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The theorem mentioned in the title is

Theorem 1. Let S = (S, ∂1, . . . , ∂K) be a differential domain in K commuting deriva-
tives, containing Z and let R = (R, ∂1, . . . , ∂K) ⊆ (S, ∂1, . . . , ∂K) be a differential subring
such that S is differentially finitely generated over R. Then there are R-subalgebras B
and P of S and an element h ∈ B, h 6= 0 such that:

(a) B is a finitely generated R-algebra and Bh is a finitely presented R-algebra.
(b) Sh = (B ·P )h is a differentially finitely presented R-algebra.
(c) The homomorphism B⊗R P → B·P induced by multiplication is an isomorphism of

R-algebras.
(d) P has the following structure. For each subset ∆ of {∂1, . . . , ∂K} there is an R-

subalgebra P∆ of P such that P∆ together with the derivatives from ∆ is a dif-
ferential polynomial ring in these derivatives and finitely many variables (the case
P∆ = R is not excluded). The homomorphism

⊗

∆⊆{∂1,...,∂K}
P∆ → P

induced by multiplication is an isomorphism of R-algebras.

If R is a differential ring as in the theorem, then a differential R-algebra S is a quotient
of a differential polynomial ring R{Y } over R modulo a differential ideal a. One of the
fundamental tools of differential algebra is a reduction process of polynomials F ∈ R{Y }
with respect to such ideals as explained in Kolchin’s book [2]; provided Z ⊆ R ⊆ S and S
is a domain. We translate the result of this reduction in terms of the differential algebra
S. In the case where R = R is the field of real numbers and the number of derivatives K
is 1, our structure theorem can be used to reduce the solvability of an ordinary system
of differential equations to an algebraic question on the system. This is done in [1].
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In section 1 we recall the definition of a characteristic set (in characteristic 0) from
[2]. In section 2 we recall the result of the reduction process with respect to characteristic
sets and how differential prime ideals can be recovered from their characteristic sets. In
section 3 we translate these facts into the proof of Theorem 1.

1. Definition of characteristic sets. Let R be a differential ring in K pairwise
commuting derivatives ∂1, . . . , ∂K . Let Y := (Y1, . . . , YN ) be a tuple of N indeterminates
over R and let D := {∂i11 . . . ∂iKK | i1, . . . , iK ∈ N0} be the free abelian monoid generated
by {∂1, . . . , ∂K}, which we denote multiplicatively. For each D ∈ D and n ∈ {1, . . . , N}
let DYn be an indeterminate, where DYn = Yn if D = ∂0

1 . . . ∂
0
K by definition. Moreover

let
DY := {DYn | D ∈ D, 1 ≤ n ≤ N}.

The differential polynomial ring over R in K derivatives and N indeterminates is the
polynomial ring R{Y } := R[y | y ∈ DY ] together with the uniquely determined deriva-
tions ∂i such that ∂i(r ·DYn) = (∂ir)·DYn + r ·(∂iD)Yn (1 ≤ i ≤ K, 1 ≤ n ≤ N, r ∈ R).
So R{Y } is a differential ring extension of R and R{Y } is the free object generated by N
elements over R in the category of differential rings with K commuting derivatives. The
set of all powers of variables from DY is denoted by

DY ∗ := {yp | y ∈ DY, p ∈ N}.
Definition 1. The rank on DY ∗ is the map rk : DY ∗ → N0 × {1, . . . , N} × NK0 × N

defined by
rk(∂i11 . . . ∂iKK Yn)p := (i1 + . . .+ iK , n, iK , . . . , i1, p).

The set O := N0 × {1, . . . , N} × NK0 × N equipped with the lexicographic order (hence
the first component is the dominating one) is well ordered. Note that the order type of
the image of rk in O is the order type of N.

Definition 2. We say a variable y ∈ DY appears in f ∈ R{Y } if y appears in f

considered as an ordinary polynomial (hence Y1 does not appear in ∂1Y1). The leader uf
of f ∈ R{Y } \ R is the variable y ∈ DY of highest rank which appears in f . Moreover

u∗f := u
deguf f

f ∈ DY ∗ denotes the highest power of uf in f . We extend the rank to
polynomials f ∈ R{Y } by

rk(f) := rk(u∗f ) ∈ O.
Definition 3. If g, f ∈ R{Y }, g 6∈ R are polynomials, then f is called weakly reduced

with respect to g if no proper derivative of ug appears in f . f is called reduced with
respect to g if f is weakly reduced with respect to g and if degug f < degug g.

The polynomial f is called (weakly) reduced with respect to a nonempty set G ⊆
R{Y } \R if f is (weakly) reduced with respect to every g ∈ G.

A nonempty subset G ⊆ R{Y }\R is called autoreduced if every f ∈ G is reduced with
respect to all g ∈ G, g 6= f . If G consists of a single element then G is called autoreduced
as well.

It is easy to see that uf 6= ug (hence rk f 6= rk g) if f, g are different polynomials from
an autoreduced set. Moreover, by [2], Chap. O, Section 17, Lemma 15 (a) we have
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Proposition 2. Every autoreduced set is finite.

Let∞ be an element bigger than every element in O and let (O∪{∞})N be equipped
with the lexicographic order. We define the rank of an autoreduced set G to be an element
of (O ∪ {∞})N as follows. Let G = {g1, . . . , gl} with rk g1 < . . . < rk gl. Then

rkG := (rk g1, . . . , rk gl,∞,∞, . . .).
Proposition 3. There is no infinite sequence G1, G2, · · · of autoreduced sets with the

property rkG1 > rkG2 > · · · .
Proof. [2], Chap. I, Section 10, Proposition 3.

Definition 4. If M ⊆ R{Y } is a set not contained in R, then by Proposition 3 the
set {rkG | G ⊆ M is autoreduced } has a minimum. Every autoreduced subset G of M
with this rank is called a characteristic set of M .

Proposition 4. If G is a characteristic set of M ⊆ R{Y } and f ∈M \R, then f is
not reduced with respect to G.

Proof. If f ∈ M \ R is reduced with respect to G, then the set {g ∈ G | rk g <

rk f} ∪ {f} is an autoreduced subset of M of rank strictly lower than the rank of G,
which is impossible.

2. Fundamental properties of characteristic sets. From now on we assume that
R is a differential domain in K derivatives containing Z.

Definition 5. Let f ∈ R{Y } \ R, f = fdu
d
f + . . . + f1uf + f0 with polynomials

fd, . . . , f0 ∈ R[y ∈ D | y 6= uf ] and fd 6= 0. The initial I(f) of f is defined as

I(f) := fd.

The separant S(f) of f is defined as

S(f) :=
d

duf
f = d·fdud−1

f + . . .+ f1.

Moreover, for every autoreduced subset G = {g1, . . . , gl} of R{Y } we define

H(G) :=
l∏

i=1

I(gi)·S(gi) and HG :=
{ l∏

i=1

I(gi)niS(gi)mi | ni,mi ∈ N0

}
.

Since R is a domain and Z ⊆ R the set HG does not contain 0. Moreover, S(g) and I(g)
are reduced with respect to G (g ∈ G).

Theorem 5. Let G ⊆ R{Y } be an autoreduced set and let f ∈ R{Y }. Let [G] denote
the differential ideal generated by G in R{Y } and let (G) denote the ideal generated by
G in R{Y }. Then there is some f̃ ∈ R{Y } which is reduced with respect to G and some
H ∈ HG such that H·f ≡ f̃ mod[G]. If f is weakly reduced with respect to G, then we can
take H such that H ·f ≡ f̃ mod(G).

Proof. [2], Chap. I, Section 9, Proposition 1.
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Corollary 6. If G is a characteristic set of a differential prime ideal p of R{Y }
with p ∩R = 0 then

p = {f ∈ R{Y } | H(G)n ·f ∈ [G] for some n ∈ N0}.
Moreover if f ∈ p is weakly reduced with respect to G, then H(G)n ·f ∈ (G) for some
n ∈ N0.

Proof. From Theorem 5 and Proposition 4, since HG ∩ p = ∅.
3. Proof of Theorem 1. Since S is a differentially finitely generated R-algebra, there

is some N ∈ N and a surjective differential homomorphism ϕ : R{Y1, . . . , YN} → S. Let
Y := (Y1, . . . , YN ) and let p be the kernel of ϕ. Since R ⊆ S and S is a differential domain,
the ideal p is a differential prime ideal of R{Y } with p∩R = 0. Let G be a characteristic
set of p (c.f. Definition 4). First we define B, P and h. We take h := ϕ(H(G)) (H(G) is
defined in Definition 5),

V := {y ∈ DY | y is not a proper derivative of any ug},
VB := {y ∈ V | y appears in some g ∈ G},
B := ϕ(R[VB ]) and P := ϕ(R[V \ VB ]).

Since G is an autoreduced set, a polynomial f ∈ R{Y } is weakly reduced with respect
to G if and only if f ∈ R[V ].

Claim 1. The restriction of ϕ to the subring R[V \ VB ] of R{Y } is injective.

Proof. Let f ∈ R[V \ VB ] ∩ p. Since f is weakly reduced with respect to G and all
leaders of elements g ∈ G are in VB we have that f is reduced with respect to G. Since
G is a characteristic set of p we get f = 0 from Proposition 4 and p∩R = 0. This proves
the claim.

Claim 2. h 6= 0 and Sh = (B ·P )h.

Proof. Since every S(g), I(g) with g ∈ G is reduced with respect to G we have H(G) 6∈
p. As H(G) ∈ R[VB ] it follows B 3 h = ϕ(H(G)) 6= 0.

Let f ∈ R{Y }. By Theorem 5 there is some f̃ ∈ R{Y } which is reduced with respect
to G and some H ∈ HG such that H ·f ≡ f̃ mod[G]. Since f̃ ∈ R[V ] and every I(g), S(g)
is invertible in (B ·P )h we get ϕ(f) ∈ (B ·P )h. This shows that Sh = (B ·P )h.

Claim 3. Sh is a differentially finitely presented R-algebra and Bh is a finitely pre-
sented R-algebra.

Proof. First we prove that Sh is differentially finitely presented over R. The differential
homomorphism R{Y } → S ↪→ Sh maps H(G) onto a unit in Sh, hence ϕ can be extended
to a surjective differential homomorphism ψ : R{Y }[H(G)−1]→ Sh mapping H(G)−1 to
h−1. Since R{Y }[H(G)−1] is a differentially finitely generated R-algebra (with generators
Y1, . . . , YN , H(G)−1) it is enough to prove that Kerψ is generated by G as a differential
ideal. As ψ extends ϕ we have G ⊆ Kerψ. Conversely if f ∈ R{Y } and d ∈ N with
ψ(f/H(G)d) = 0 we get f ∈ p from h 6= 0, hence H(G)n ·f ∈ [G] for some n ∈ N
by Corollary 6. This shows that f/H(G)d is in the differential ideal generated by G in
R{Y }[H(G)−1].
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Now we show that Bh is a finitely presented R-algebra. Similar as above we get
a surjective R-algebra homomorphism ψ : R[VB ]H(G) → Bh extending ϕ|R[VB] with
ψH(G)−1 = h−1 and it is enough to show that the ideal Kerψ is generated by G. If
f ∈ R[VB ] and d ∈ N with ψ(f/H(G)d) = 0 we get f ∈ p. Since f is weakly reduced
with respect to G we get H(G)n ·f ∈ (G) for some n ∈ N from Corollary 6. Since G, f
and H(G) are in R[VB ], f is in the ideal generated by G in R[VB ]H(G). This finishes the
proof of claim 3.

Claims 2 and 3 prove assertions (a) and (b) of Theorem 1.

Claim 4. If b1, . . . , bm ∈ B are linearly dependent over P , then they are linearly
dependent over R.

Proof. Take fi ∈ R[VB ] with ϕfi = bi and pi ∈ R[V \ VB ], not all contained in p

with q := p1f1 + . . . + pmfm ∈ p. We may assume that p1 6∈ p. Since q ∈ R[V ], q is
weakly reduced with respect to G. By Corollary 6 there is some n ∈ N and polynomials
hg ∈ R{Y } (g ∈ G) such that H(G)n · q =

∑
g∈G hg · g. Since H(G), q ∈ R[V ] and

G ⊆ R[V ] we may assume that each hg ∈ R[V ] as well. Since p1 6= 0 there is an R-algebra
homomorphism ψ : R[V \ VB ] → R with ψ(p1) 6= 0. Clearly ψ can be extended to an
R[VB ]-algebra homomorphism ψ : R[V ]→ R[VB ]. Since all pi are in R[V ] we may apply
ψ to the equation H(G)n ·(p1f1 + . . . + pmfm) =

∑
g∈G hg ·g. Since H(G), fi ∈ R[VB ]

and G ⊆ R[VB ] we get H(G)n ·(ψ(p1)f1 + . . . + ψ(pm)fm) ∈ ∑g∈GR[VB ] ·g. Applying
ϕ to this equation yields hn · (ϕ(ψ(p1))b1 + . . . + ϕ(ψ(pm))bm) = 0. Since h 6= 0 and
ϕ(ψ(p1)) = ψ(p1) 6= 0 the latter equation shows that b1, . . . , bm are linearly dependent
over R and claim 4 is proved.

Claim 4 implies item (c) of Theorem 1 as follows. Suppose B ⊗R P → B ·P is not
injective. Take a minimal m ∈ N such that there are b1, . . . , bm ∈ B and p1, . . . , pm ∈ P
with p1b1 + . . . + pmbm = 0 and x := p1 ⊗ b1 + . . . + pm ⊗ bm 6= 0. Then b1, . . . , bm
are linearly dependent over P . So by claim 4 there are r1, . . . , rm ∈ R not all zero with
r1b1 + . . . + rmbm = 0. Say r1 6= 0. Then m > 1 and r1 ·x = (r1p2 − r2p1) ⊗ b2 + . . . +
(r1pm − rmp1) ⊗ bm. From the minimal choice of m we get r1 ·x = 0. Let F be the
quotient field of R. Then 1 ⊗ x = 1

r1
⊗ r1x = 0 in F ⊗R (B ⊗R P ). By claim 1, P is a

polynomial ring over R, hence a flat R-algebra. As B → F ⊗R B is injective, it follows
that B ⊗R P → F ⊗R B ⊗R P is injective. So 1⊗ x = 0 in F ⊗R B ⊗R P implies x = 0,
a contradiction.

Finally we show that P ∼= R[V \ VB ] can be decomposed as claimed in (d). Let ρ ∈ N
be strictly bigger than every ordi ug (1 ≤ i ≤ K, g ∈ G). Here ordi(∂

k1
1 . . . ∂kKK Yj) := ki.

Let V∅ := {y ∈ V \ VB | ordi y < ρ (1 ≤ i ≤ K)} and let

W := {y ∈ V | ordi y ≤ ρ (1 ≤ i ≤ K) and

ordi y = ρ for at least one i ∈ {1, . . . ,K}}.
For every nonempty subset ∆ of {∂1, . . . , ∂K} let

W∆ := {w ∈W | ordi w = ρ ⇐⇒ ∂i ∈ ∆ (1 ≤ i ≤ K)} and

V∆ := {∂k1
1 . . . ∂kKK w | w ∈W∆ and ki = 0 for all i ∈ {1, . . . ,K} with ∂i 6∈ ∆}
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So, if W∆ = ∅ then V∆ = ∅. Also, y ∈ V∆ if and only if y = Dw for a higher derivative
D in the derivatives from ∆.

Claim 5. We have

(i) If y ∈ V∆ and ∂i ∈ ∆, then ∂iy ∈ V∆. It follows that R[V∆] together with the
derivatives from ∆ is the differential polynomial ring in these derivatives, in the
variables from W∆.

(ii) V \ VB is the disjoint union of the V∆ (∆ ⊆ {1, . . . ,K}).

Proof. (i). We have to show ∂iy ∈ V whenever y ∈ V∆ and ∂i ∈ ∆. Since y = Dw for
some w ∈W∆ ⊆ V and only derivatives from ∆ appear in D, y cannot be a derivative of
any ug.

(ii). Clearly V∆ ∩ V∆̃ = ∅, whenever ∆ 6= ∆̃. Let y ∈ V \ (VB ∪ V∅) be a derivative
of Yj , hence ordi y ≥ ρ for some i ∈ {1, . . . ,K}. Let ∆ := {∂i | ordi y ≥ ρ} and let
ki := min{ordi y, ρ} (1 ≤ i ≤ K). Then w := ∂k1

1 . . . ∂kKK Yj ∈ W∆ and y ∈ V∆. This
proves (ii).

We define P∆ := ϕ(R[V∆]). By claim 1 and (c) we get (d) from (i) and (ii).
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