<K)}and
Va = {0 ... 08w | we Wa and k; =0 for all i € {1,..., K} with §; ¢ A}
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So, if Wa = () then VA = 0. Also, y € VA if and only if y = Dw for a higher derivative
D in the derivatives from A.

CramM 5. We have

(i) If y € Va and 0; € A, then 0;y € Va. It follows that R[VA] together with the
derivatives from A is the differential polynomial ring in these derivatives, in the

variables from W.
(i) V' \ Vg is the disjoint union of the Va (A C{1,...,K}).

Proof. (i). We have to show 0,y € V whenever y € Va and 0; € A. Since y = Dw for
some w € Wa C V and only derivatives from A appear in D, y cannot be a derivative of
any .

(ii). Clearly Va N Vz = 0, whenever A # A. Let y € V \ (V3 U Vp) be a derivative
of Y}, hence ord;y > p for some i € {1,...,K}. Let A := {0; | ord;y > p} and let
k; := min{ord; y,p} (1 < i < K). Then w := 8?1 ...8}“{1@ € Wa and y € Va. This
proves (ii).

We define P := ¢(R[VAa]). By claim 1 and (c) we get (d) from (i) and (ii). =
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