
STONE DUALITY FOR BOOLEAN ALGEBRAS

MARCUS TRESSL

Abstract. We give a detailed exposition of Stone duality for Boolean alge-
bras, focussing on representation of Boolean algebras and Boolean spaces.
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1. Introduction

Stone Duality is nowadays a term describing a tight relation between classes of
algebraic structures and classes of topological spaces. In category theory terms
it describes equivalences of certain categories of ordered algebraic structures and
certain categories of topological spaces. The terminology is derived from Marshall
Stone’s work [Sto36] who established the duality for Boolean algebras and Boolean
spaces. The note at hand explains this classical duality.

The backbone of Stone Duality for Boolean algebras is the following. Let A
be a Boolean algebra (see 2.3.1 for the definition; for now it is enough to think
of some algebraic structure, hence a set equipped with some operations). Then
one can associate a topological space U(A) to A, called the spectrum of A, from
which one can reconstruct the structure A. The process runs under the headline
Stone representation, see 3.1.5 and the remark following it. The reconstruction
process allows to analyze a Boolean algebra fully within its spectrum. This opens
the possibility to think about the algebraic structure in terms of topological or
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even geometrical intuition. For example one can ask about the shape of the space
locally (at each point) and what this means for the algebraic structure. As a
matter of fact one can associate many spaces with the features above to almost every
algebraic structure, but these spaces contain generally much more information than
the original structure and they are therefore deemed to be too complicated to be
analysable or of any help. This is not the case for the spectrum of a Boolean algebra:
The reason is that they have an intrinsic topological description (as Boolean spaces)
and the representation above also goes the other way. Hence for every Boolean space
there is a unique Boolean algebra from which we can reconstruct the space. This
is done in 3.1.6.

Although the main result 4.4 on Stone Duality of Boolean algebras is formulated
in terms of categories and functors, the text is written so that the representation
theorems 3.1.5 and 3.1.6 described above can be understood without any prior
knowledge of category theory. Only in section 4 the reader is assumed to be familiar
with the basic notions of category theory as for example exposed in [ML98, Chapter
I, sections 1–4 and Chapter IV, section 4]

In section 2 the preliminary version 2.3.4 of the representation theorem 3.1.5 is
presented, without reference to topology. This is developed in the more general
context of distributive lattices (see, 2.1.1 for the definition). The rational here is
twofold: On the one hand, the general case is not more complicated to prove and
on the other hand, Stone Duality is also available in this more general context; the
reader who wants to follow up this path will then have an adequate preparation.

Throughout the text some acquaintance with the basic notions of partially or-
dered sets is required, as may be found in [Fuc63]. In section 3, the reader is
assumed to have basic knowledge of general (Hausdorff) topology as can be found
in [Kel75; Eng89]. Section 3.2 gives an alternative description of the space U(A)
for readers who are familiar with the prime spectrum of a ring; this section is not
needed in the remainder of the text. Section 3.3 explains how the representation
theorem 3.1.5 for Boolean algebras can be used to prove the completeness theorem
for Propositional Logic.
In this text, the symbol N stands for the set of natural numbers N = {1, 2, 3, . . .},
whereas N0 = {0} ∪N.

2. Stone representation of distributive lattices

Summary In this section we describe the representation theorem for distributive
lattices as lattices of sets due to Marshall Stone, cf. [Sto37]. Stone proved this first
for the special case of Boolean algebras in [Sto36], but in fact this special case is
not easier to show.

2.1. Distributive lattices. We give a brief introduction to distributive lattices,
suitable for our purposes. For more on the topic we refer to [Grä11, Chapter II].

2.1.1. Definition. A distributive lattice in this text[1] is a partially ordered set
L = (L,≤) with the following properties:

[1]In the literature, condition DL4 is not required and the objects that we are talking about
are called bounded distributive lattices. However we will always work under assumption DL4 and
suppress the adjective bounded.
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DL1 For all a, b ∈ L the supremum of {a, b} for the partial order ≤ exists. The
supremum is denoted by a ∨ b. It is also called the join of a and b.

DL2 For all a, b ∈ L the infimum of {a, b} for the partial order ≤ exists. The
infimum is denoted by a ∧ b. It is also called the meet of a and b.

Hence we may view the operations ∧, ∨ as functions L × L −→ L. Notice that
both operations are commutative and associative as follows immediately from their
definitions; in particular, expressions of the form a1 ∧ . . . ∧ an are unambiguous.
However, the next requirement is not implied by the previous ones:

DL3 Distributivity law for ∧ and ∨
For all a, b, c ∈ L we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

DL4 There is a smallest element for ≤, which we denote by ⊥, called bottom.
There is a largest element for ≤, which we denote by >, called top.

2.1.2. Examples.

(i) There is a smallest distributive lattice, consisting of exactly two elements
⊥< >. There is also a so called terminal distributive lattice consisting of
exactly one element ⊥= >.

(ii) The most common example of a distributive lattice is the powerset P(S)
of a set S together with the partial order given by inclusion.

(iii) Generalising (ii), if L is a subset of P(S) with ∅, S ∈ L and if L is closed
under taking finite intersections and finite unions, then L = (L,⊆) is a
distributive lattice. The operations and constants in definition 2.1.1 are
given by

⊥= ∅, > = S, a ∧ b = a ∩ b, a ∨ b = a ∪ b.

Distributive lattices of this form are called lattices of subsets (of S).
(iv) The set of open subsets of a topological space is a distributive lattice. The

set of closed subsets of a topological space is a distributive lattice. Both
lattices are lattices of subsets of the space.

(v) A distributive lattice that is not by definition a lattice of subsets is the set
of propositional sentences (expressions made up of letters p, q, r, . . . using
the connectives ¬,∨,∧,⇒) modulo the equivalence relation s ∼ t defined
as “there is a proof of s=t” (think of “s,t have the same truth table”). The
partial order [s]∼ ≤ [t]∼ is given by the property “(s⇒ t) is a tautology”.

In section 2.3 below we will see another example of distributive lattices, namely
Boolean algebras.

2.1.3. Definition. A map ϕ : L −→ M between distributive lattices is called a
homomorphism (of lattice) if it preserves ⊥,>, ∧ and ∨. Explicitly, this means
ϕ(⊥L) =⊥M , ϕ(>L) = >M , ϕ(a∧Lb) = ϕ(a)∧Mϕ(b) and ϕ(a∨Lb) = ϕ(a)∨Mϕ(b)
for all a, b ∈ L. (For better readability we will drop the subscripts L,M of the
operations when this is unambiguous.)

The homomorphism ϕ is called an isomorphism (of lattices) if it is bijective.

2.1.4. Remark. Let ϕ : L −→M be a homomorphism of lattices.

(i) The map ϕ preserves the partial orders given on L,M because x ≤ y is
equivalent to x = x ∧ y in every distributive lattice and this identity is
preserved by ϕ.
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(ii) If ϕ is an isomorphism, then its compositional inverse ϕ−1 is again a ho-
momorphism: The proof is straightforward and follows tightly the lines of
the proof that the compositional inverse of a bijective homomorphism of
groups, is itself a homomorphism of groups.

2.2. The representation of distributive lattices as lattices of subsets.

2.2.1. We show that every distributive lattice is isomorphic to a lattice of subsets
of some set S (cf. 2.2.12). The key issue is how to find S. In order to construct S
we will need some preparations.

2.2.2. Definition. Let L be a distributive lattice. A filter of L is a subset F of L
with the following properties.

F1 F 6= ∅.
F2 If a, b ∈ F , then a ∧ b ∈ F .
F3 If a ∈ F and a ≤ b ∈ L, then b ∈ F .[2]

Obviously F = A is a filter of L. A filter is proper if it is different from L. In
virtue of F3, this is equivalent to saying that ⊥/∈ F .

2.2.3. Examples. Let L be a distributive lattice.
(i) Clearly L is the largest filter of L and {>} is the smallest filter of L.
(ii) If a ∈ L, then the set fa := {b ∈ L | a ≤ b} is obviously the smallest filter

of L containing a, called the principal filter of a.
(iii) If L is a lattice of subsets of a set S (cf. 2.1.2(iii)) and p ∈ S, then the set

{a ∈ L | p ∈ a} is obviously a proper filter of L.
(iv) In the distributive lattice L of open subsets of a topological space X, the

so called neighborhood filter Np = {O ∈ L | p ∈ O} of a point p ∈ X is a
filter of L. This is a special case of (iii)

2.2.4. Alternative description of filters. The following conditions are equivalent
for every subset F of a distributive lattice L.

(i) F is a filter.
(ii) F 6= ∅ and for all a, b ∈ L we have

a ∧ b ∈ F ⇐⇒ a ∈ F and b ∈ F.

Proof. (i)⇒(ii). We know F 6= ∅ by condition F1 in 2.2.2. The implication ⇐ of
the equivalence holds by F2 and the implication ⇒ follows from F3 by noticing
that a ∧ b ≤ a, b.
(ii)⇒(i). Obviously conditions F1 and F2 follow from (ii). To see F3, assume If
F 3 a ≤ b ∈ L. Then a∧ b = a ∈ F and so implication ⇒ in (ii) implies b ∈ F . �

2.2.5. Definition. A filter F of a distributive lattice L is called a prime filter if
P1 F is proper, hence F 6= L.
P2 For all a, b ∈ L with a ∨ b ∈ F we have a ∈ F or b ∈ F .

The filters in example 2.2.3(iii) are clearly prime. On the other hand, principal
filters may or may not be prime. For example the principal filter of a ∈ P(S) in
example 2.1.2(ii) is prime if and only if a has exactly one element.

[2]Hence by F1 we know > ∈ F .
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2.2.6. Characterization of prime filters. The following conditions are equiva-
lent for every subset F of a distributive lattice L.

(i) F is a prime filter.
(ii) F 6= ∅, L and for all a, b ∈ L we have

a ∧ b ∈ F ⇐⇒ a ∈ F and b ∈ F
a ∨ b ∈ F ⇐⇒ a ∈ F or b ∈ F.

(iii) The map

χ : L −→ {⊥,>}, a 7−→

{
> if a ∈ F
⊥ if a /∈ F,

is a homomorphism of lattices.
(iv) The complement I = L \ F of F in L is a prime ideal of the distributive

lattice L, i.e. the following conditions are satisfied:
(a) I 6= ∅.
(b) For all a ∈ I and every b ∈ L with a ≤ b we have b ∈ I.
(c) For all a, b ∈ I we have a ∨ b ∈ I.[3]
(d) I is proper, i.e. I 6= L.
(e) For all a, b ∈ L, if a ∧ b ∈ I then a ∈ I or b ∈ I.

Proof. (i)⇒(ii). Since F is a proper filter we know that F 6= L and by 2.2.4 we
only need to show the second equivalence. The implication⇒ holds by P2 and the
implication ⇐ follows from a, b ≤ a ∨ b and F3.
(ii)⇒(i). By 2.2.4 we only need to show P1 and P2. Since F 6= L we know P1.
The implication ⇒ in the second equivalence of (ii) is just P2.

Hence we know that (i) and (ii) are equivalent.
(ii)⇔(iii). The map χ preserves ⊥ and > just if ⊥/∈ F and > ∈ F . Hence under
both assumptions (ii) and (iii) we know ⊥/∈ F and > ∈ F . Furthermore, the
equivalences in (ii) expressed in terms of the map χ translate into

χ(a ∧ b) = > ⇐⇒ χ(a) = > and χ(b) = >
χ(a ∨ b) = > ⇐⇒ χ(a) = > or χ(b) = >.

But this is just saying that χ preserves meet and join and consequently (ii) is
equivalent to (iii).
(ii)⇔(iv). Property (ii) of F formulated in terms of I = L \F says I 6= ∅, L and by
considering contrapositives:

a ∧ b ∈ I ⇐⇒ a ∈ I or b ∈ I
a ∨ b ∈ I ⇐⇒ a ∈ I and b ∈ I.

Now the proof of (i)⇔(ii) above written out for I instead of F and using these new
equivalences gives (ii)⇔(iv). �

2.2.7. Notation. Let L be a distributive lattice. We write

PrimF(L) = {P ⊆ L | P is a prime filter}

[3]A subset I of L satisfying conditions (a),(b) and (c) is called an ideal of the distributive
lattice L.
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for the set of prime filters of L. If S ⊆ L we write

V (S) = {P ∈ PrimF(L) | S ⊆ P}.

When S = {a} with a ∈ L we just write V (a) instead of V ({a}), hence V (a) =
{P ∈ PrimF(L) | a ∈ P}. Finally we write

C(L) = {V (a) | a ∈ L}.

The set S promised in 2.2.1 is PrimF(L) and the lattice of subsets of this set, which
is isomorphic to the given lattice L is supported by C(L). All but one property of
these statements are mere observations:

2.2.8. Observation. In the situation of 2.2.7 we observe the following properties.
(i) We have V (⊥) = ∅, because by P1 no prime filter contains ⊥. Furthermore

V (>) = PrimF(L) because every prime filter contains >.
(ii) If a, b ∈ L then by 2.2.6(i)⇒(ii) we know

V (a ∧ b) = V (a) ∩ V (b), and
V (a ∨ b) = V (a) ∪ V (b).

(iii) By (i) and (ii), the set C(L) is a lattice of subsets of PrimF(L) and the map
VL : L −→ C(L) that sends a ∈ L to V (a) is a homomorphism of lattices.

Hence, once we know that the map VL from 2.2.8(iii) is injective, then VL is an
isomorphism of distributive lattices and the goal laid out in 2.2.1 is achieved. How-
ever, injectivity requires some work; notice that at the moment we even do not
know whether a given distributive lattice with at least two elements possesses a
prime filter.

2.2.9. Lemma. Let L be a distributive lattice and let ∅ 6= S ⊆ L. Then there is a
smallest filter of L containing S, namely

fS = {a ∈ L | ∃n ∈ N, s1, . . . , sn ∈ S : s1 ∧ . . . ∧ sn ≤ a}.

The filter fS is called the filter generated by S. Notice that f{a} = fa for a ∈ L.

Proof. Clearly S ⊆ fS . We first show that fS is a filter: Since S 6= ∅ we have fS 6= 0
and so F1 of 2.2.2 holds. If a ∈ fS and a ≤ b ∈ L then clearly b ∈ fS and so F3
holds. Now assume a, b ∈ fS . Choose k, n ∈ N and s1, . . . , sk, t1, . . . , tn ∈ S with
s1 ∧ . . . ∧ sk ≤ a and t1 ∧ . . . ∧ tn ≤ b. Then s1 ∧ . . . ∧ sk ∧ t1 ∧ . . . ∧ tn ≤ a ∧ b,
witnessing that a ∧ b ∈ fS .

Hence indeed fS is a filter containing S and it remains to show that fS is contained
in every filter F that contains S. Take a ∈ fS . By definition of fS there are n ∈ N
and s1, . . . sn ∈ S with s1 ∧ . . . ∧ sn ≤ a. As S ⊆ F , condition F2 for F ensures
s1 ∧ . . . ∧ sn ∈ F . But now condition F3 for F ensures that a ∈ F as required. �

The next proposition contains the key argument in the proof of the representation
theorem 2.2.12.

2.2.10. Proposition. Let L be a distributive lattice, a ∈ L and let F be a filter of
L. Suppose a /∈ F such that for every filter G of L with F ⊆ G and a /∈ G we have
F = G (hence F is maximal for inclusion among filters of L that do not contain
a). Then F is a prime filter.
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Proof. Since a /∈ F , the filter F is proper and thus satisfy condition P1 of 2.2.5.
We need to verify condition P2. So take b, c ∈ L with b∨ c ∈ F . Assume by way of
contradiction that b, c /∈ F . Let G be the filter generated by F∪{b} and letH be the
filter generated by F ∪{c}. By the maximality assumption on F in the proposition
we know that a ∈ G and a ∈ H. By 2.2.9 there are s1, . . . , sk, t1, . . . , tn ∈ F with

s1 ∧ . . . ∧ sk ∧ b ≤ a and
t1 ∧ . . . ∧ tn ∧ c ≤ a.

Then z := s1∧ . . .∧sk∧ t1∧ . . .∧ tn ∈ F by F2 of 2.2.2 and therefore z∧b, z∧c ≤ a.
But then (z ∧ b) ∨ (z ∧ c) ≤ a and by the distributivity law DL3 for distributive
lattices we obtain

z ∧ (b ∨ c) = (z ∧ b) ∨ (z ∧ c) ≤ a.
However, at the beginning of the proof we have assumed that b ∨ c ∈ F . Then F2
implies z ∧ (b ∨ c) ∈ F and consequently F3 implies a ∈ F . This contradicts the
assumption of the proposition. �

2.2.11. Corollary. Let F be a filter of the distributive lattice L and let a ∈ L \ F .
Then there is a prime filter P of L containing F with a /∈ P .

Proof. We apply the Lemma of Zorn (cf. [Cie97, Theorem 4.3.4, p. 53]) to the set

S = {G ⊆ L | G filter of L with F ⊆ G and a /∈ G}

furnished with the partial order ⊆. If C ⊆ S is nonempty and totally ordered for
inclusion, then routine checking shows that

⋃
C is again a filter of L and obviously

F ⊆
⋃
C (as C 6= ∅) and a /∈

⋃
C. Thus

⋃
C is an upper bound of C in the partially

ordered set (S,⊆). Since S is nonempty (it contains F ) we may apply Zorn’s
Lemma and see that (S,⊆) has a maximal element P . By 2.2.10 we know that P
is a prime filter. Since P ∈ S we obtain F ⊆ P and a /∈ P , as required. �

2.2.12. Representation theorem for distributive lattices as lattices of sets
(This was originally proved by Marshall Stone in [Sto37].) Every distributive lattice
L is isomorphic to the distributive lattice C(L) of subsets of PrimF(L) (cf. 2.2.7).
The isomorphism is given by the map VL : L −→ C(L) that sends a ∈ L to
V (a) = {P | a ∈ P}.

Proof. By 2.2.8, the only property that remains to be shown is injectivity of VL.
So let a, b ∈ L and without loss of generality assume that b � a. This means
that a is not in the principal filter fb generated by b. By 2.2.11, there is a prime
filter P of L with fb ⊆ P and a /∈ P . Hence P ∈ V (b) and P /∈ V (a) witnessing
V (a) 6= V (b). �

We conclude with one notion that becomes central in the rest of the text.

2.2.13. Definition. A filter F of a distributive lattice L is called a ultrafilter if it
is a maximal proper filter, i.e.,

U1 F is proper, hence F 6= L.
U2 If G is a filter of L with F ⊆ G, then G = F or G = L.

2.2.14. Observation. Ultrafilters are prime by 2.2.10 applied to a =⊥. Furthermore
ultrafilters exist in any distributive lattice that satisfies ⊥6= >: apply the proof of
2.2.11 to F = {>} and a =⊥.
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2.3. Boolean algebras as Boolean algebras of subsets. We recall the defini-
tion of Boolean algebras in a way suitable for our purposes. As a general reference
for Boolean algebras we mention [Kop89].

2.3.1. Definition. A Boolean algebra is a distributive lattice A that satisfies the
following additional property:

BA Existence of a complement
For every a ∈ A there is some b ∈ A with a ∧ b =⊥ and a ∨ b = >.

If b′ ∈ A is another element satisfying BA for a, then b′ = b′∧> = b′∧(a∨b) = b′∧b
by DL3; similarly b = b′ ∧ b showing that b = b′ is uniquely determined by a. We
may therefore define ¬a = b and called it the complement of a (in A).

A map ϕ : A −→ B between Boolean algebras is called a homomorphism
(of Boolean Algebras) if ϕ is a homomorphism of lattices. By uniqueness of
complements, the properties defining the complement in BA readily imply that
ϕ(¬a) = ¬ϕ(a) for all a ∈ A, thus ϕ preserves complements as well. An isomor-
phism (of Boolean algebras) is an isomorphism of distributive lattices between
Boolean algebras.

2.3.2. Example. The prime example of a Boolean algebra is the powerset P(S) of
a set S, cf. 2.1.2(i). The distributive lattices in 2.1.2(iii),(iv) are in general not
Boolean algebras. The distributive lattice in 2.1.2(v) is a Boolean algebra (called
Tarski-Lindenbaum algebra of propositional calculus), because complements
are given by ¬[t]∼ = [¬t]∼ for a propositional expression t.

If A is a nonempty subset of P(S) that is closed under taking finite intersections
and complements (in S), then A = (A,⊆) is a Boolean algebra. The operations
and constants in definitions 2.1.1 and 2.3.1 are given by

⊥= ∅, > = S, a ∧ b = a ∩ b, a ∨ b = a ∪ b [4], and ¬a = S \ a.

Boolean algebras of this form are called Boolean algebras of subsets (of S).

Obviously a Boolean algebras of subsets of S is the same as a lattice of subsets
of S, which is at the same time a Boolean algebra. We therefore can write out
the representation theorem 2.2.12 with the term “distributive lattice” replaced by
“Boolean algebra”. However we can do slightly better because in Boolean algebras
every prime filter is an ultrafilter:

2.3.3. Characterization of ultrafilters in Boolean algebras. The following
conditions are equivalent for every subset F of a Boolean algebra A.

(i) F is an ultrafilter.
(ii) F is a prime filter.
(iii) F is a proper filter and for all a ∈ A we have a ∈ F or ¬a ∈ F .
(iv) The map

χ : A −→ {⊥,>}, 7−→

{
> if a ∈ F
⊥ if a /∈ F,

is a homomorphism of Boolean algebras.
(v) A \ F is a prime ideal of A.

[4]The choice of a ∨ b here makes sense, because A is closed under finite intersections and
complements; now apply DeMorgan’s law.
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Proof. (i)⇒(ii) holds by 2.2.14 in any distributive lattice.
(ii)⇒(iii) The prime filter F is proper by P1 of 2.2.5. If a ∈ A, then a∨¬a = > ∈ F
and by P2 we get a ∈ F or ¬a ∈ F .
(iii)⇒(i). If G is a filter of A with F ( G, then take a ∈ G \ F . Since a /∈ F we
know that ¬a ∈ F by (iii). But F ⊆ G, hence ¬a ∈ G and as a ∈ G we obtain
⊥= a ∧ ¬a ∈ G. Thus G = A as required.

Hence we know that (i), (ii) and (iii) are equivalent. However, by 2.2.6 we already
know that (ii), (iv) and (v) are equivalent (for (iv) recall that every homomorphism
of lattices between Boolean algebras is a homomorphisms of Boolean algebras). �

Since ultrafilters are the same objects as prime filters for Boolean algebras by 2.3.3,
theorem 2.2.12 entails

2.3.4. Representation theorem for Boolean algebras as Boolean algebras
of sets ([Sto36]) Every Boolean algebra A is isomorphic to the Boolean algebra
C(A) of subsets of the set of ultrafilters PrimF(A) of A.

The isomorphism is given by the map VA : A −→ C(A) that sends a ∈ A to
V (a) = {P | a ∈ P}. Consequently V (¬a) = PrimF(A) \ V (a) for every a ∈ A. �

3. Topological representation theorems

We put the representation theorem 2.3.4 in a topological context, i.e., we define a
topological space in which the Boolean algebra C(A) can be described in purely
topological terms of the space. This can also be done (in various formulations) for
arbitrary distributive lattices, but requires more work on the topological side. For
details we refer to [DST19, Section 3.2].

3.1. The Boolean space of ultrafilters.

3.1.1. Definition. A Boolean space is a topological space X that is compact
Hausdorff and such that every open set is a union of clopen sets (clopen means
“closed and open”); in other words, the clopen sets form a basis of X.

3.1.2. Remark. Let X be a any topological space.
(i) The set Clop(X) of clopen subsets of X is a Boolean algebra of subsets of

X, because ∅, X are clopen and clearly finite intersections and complements
of clopen sets are again clopen.

(ii) The most prominent Boolean space is the Cantor ternary set. One can see
this directly or by invoking the following characterization: A compact Haus-
dorff space is Boolean if and only if it is totally disconnected, i.e. the only
nonempty connected subsets are singletons. This is an easy consequence
of [Eng89, Theorem 6.1.23], which says that every connected component of
any compact Hausdorff space is the intersection of its clopen supersets.

3.1.3. Definition. Let A be a Boolean algebra. We define a topological space U(A)

associated to A, called the spectrum of A [5], as follows: The underlying set of
U(A) is the set of ultrafilters of A; recall from 2.3.3 that this set is equal to the set
of prime filters of A. The topology of U(A) is defined to be the smallest topology
for which all sets of the form V (a) = {U ∈ U(A) | a ∈ U}, a ∈ A, are closed.

[5]In the literature, U(A) is also called the Stone space, cf. [Joh86, II 4.2, bottom of p. 70]
or space of ultrafilters of A.
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3.1.4. Proposition.
The space U(A) is a Boolean space and Clop(U(A)) = {V (a) | a ∈ A}.

Proof. Recall that the set on right hand side was denoted by C(A) in 2.2.7. By
2.3.4, the set C(A) is a Boolean algebra of subsets of U(A) and the map A −→ C(A)
that sends a to V (A) is an isomorphism of Boolean algebras. It follows that the set
of all intersections of sets of the form V (a) is the set of closed sets of a topology on
U(A) and consequently this has to be the topology defined in 3.1.3. Consequently,

(∗) every closed set of U(A) is an intersection of sets of the form V (a) with a ∈ A.

Claim 1. The space U(A) is compact.
Proof of claim 1. By virtue of property (∗), it suffices to show that every subset S
of C(A) with the property that every finite subset of S has nonempty intersection
(this property of a set of subsets of a given set is referred to as finite intersection
property), has nonempty intersection.

Let F = {a ∈ A | V (a) ∈ S}. We first show that F is proper. Otherwise
⊥∈ F and by 2.2.9 there are a1, . . . , an ∈ S with a1 ∧ . . . ∧ an =⊥. But then
∅ = V (⊥) = V (a1 ∧ . . . ∧ an) = V (a1) ∩ . . . ∩ V (an); since all V (ai) are in S, this
contradicts the finite intersection property. Hence F indeed is a proper filter and
by 2.2.11 there is a prime filter U of A containing F . By 2.3.3 we know U ∈ U(A)
and we show that U ∈

⋂
S: Take S ∈ S. Then S = V (a) for some a ∈ F by choice

of F . Since F ⊆ U we get U ∈ V (a) as required. �
Claim 2. Clop(U(A)) = {V (a) | a ∈ A}.

Proof of claim 2. ⊇: Take a ∈ A. Since V (¬a) = U(A)\V (a), the set V (a) is open.
It is closed by definition of the topology, hence V (A) ∈ Clop(U(A)).

⊆. Let K ⊆ U(A) be clopen. Since K is open we know from (∗) that the complement
of K is an intersection of sets from C(A). By taking complements and recalling that
V (a) has complement V (¬a) for a ∈ A, we see that K is a union of sets of the form
V (b) with b ∈ A. As K is also closed it is compact, using claim 1. It follows that K
is a finite union of sets of the form V (b) with b ∈ A. Hence there are b1, . . . , bn ∈ A
with K = V (b1) ∪ . . . ∪ V (bn). However, the latter set is equal to V (b1 ∨ . . . ∨ bn),
which is in C(A). �

Claim 2 together with property (∗) also implies that every open set is a union of
sets from C(A) and so U(A) is Boolean. It remains to show that U(A) is Hausdorff.
So take U1, U2 ∈ U(A) with U1 6= U2. Without loss of generality we may assume
that there is some a ∈ U1 \ U2. By 2.3.3 we know ¬a ∈ U2. Hence U1 ∈ V (a),
U2 ∈ V (¬a) and V (a) ∩ V (¬a) = V (a ∧ ¬a) = V (⊥) = ∅. Since V (a) and V (¬a)
are open, this implies that U(A) is Hausdorff. �

We can now improve 2.3.4 with the aid of 3.1.4, as follows:

3.1.5. Representation theorem for Boolean algebras (This was originally
proved by Marshall Stone in [Sto36].) Every Boolean algebra A is isomorphic to
the Boolean algebra Clop(U(A)) of the Boolean space U(A).

The isomorphism is given by the map VA : A −→ Clop(U(A)) that sends a ∈ A
to V (a) = {P ∈ U(A) | a ∈ P}. �
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Theorem 3.1.5 says something remarkable: Given a Boolean algebra A we have
constructed the topological space U(A). Now using 3.1.5 we see that we can re-
construct A (up to isomorphism) from this topological space. The mechanism also
works in the opposite direction:

3.1.6. Representation theorem for Boolean spaces
Let X be a Boolean space. Then Clop(X) is a Boolean algebra of subsets of X and
the map ΘX : X −→ U(Clop(X)) defined by ΘX(x) = {K ∈ Clop(X) | x ∈ K} is
a homeomorphism.

The compositional inverse is given as follows: If U ∈ U(Clop(X)), then the
intersection

⋂
U has exactly one element and this element is Θ−1

X (U).

Proof. Firstly we observe that the map ΘX is indeed well defined, i.e., for x ∈ X
the set ΘX(x) is an ultrafilter, also see example 2.2.3(iii). For the rest of the proof
we suppress the index X from ΘX and just write Θ. The essential part of the
assertion is the following

Claim 1. For each U ∈ U(Clop(X)) there is some x ∈ X with
⋂
U = {x}. We

write Ψ(U) for this element and obtain a map Ψ : U(Clop(X)) −→ X.
Proof of claim 1. As U is a proper filter it has the finite intersection property. Since
all elements of U are closed sets and X is compact, we know that

⋂
U 6= ∅. We need

to show that there is at most one point in
⋂
U . Suppose for way of contradiction

that there are two points x, y ∈
⋂
U . Since x 6= y and X is Hausdorff, there are

open and disjoint neighborhoods O,W of x, y respectively. Since X is Boolean there
are clopen subsets K,L of X with x ∈ K ⊆ O and y ∈ L ⊆ W . From O ∩W = ∅
we get K ∩L = ∅ and therefore (X \K)∪ (X \L) = X. Since U is a filter we know
X ∈ U . However, X \K and X \L are in the Boolean algebra Clop(X) and so the
ultrafilter property of U implies X \K ∈ U or X \ L ∈ U . By symmetry we may
assume that X \ L ∈ U . But then

⋂
U ⊆ X \ L and this contradicts y ∈ L ∩

⋂
U ,

establishing the claim. �
We now proof that Ψ is the compositional inverse of Θ. For x ∈ X we have

x ∈
⋂

Θ(x) by definition of Θ(x) and so by claim 1 this implies Ψ(Θ(x)) = x. Thus
Ψ ◦ Θ = idX . Further, if U ∈ U(Clop(X)) we have Θ(Ψ(U)) = {K ∈ Clop(X) |
Ψ(U) ∈ K} ⊇ U by definition of Ψ(U); since both U and Θ(Ψ(U)) are ultrafilters
we get Θ(Ψ(U)) = U . This shows Θ ◦ Ψ = idU(Clop(X)) and so indeed Ψ is the
compositional inverse of Θ.

Finally we need to show that Θ is a homeomorphism. It is continuous because
for K ∈ Clop(X) we have

Θ−1(V (K)) = {x ∈ X | Θ(x) ∈ V (K)}
= {x ∈ X | K ∈ Θ(x)}, by definition of V (K)

= {x ∈ X | x ∈ K}, by definition of Θ(x)

= K,

which is closed, and because every closed sets of U(Clop(X)) is an intersection of
sets of the form V (K) with K ∈ Clop(X) (see property (∗) in the proof of 3.1.4).

Hence we know that Θ is a continuous bijection between the compact Hausdorff
spaces X and U(Clop(X)) (invoke 3.1.4) and every such map is a homeomorphism
by general topology. �
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As indicated at the beginning of section 3, both representation theorems 3.1.5 and
3.1.6 can be generalised to all distributive lattices with the appropriate amendments
on the topological side.

3.2. The Stone space as prime spectrum. This section gives an alternative
description of the space of ultrafilters of a Boolean algebra for readers who are
familiar with prime spectra of commutative rings. It is not needed in the remainder
of the text and can be skipped.

3.2.1. Given a Boolean algebra A, we define new binary operations + and · on A
by

(∗) a+ b = (a ∧ ¬b) ∨ (b ∧ ¬a) and a · b = a ∧ b.

A straightforward calculation[6] shows that (the set underlying) A together with +
and · is a commutative unital ring. We denote this ring by BR(A). Notice that 0 in
BR(A) is ⊥ and 1 in BR(A) is >. Obviously the identity x2 = x holds universally
in BR(A) and the Boolean operation of A are defined in terms of + and · by

(+) a ∨ b = a+ b+ a·b, a ∧ b = a·b, ¬a = 1 + a.

If B is another Boolean algebra and ϕ : A −→ B is a map, then by (∗) and (+)
applied to A and B we see that ϕ is a Boolean algebra homomorphism if and only
if ϕ is a unital ring homomorphism BR(A) −→ BR(B).

3.2.2.Definition. A unital ring R = (R,+, ·) is called a Boolean ring if it satisfies
r2 = r for all r ∈ R.

Hence in a Boolean algebra A, the operations (∗) of 3.2.1 define a Boolean ring. It
is an exercise to show that every Boolean ring R = (R,+, ·, 1) is actually of this
form: Define x ≤ y as x · y = x. Then one checks that ≤ is a partial order with
⊥= 0, > = 1, x · y is the infimum of {x, y} for ≤, x+ y + x · y is the supremum of
{x, y} for ≤ and 1 + x is the complement of x. We will get this for free from the
next proposition.

3.2.3. Proposition. Let R be a Boolean ring.
(i) The ring R is commutative with x+ x = 0 for all x ∈ R.
(ii) Let Spec(R) be the prime spectrum of R. Then Spec(R) is a Boolean space

and the map ρ : R −→ Clop(Spec(R)), ρ(r) = {p ∈ Spec(R) | r /∈ p} is a
ring isomorphism when Clop(Spec(R)) is considered as a Boolean ring.

Proof. (i). Since 2x = (2x)2 = 4x2 = 4x we get 2x = 0 for all x ∈ R. But then
x+ y = (x+ y)2 = x2 + xy + yx+ y2 = x+ y + xy + yx implies xy = −yx = yx.
(ii). Let A be the subset {ρ(r) | r ∈ R} of the powerset of Spec(R).
Claim. For all r, s ∈ R we have

(a) ρ(r·s) = ρ(r) ∩ ρ(s),
(b) ρ(r) ∪ ρ(s) = ρ(r + s) ·∪ ρ(r·s), and
(c) ρ(1 + r) is the complement of ρ(r) in Spec(R).

[6]Alternatively we may invoke 2.3.4 and assume that A is a Boolean algebra of subsets of
some set. Then the required calculation consist of routine checking of identities of terms of sets
involving the operations ∩,∪ and complementation of sets.
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Proof of the claim. (a) hold because for each prime ideal p of the ring R we know
that r·s ∈ p ⇐⇒ r ∈ p or s ∈ p.

(b). The inclusion ⊇ holds in any ring. For the inclusion ⊆ we use r = r·(r+s)+(r·s)
(from (i)) to obtain ρ(r) ⊆ ρ(r+s)∪ρ(r·s), and similar for ρ(s). To see that ρ(r+s)
and ρ(r ·s) are disjoint we use (a) and get ρ(r + s) ∩ ρ(r ·s) = ρ(r2s + srs). Since
r2s+ srs = 0 using (i), we see that the intersection is ρ(0) = ∅.
(c). We set s = 1 in (b) and get ρ(r+ 1) ·∪ ρ(r) = ρ(r+ 1 + r). As 1 + r+ r = 1 by
(i) and ρ(1) = Spec(R) we get (c). �

Since ρ(r) and ρ(1 + r) are open subsets of Spec(R) by definition of the prime
spectrum, we see from (c) that ρ(r) a clopen subset of Spec(R). Thus ρ is well
defined. Since A is a basis of the topology of Spec(R) and Spec(R) is a compact
T0-space we obtain that Spec(R) is Boolean. Furthermore, (a) and (c) imply that
A is a Boolean algebra of subsets of Spec(R). Since every clopen subset is compact
and at the same time a union of sets from A we see that A = Clop(Spec(R)). It
follows that ρ is surjective. It is also injective, because for r 6= s we know that
r − s is not nilpotent (all powers are nonzero) and therefore there must be some
p ∈ Spec(R) with r+ s = r− s /∈ p. Hence ρ(r+ s) 6= ∅ and by (a),(b) this implies
ρ(r) 6= ρ(s).

Finally properties (b) and (a) imply that ρ(r+ s) is the symmetric difference of
ρ(r) and ρ(s). This shows that ρ is a ring homomorphism when Clop(Spec(R)) is
considered as a Boolean ring. �

3.2.4. Corollary. Every Boolean ring R is the Boolean ring of a Boolean algebra
A. The operations of A are given by (+) in 3.2.1.

If I ⊆ R, then I is a prime ideal of the ring R if and only if A\I is an ultrafilter.
The map

Spec(R) −→ U(A), I 7→ A \ I
is a homeomorphism.

Proof. By 3.2.3 we know that R is isomorphic to the Boolean ring of a Boolean
algebra A of subsets of some set. Hence we may assume that R is this ring.

If I ⊆ R, then a straight forward calculation shows that I is a prime ideal of the
ring R if and only if it is a prime ideal of the distributive lattice A (see 2.2.6(iv) for
the definition), and this means that A \ I is an ultrafilter of the Boolean algebra A,
cf. 2.3.3.

It follows that the map

Spec(R) −→ U(A), I 7→ A \ I
is a bijection. Obviously this bijection maps {I ∈ Spec(R) | r 6∈ I}, r ∈ R, to V (r)
and therefore the map is a homeomorphism. �



14 MARCUS TRESSL

3.3. Completeness of Propositional Logic. The representation theorem 3.1.5
for Boolean algebras can be seen as an algebro-toplogical version of the completeness
theorem of Propositional Logic. This is sketched here for the reader who is familiar
with Propositional Logic. Let A be the Tarski-Lindenbaum algebra of Proposi-
tional Logic as explained in 2.1.2(v) and 2.3.2. The Completeness of Propositional
Logic says that for all sentences s1, . . . , sn, t in Propositional Logic the following
equivalence holds.

(†) s1, . . . , sn ` t ⇐⇒ for all valuations w,
if w(s1) = . . . = w(sn) = true, then w(t) = true.

This can be deduced from the representation theorem 3.1.5 as follows. The left
hand side of (†) reads in the Tarski-Lindenbaum algebra as

(+) [s1]∼ ∧ . . . ∧ [sn]∼ ≤ [t]∼.

In order to interpret the right hand side of (†) we need the following
Claim If w is a valuation of Propositional Logic, then the set uw = {[s]∼ | w(s) =
true} is an ultrafilter of A. Conversely, if u is an ultrafilter of A, then the assign-
ment

wu(s) =

{
true if [s]∼ ∈ u,

false if [s]∼ /∈ u

is a valuation of Propositional Logic. The proof of this claim is lengthy but straight-
forward and is left to the interested reader.

The claim implies that the assignment u −→ wu is a bijection between the set
U(A) and the valuations of propositional calculus; its compositional inverse maps
w to uw.

Now we see that the right hand side of (†) just says that

V ([s1]∼) ∩ . . . ∩ V ([sn]∼) ⊆ V ([t]∼).

But this inclusion is equivalent to (+), because the map VA in 3.1.5 is an isomor-
phism of Boolean algebras.

4. Anti-equivalence of the categories of Boolean algebras and
Boolean spaces

The category of distributive lattice is anti-equivalent to a certain category of topo-
logical spaces, namely spectral spaces, cf. [DST19, Chapter 3]. This has been
shown by Marshall Stone in [Sto37] (using different terminology). We focus here
on Boolean algebras, which simplifies the matter to some extent, in particular at
the topological side of the duality.

Concretely, we put the two representation theorems 3.1.5 and 3.1.6 into the con-
text of category theory, which will tighten further the connection between Boolean
algebras and Boolean spaces. The essential work has been done, we only need one
further preparation.

4.1. Lemma.
(i) If ϕ : A −→ B is a homomorphism of Boolean Algebras, then the map

U(ϕ) : U(B) −→ U(A), U 7−→ ϕ−1(U)

is continuous and satisfies U(ϕ)−1(V (a)) = V (ϕ(a)) for all a ∈ A.
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(ii) If f : X −→ Y is a continuous map between Boolean spaces, then the map

Clop(f) : Clop(Y ) −→ Clop(X), K 7−→ f−1(K)

is a homomorphism of Boolean algebras.

Proof. (i). Firstly, U(ϕ) is well-defined: If U ∈ U(B), then the unique map
χ : B −→ {⊥,>} with χ−1(>) = U is a homomorphism of Boolean algebras
by 2.3.3(i)⇒(iv). Then the composition ϕ ◦ χ : A −→ {⊥,>} is again a homomor-
phism of Boolean algebras and by 2.3.3(iv)⇒(i) the set U0 := (ϕ ◦ χ)−1(>) is an
ultrafilter of A. But U0 = ϕ−1(U), which shows that U(ϕ) is well-defined.

By definition of the topologies continuity of U(ϕ) is proved if we show that
U(ϕ)−1(V (a)) = V (ϕ(a)) for all a ∈ A. So let U ∈ (U)(B). Then

U ∈ U(ϕ)−1(V (a)) ⇐⇒ U(ϕ)(U) ∈ V (a)

⇐⇒ ϕ−1(U) ∈ V (a)

⇐⇒ a ∈ ϕ−1(U)

⇐⇒ ϕ(a) ∈ U ⇐⇒ U ∈ V (ϕ(a)).

(ii). Since f is continuous, Clop(f) is well-defined. Since the operation of taking
preimages of a map commutes with all Boolean operations we see that Clop(f) is
a homomorphism of Boolean algebras. �

4.2. Definition. Let BoolAlg be the category of Boolean algebras, which has
Boolean algebras as objects and homomorphisms of Boolean algebras as morphisms.
Let BoolSp be the category of Boolean spaces, which has Boolean spaces as objects
and continuous maps as morphisms.

4.3. Definition. We define functors U : BoolAlg → BoolSp and Clop : BoolSp →
BoolAlg as follows. The functor U acts on objects as in 3.1.3 and on morphisms
as in 4.1(i). The functor Clop acts on objects as in 3.1.2(i) and on morphisms as
in 4.1(ii). The verification that this defines functors is straightforward from the
definitions and left to the reader.

4.4. Stone Duality for Boolean algebras and Boolean spaces
The category BoolAlg of Boolean algebras and BoolSp of Boolean spaces are ant-
equivalent. Explicitly:

(i) The anti-equivalence is given by the functors U : BoolAlg → BoolSp and
its quasi-inverse Clop : BoolSp→ BoolAlg.

(ii) The assignments given by A 7→ VA in 3.1.5 on Boolean Algebras and given
by X 7→ ΘX in 3.1.6 on Boolean spaces define natural transformations
V : idBoolAlg → Clop ◦U and Θ : idBoolSp → U ◦ Clop.

(iii) The natural transformations V and Θ are isomorphism of functors.

Proof. Item (i) is implied by (ii) and (iii).

(ii) In order to show that V and Θ are natural transformations we need verify that
for every homomorphism A→ B of Boolean algebras and each continuous function
f : X → Y of Boolean spaces, the diagrams
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A B

Clop(U(A)) Clop(U(A))

ϕ

VA VB

Clop(U(ϕ))

X Y

U(Clop(X)) U(Clop(Y ))

f

ΘX ΘY

U(Clop(f))

commute. For the diagram on the left, take a ∈ A. Then VA maps a to V (a) and
Clop(U(ϕ)) maps V (a) to U(ϕ)−1(V (a)). But this set is equal to V (ϕ(a)) by 4.1(i).
Since V (ϕ(a)) = (VB ◦ ϕ)(a) we have confirmed the commutativity of the diagram
on the left.

For the diagram on the right, take x ∈ X. Then ΘX(x) = {K ∈ Clop(X) | x ∈
K} and U(Clop(f)) maps this ultrafilter to

Clop(f)−1(ΘX(x)) = {D ∈ U(Clop(Y )) | x ∈ Clop(f)(D)}
= {D ∈ U(Clop(Y )) | x ∈ f−1(D)}
= {D ∈ U(Clop(Y )) | f(x) ∈ D}
= ΘY (f(x)),

as required.
(iii) is the key statement: The natural transformation V is an isomorphism by the
representation theorem 3.1.5 for Boolean algebras. The natural transformation Θ
is an isomorphism by the representation theorem 3.1.6 for Boolean spaces. �

Marshall Harvey Stone

http://credo.library.umass.edu/view/full/murg120_2-i0001730
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