ADVANCED CLASS: INTRODUCTION TO NIP

MARCUS TRESSL

ABsTrRACT. We give a self contained introduction to theories and formulas
with the independence property and prove a theorem of Shelah (following
Pillay) on externally definable sets in theories with the NIP.
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Let T be an Z-theory and let ¢(Z,y) be an Z-formula. We say that ¢ has the

independence property w.r.t. Z,7y if in some model M of T there are
bs € M* and a; € MY (i € w, S C w)
such that
M = p(bs,a;) <= i€ S.

Whenever the partitioning of the variables is clear we shall simply say ¢ has the
independence property. If ¢ does not have the independence property then we say
¢ has the NIP. A theory has NIP if all formulas have NIP. Observe that in this
case, also all formulas with parameters in a model of T have NIP (if »(Z, 7, ¢)) has

IP, then ¢(Z, 7, 2)) has IP w.r.t.  and (g, 2)).

By compactness, ¢ has the independence property if for every finite set F' there

are a model M of T and
bs € M* and a; € MY (i€ F,SC F)
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such that
M = p(bs,a;) <= i€ S.
Syntactically, this means that 7" is consistent with the sentence

(S CF) (i e F) | /\ ©(ZTs,7i) A /\ —(Zs,7;)]
ieSCF SCFieF\S

If M is a model of T' and ¢(Z, y) is a formula with parameters in M, then we say
© has the independence property, if ¢ has the independence property with respect
to Th(M,M). This is the case if and only if for every k& € IN there is a sequence
a1, ...,ax € M™ such that for every subset S C {1, ..., k} the formula

Ne@a)n N\ —elza)

€S ie{l,...k}\S
is satisfiable im M.

Again by compactness, if p(Z, ) has the independence property, then for every
set I there is a model M of T and

a; € MY, bg € M* (i€ I,S C1)
such that
M = ¢(bs,a;) <= i€ S.

1.1. Proposition. If ¢ has the independence property w.r.t. T, § then ¢ also has
the independence property w.r.t. g, T.

Proof. Pick k € IN. We apply the independence property of ¢ w.r.t. z,y to the
finite set 2F of subsets of {1,...,k}: For each T' € 2% and each S C 2% there are
ar € MY and bg € M? such that

ME N ebsar)n N\ —e(bs,ar).

TeSC2k Te2k\S

For each i € k let S(i) ={Z C {1,...,k} | i € Z} C 2" and take ¢; = bg(;). Then

M = A @(bs(iy, ar) A A —¢(bs (i), ar),
TeS(i), ie{l,...k} TE2r\S(i), i€{1,....k}

since this formula is a subformula of the one above. Since T' € S(i) means i € T,
this shows that ¢ also has the independence property w.r.t. g,z. O

1.2. Example. The binary relation “y divides £” on IN has the independence prop-
erty. To see this take k € IN| let a1, ..., ax be an enumeration of the first k prime num-
bers and let bs = [[;cga; for each S C {1,...,k}. Theni € S <= a; divides bs.
1.3. Ezample. In every infinite boolean algebra A, the relation x > y has the
independence property. To see this take k € IN and let aq,...,a; € A be different
from L with a; Aaj =L (i # j). Then with bg = \/,cgai, S C {1,...,k} we have
i1 €S <= bg > a;. Note that the first order theory of a fixed boolean algebra A
is well behaved (e.g. saying that A has no atoms gives a complete Ny-categorical
theory which is decidable).
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1.4. Example. Stable theories have NIP. This is clear depending how one defines
“stable”. For example the definition “T" stable <= no formula has the order
property w.r.t 77 immediately implies that stable theories have the NIP. Recall
that a formula ¢(Z,%) has the order property if there are Z-tuples b;, g-tuples a;
from some model of T with M |= ¢(b;,da;) < i <j (i,j € w). Notice that i < j
is equivalent to i € {j’ | j/ < j}, hence a formula with the independence property
also has the order property.

1.5. Example. More examples of theories with the NIP: p-adically closed fields, alg.
closed valued fields, more generally c-minimal theories have NIP. Simple theories
which have the NIP are stable (Reference missing); e.g. pseudo finite fields do have
the independence property (see also [Dur])

1.6. Example. O-minimal structures have NIP. This will be proved in 7.2 as an
easy consequence of 7.1 below.
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2. RAMSEY’S THEOREM
2.1. Notation. Let X be a set and let n € N = {1,2,3,...}. We write
(X" ={S C X | [S]=n}.

2.2. Theorem. If X is infinite and [X|™ = AgU Ay, then there is an infinite subset

Proof. By induction on n, where n = 1 is trivial. Assume we know the assertion
for n — 1. Given an infinite subset Z of X, some element z € Z and 6 € {0,1} we
define

Bs(Z,z) ={SCZ\{z} | |S|=n—1and SU{z} € As}.
As [X]™ = Ap U A1, we have
[Z\{=}]""" = Bo(Z,2) U B1(Z, 2)

and the induction hypothesis gives an infinite subset Yz, of Z \ {z} and some
57.. € {0,1} with
[YZ,Z]R_l - B5z,z (Za Z)

We now iterate: Define a sequence (Zy, 2k, 0k ) ken, as follows: Choose Z; := X and
z1 € Zy arbitrarily. If (Z, zx) is already defined, then define

Ziy1 =Yz, 2, Ok =0z, 2, and take 2,11 € Zp 1 arbitrarily.

Hence

‘Zchrl € Zrt1 € Zp \ {z1} and [Zy11]" ! C Bék(ZImZk)-‘

By symmetry, we may assume that there are infinitely many & € IN with J; = 0.
Then Y = {z; | 0 = 0} satisfies [Y]* C Ay: First notice that z; # z; for i # j,
since zx41 € Zry1 C Zi \ {zx} for all k. In particular Y is infinite.

Now take S € [Y]" and let k1 < ... <k, € N with S = {z,,...,2k,}. Then
{Zk2, ...,an} CZy,U...UZg, C Zy +1, hence

{ka ey an} € [Zk1+1]n_1 - B5k1 (Zk?17zk1) = BO(anzkl)'
But this means S = {zk, } U {zk,, -, 2k, € Ao.

Second proof. We show that for every map f : [X]|* — {1,...,k} there is an
infinite subset Y C X such that f is constant on [Y]™.

By induction on n, where n =1 is clear.

n — n+ 1. Pick 2* € X. We have a map ¢* : [X \ {«*}]" — {1,....k},
g9(S) = f(SU{z*}) and by induction there is an infinite set X* C X such that g is
constant on [X*]™; hence there is some d € {1,...,k} such that for all S € [X*]"
we have f(SU{z*}) =d.

We define Xo = X*,29 = 2* and by induction zj,, € X7 (arbitrarily) and
Xit1 = (X;)* (where we use the function fl(x,jn+1). By construction, for each
i € IN there is some d; € {1,...,k} such that f;(SU{x;}) =d; for all S € [X;]",

Now take some d € {1,...,k} such that I = {i € IN | d; = d} is infinite. Then
the set Y = {x; | ¢ € I'} has the required property.

(]

We don’t need, but state the Erdés-Rado Theorem:
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2.3. Theorem. (cf. [Hodges1993], section 11.1)
Let X be an infinite cardinal and let k € W. Let Ji_1(\) (pronounce“beth”) be the
(k — 1)-st iteration of the function k — 2" starting with k = A.

If I is a set of size > Jj_1(\) and [1)* = Ua<>\ A,, then there is a subset J of
I of size (at least) A\t and some o < \ with [J]¥ C A,.

2.4. Remark. One might ask whether there is a general partition theorem similar
to 2.3 for infinite cardinals k. The answer is mainly negative. Here a striking
statement proved in [EHMR], Theorem 12.1:

For all w < k < A there is a partition of [A\]® into 2" sets such that for every
J C X of size k, the set [J]" intersects each member of the partition.

3. INDISCERNIBLE SEQUENCES

3.1. Definition. Let (I, <) be a totally ordered set, n € IN and let (a;);e; € M™,
M an Z-structure. Let I' be a subset of Fml.Z(M). We say that (a;);er is a
I'-indiscernible sequence if for all i; < ... < i and all j; < ... < ji from I we
have

M =(ai,, ... a,,) <= M E=~(aj,,....a5,) (y(Z1,....,z) €T)

IfT' = Fml ¥ (A) with A C M then we say “indiscernible sequence over A”. If
I' = Fml.% then we say “indiscernible sequence”.

We have the following corollary to Ramsey’s theorem 2.2:

3.2. Corollary. Given a finite subset I' of Fml £ (M), every infinite sequence
(@i)icr € M™ contains a T-indiscernible subsequence.

Proof. As T is finite we may by induction assume that I' is a singleton, say I" =
{v(#1,....,TK) }. Let

AO = {{ila 77’k} € [I]k | il <..< ik and M ': ,y(dh’ 7alk)}
and
Al = {{il, ,Zk} S [I}k | 1 < ... <1 and M ): _‘PY(aiu "'7aik)}'

Then [I]F = Ag U A; and by 2.2, there is some infinite J C I such that [J]* C Ao,
say. Clearly (@;);ecs is I-indiscernible. O

3.3. Remark. Omne might wonder whether there is a cardinal A such that every
sequence of length A from some model of T' contains an infinite indiscernible sub-
sequence. This is unlikely in general by 2.4 applied to K = w there. On the other
hand in [TenZie2012, top of page 116] (also see [TenZie2012, Lemma 7.2.12]) we
find

The existence of a Ramsey cardinal k > sup,, ., |Sn(A4)] (see p. 210)
would directly imply that any sequence of order type s contains a
countable indiscernible subsequence (in fact even an indiscernible
subsequence of size k).

In general, a central tool to produce indiscernible sequences out of a given sequence
is explained next.
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3.4. Definition. Let s = (b;);c;r be a sequence of n-tuples of some structure M
indexed by a chain I and let A C M. Then the Ehrenfeucht-Mostowski type
of s over A is defined as

EM(s/A) = {o(Z1,...,Zx) e Fml Z(A) | k<w,M @(Bil,...,l_)ik)
for all i1 < ... < € I},

where Ty, Ta, T3, . . . are distinct n-tuples of variables. If A = () we just write EM(s).
Observe that every Z(A)-formula ¢(Z) with M = ¢(a;/A) (i € I) is in EM(s/A).

3.5. Ehrenfeucht-Mostowski Theorem Let s = (b;);c; be an infinite sequence
of n-tuples of some structure M indexed by a chain I and let A C M. Then for
every infinite chain J there is an A-indiscernible sequence t indexed by J in some
elementary extension of M with EM(s/A) C EM(t/A).

Proof. We may assume that A = (). Pick new n-tuples of constants ¢; for j € J
and consider the following set of .Z(¢; | j € J)-sentences:

O ={p(¢,,...,¢) | j1 <...<jp€Jand o(Z1,...,Zx) € EM(s)}
U ={Y(Cy,...,C) < V(CnyyovyCny) | 1 <. <Jryni <...<np€Jand
o(Z1,...,T) € Fml(ZL)}.
By compactness it suffices to show that ®UW is finitely satisfiable in M. Let &¢ C P,
Uy C U be finite sets and choose I' C Fml(.%) finite such that each sentence in
U, is of the form (&, ,...,¢j,) > ¥(Cn,,- -, Cn, ) for some ¥(Z1,...,%;) € T and
some constants ¢;,, ¢,,. By 3.2 there is a subsequence of s that is I'g-indiscernible.

Since EM(s) € EM(sg) it is now clear that a long enough initial subsequence of sg
realizes ®¢ U ¥y ([

3.6. Definition. Let s := (a@;)iex € M™, where X is an ordinal and let ¢(Z, ) be
an Z-formula. We say that s is split by ¢(Z,%) if in some elementary extension
N of M there is some b € N* such that
{iel|Eeb,a;)}and {i € I|} —p(b,a;)} are cofinal in T

If s is split by some .Z-formula, then we say that s is splittable.
3.7. Remark. s:= (a;)icx € M™ is unsplittable, then

tp(s/M) := {(7,b) | ¥(z,7) € Fml.Z,b € MY and M |= 1)(a;,b) for i — oo}
is a complete n-type of M, called the average type of s.
Hence s is unsplittable if and only if s converges in S, (N) for every N = M.
3.8. Proposition. The following are equivalent for every formula o(Z, 7).

(i) o(Z,7) has the independence property

(ii) For every cardinal A, there is an indiscernible sequence (a@;);cx of some model
of T which is split by .

(iii) There is an indiscernible sequence (G;)ic., of some model of T which is split
by .

(iv) For every k € IN there is a k-indiscernible sequence (a;)ie,, of some model of
T which is split by ¢. Here,“k-indiscernible” means that for all i1 < ... < iy
and all j1 < ... < jr from I we have

M =i, ..., 0,) <= M E=~(a,,....a5,) ((Z1,...,25) €T).

Hence we do not demand that
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M ': 7(6_1’1'17 ey C_lil) — M ': 7((_1]1775“]1) (’Y('flv "'7£l) € F)
when 1 > k.
Proof. (1)=-(ii). By compactness it is enough to show that for every finite subset T’

of Fml.Z, there are a model M, some I'-indiscernible sequence a; < @z < ... € M"
and some b € M? such that

M = (b, @zi) A —@(b, azit1) (i < w). (%)

Since ¢(7,7) has the independence property, there are ag,ai, ... and bg (S C w)
from some model such that

M E p(bs,a;) <= i€ S. (1)

By 3.2 there is an infinite I'-indiscernible subsequence (a;);ecs of (@;)ic. (hence
J C w). By replacing w with J, property (f) remains true. Hence we may assume
that (a;)ic. itself is T-indiscernible. It remains to find b € M? satisfying (). We
pick S = {2i | i € w} and b = bg. Then (*) is an instance of (f).

(i)=-(iii) and (iii)=-(iv) are weakenings.

(iv)=(i). By compactness it is enough to find for every k € IN, n-tuples ay, ..., ag
in some model of T such that for every subset S C {1, ..., k} the formula

/\ (T, a;) A /\ —p(Z,a;)
i€s i€{1,...k}\S
is satisfiable im M.

Fix k € IN and take a k-indiscernible sequence (a;);c of some model M of T
which is split by ¢. By switching to a subsequence we may assume that for some
b € M? we have

M = ¢(b,az) A ~p(b, Gzit1) (i < w). (%)
We show that for every subset S C {1,...,k} the formula
Ne@ayn N —p@a)
ics ie{lL,.. . k\S
is satisfiable im M. In other words, (@y, ..., ax) realizes
@, tk) =32 [\ e@u)n N —e@ )]
€S ie{l,....,k}\S

By (%), the tuple b satisfies

Ne@an)n N\ (@ a2i0).

€S ie{l,....,k}\S
24 ifiesS
Hence with j; = ) o we have a sequence j; < ... < jr such that
2i+1 ifigsS
(@jy, -, @j, ) realizes Y(§i,...,Gx). Since (a;)iecw is k-indiscernible, also (a1, ..., ax)
realizes ¥(g1, ..., k), as desired. O

The interest in condition (iv) of 3.8 lies in the Erdés-Rado Theorem 2.3, which
can be used to show that there is a cardinal A so that every sequence of length A
has an infinite k-indiscernible subsequence (the proof is very similar to the proof of
3.2). We do not use this later on.



8 MARCUS TRESSL

3.9. Theorem. IfT has the independence property, then there is a formula o(x,q)
(where x is a single variable), which has the independence property.

Proof. (cf. [Kud]).

We start with a formula ¢(Z, %), which has the independence property. By
3.8(1)=(ii) applied to A = (card £)™ there is an indiscernible sequence (@;);ex of
some model M of T which is split by ¢. By switching to a subsequence we may
assume that there is some b € M? with

M |= @(b, @) A —p(b, G2i41)- (%)
for all ¢ < A. Recall that 2i is the ordinal a + 2n where i = a + n, « is a limit
ordinal and n < w. Let (A;);j<x be the strictly increasing enumeration of the limit
ordinals in \. We write Z = (u,v) and b = (¢,d). Suppose (1, v, ) does not have
the independence property with respect to 4 and (v, 7).

Fix j < A Since () holds for all indices ¢ € X\ between X; and \;i1,
and ¢(u,v,y) does not have the independence property, 3.8(iii)=(i) says that
the sequence (d,a;) A;<i<A;4; 18 not indiscernible. This means that for some .Z-
formula 7;(v,71,...,%1,) there are indices A\; < i;(1) < ... < i;(l;) < Aj1 and
/\j < k‘](l) < ... < k](lj) < )\j+1 such that

E i (dy @iy 1)y -0 Giyay)) AN Y5 (ds G (1)s e Gy 1)) (+)
Since there are only card(.Z)-many formulas, there must be infinitely many j such
that v; (and ;) is independent of j. We may assume that this happens for all j < w.
We write (v, 1, ..., 41) instead of v;(v, 91, ..., 41;) and claim that (v, 71, ..., %) has
the independence property with respect to v and (v, g1, ..., J1):

To see this, we use 3.8(iii)=-(i). Define

Egj = (ai2j(1), cers aizj(l)) and 52j+1 = (C_Lkzj+1(1), ey ak2j+1(l)) (] < w).
Since (@;)ie is indiscernible it is clear that also (¢;) ;<. is indiscernible and by (+),
(v, 71, ..., 71) splits this sequence. O

4. INDISCERNIBLE SEQUENCES FROM COHEIRS

4.1. Definition. Let M < N and let M C A C N. An n-type ¢ € S,(A4) of A is
called a coheir over M, if every ¢(Z) € ¢ is satisfiable in M. In this case we say
that ¢ is a coheir of ¢ [ M.

Observe that every n-type ¢ over A O M which is a coheir over M has an

extension r on any B O A, which is a coheir over M: Any r containing
qU{—¢(Z) € Fml .Z,(B) | ¢(Z) is not satisfiable in M}
is such a coheir.
4.2. Lemma. Let M < N, let g € S,,(N) be a coheir over M and let I = (I, <) be
a totally ordered set. Fori € I leta; € N™ be such that a; |=q [ (MU{a; | j <1})
for alli e I. Then s = (a;)ier is an indiscernible sequence over M.
Proof. Firstly, notice that our assumption implies
ar =ql (MU{a; | j<i})foralli<kel. (%)

Let i1 < ... < i} and j; < ... < j be finite sequences from I. We have to show

that

tp(dil,...,dik_/M) :tp(&jl,...,djk/M). (+)
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Claim. (—I—) holds true if 41 = j1, ..., ik—1 = Jr—1-
The claim holds true, since by (x),
tp(aik/Mdiw ) di)«—l) = tp(@jk/Mde i) a’jk—l)’
which gives (4) in the case i1 = j1,..., i1 = Jjp—1-

In order to show (+) we do an induction on k, where the case k = 1 holds true
by (*). Assume we know (+) for k — 1. We may first apply the claim and enlarge
ik, jr such that i = ji. We write i := iy = j Suppose (+) fails. Then there is
some ¥(Z1, ..., T) € Fml £ (M) such that

N ': ’Y(a’il? () a’ik—l’a’i) A _'FY(djl’ ) a‘jk—l’ai)'
Since @ > 41, ooy ig—1,J1, s jk—1 We get
’}/(Cflil,...,aikil,af?k) AN —\’y(ajl, ""ajk—l"fk?) S tp(di/M U {le ‘ j< Z})

By definition, ¢ extends tp(a;/M U {a; | j < ¢}). Since ¢ is a coheir over M, there
is some m C M with

N =@y, Giy_yy ) A =Y(Q5y 5 ooy Qg ).

Consequently tp(a;,, ..., @, ,/M) # tp(aj,, ..., a;,_, /M), which contradicts (+)
in the case k — 1. ]

Here is an example how 4.2 can be used:

4.3. Proposition. [Poizat2000, Lemma 12.36] Let p(Z, ) be an £-formula, n =
|Z| = |g|, and suppose there is a sequence (@;)i<w in M™ such that

i <j <= ¢(a;,a;) for alli,j € w withi# j.

Then in some elementary extension N of M there is an indiscernible sequence

(b;)icw over M such that
i>j <= p(bi,b;) for all i,j € w with i # j.

Proof. Let N be an |M|T-saturated elementary extension of M. Consider the map
t:w —> N™ (i) = @;. This induces a map of Boolean algebras

1
Zu(N) = P(N") =05 P(w),

which induces a continuous function f : S(IN) — S, (N). Let Z € B(IN) be a

non-principal ultrafilter of w and let ¢ = f(% ). Hence

(1) q={¢(@,0) € Zu(N) [{kew| = (arb)} e 7}
Obviously ¢ is a coheir over M. Since N is |M|*-saturated there are by € N™ such
that p = gl = tp(bo/M) and b1 = qlp,. 5, for all k < w. By 4.2, (by) is an
indiscernible sequence over M.
Claim 1. If k <, then |= —¢(bg, by).
Proof. Otherwise ¢(by,Z) € tp(b;/Mb) C q and so by (1) there is j < w with
= ¢(bg,a;). But then p(z,a;) € tp(by/M) C ¢ and as % is not principal, (f)
implies that = ¢(@;,a;) for infinitely many ¢. This contradicts our assumption
that |= ¢(a;,a;) is equivalent to ¢ < j for i # j. o
Claim 2. If k > I, then |= ¢ (b, by).
Proof. Otherwise —p(z,b;) € tp(by/Mb;) C q and so by (1) there is i < w with
= (@, b). But then —p(a;,z) € tp(bi/M) C q and as % is not principal, (1)
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implies that = —¢(a;,a;) for infinitely many j. This contradicts our assumption
that |= —p(a;,a;) is equivalent to ¢ > j for ¢ # j. o
Hence by the claims, the proposition is established. ([l

5. SHELAH’S TRACE THEOREM

We work with models of the Z-theory T" and we may assume that 7' is complete
with quantifier elimination. An externally definable subset of M* (or a trace
set) is a set of the form Y N M*, where Y is a subset of N* for some N = M such
that Y is definable in N with parameters from N.

Fix a model M of T and let Z* be the language extending . which contains a
predicate for every externally definable subset of M* for every k € IN.

Let M* be the natural expansion of M to an .£*-structure.

5.1. Theorem. (Shelah)
If Th(M) has NIP, then the £*-theory Th(M™*) has quantifier elimination.

The proof below is due to A. Pillay (cf. [Pi]). A more geometric version of 5.1
says: the projection of an externally definable subset of M™ x M to M™ is again
externally definable.

Given My = M and ¢(Z) € Fml.Z (M), we write R

Let M < Mj such that all externally definable subsets of any M™ are traces
of Mi-definable sets. Let M* be the natural expansion of M to an .£*-structure,
namely

o(z) for the predicate naming

(Rw(i))M* = gO[Ml] NnM=.

5.2. Observation. FEvery quantifier free M*-definable subset of M™ is defined by
some R,. In other words, every quantifier free Z*-formula is modulo Th(M™)
equivalent to some R,,.

Let (N1, N) be an elementary and (card M )*-saturated elementary extension of
the pair (M1, M) of .Z-structures. Let N* be the extension of N to an .£*-structure
via i

(Rgp(:i,é))N = SD[Nlu E] N N$7
where (Z,7) € Fml.Z and ¢ € MY. Notice that this is well defined, since for
¥(z,2) € FmlZ and d € M{ with R0 = Ryz,q we have o[M,c] N M?* =

W[My,d] N M7 in other words

Since (Ny,N) = (M, M) we get (N1, N) = V& & C Ny — (p(,6) ¢ 0(z,d)),

which shows that ¢[Ny,¢] N N* =[Ny, d] N N*.
Here a diagram illustrating the involved structures:

N* N Ny

8

)

MY M——— M,
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Clearly N* is a (card M)*-saturated elementary extension of M*: Note that the
structure M* is definable in the Z-pair (M1, M) and N* is obtained from the pair
(N1, N) via the the same definition.

Proof of the trace theorem 5.1.

Suppose Th(M*) does not have quantifier elimination. Then by the general
test for quantifier elimination, there is some p*(7) € S (M*) (the quantifier free
n-types of M*, which are equal to the quantifier free n-types of Th(M*)) and
some R(Z,§) € .£* such that p*(Z) U {3y R(Z,y)} and p*(Z) U {-3y R(T,y)} are
consistent with Th(M™*, M*).

We shall construct a type ¢(z,y) of N such that
(a) ¢(z,7) is a coheir over M
(b) Both ¢(z,9)U{R(Z,y)} and ¢(Z,§) U{-R(Z, )} are finitely satisfiable in N*.
With this type we can show that T does not have the NIP as follows: Choose
a realization (Zzoﬁo) CN* of (¢ M)U{R(Z,9)}
(@1,b) CN* of (g rMaob()) U{~R(z,9)}
a realization (a 2,52) C N* of (q| Magboaiby) U{R(z,%)}
(@3,b3) C N* of (g Magboaibiashs) U{~R(z,7)}

a realization

a realization (as, b

Then (@, bi)icwy © N* is a coheir sequence of ¢(Z,7) (by (a)), hence by 4.2,
(@;, b;)i<w 1s indiscernible over M. By construction we have
N* |= R(a;,b;) <= i is even. (%)
Choose an Z-formula ¢(Z,y,z) and some z-tuple ¢ from M; such that R =
R Then by choice of N* we have
N* ': R((_ZZ,BZ) <~ N1 ': (p(C_Li,Z_)i,E).
Now (*) shows that (%, 7, ) splits the indiscernible sequence (@, b;);<.,. Hence by
3.8, ©(Z, 7, z) has the IP w.r.t. (Z,7) and z. So T does not have the NIP.
Construction of ¢(z,y) and proof of (a) and (b)
Let p% (z,y) be a complete type of M* containing p*(z) U {R(Z,7)} and let
p* (Z,7) be a complete type of M* containing p*(z) U {-3y R(Z,7)}

»(Z,7,8)

Let ¢%(Z,7) be a coheir of p% (Z,7) on N*.

We choose ¢(Z,%) as the (unique) type of N contained in ¢} (z,7). Clearly ¢ is a
coheir over M and ¢(z,y) U {R(Z,%)} C ¢} (Z,y) is finitely satisfiable in N*. It
remains to show that ¢(Z,y) U {-R(Z,g)} is finitely satisfiable in N*.

Claim. ¢ (Z,y) and ¢* (Z,y) induce the same Z-type in the variables Z over N.

Proof of the claim. Suppose not. Take an .Z-formula v (Z, %) and some @-tuple b
from N with ¢(z,b) € ¢%(z,y) and ~(z,b) € ¢* (7, 7).

Let S(z) be the predicate naming the set [N, b] N M*.

If S(z) € p*(Z), then as p*(Z) C ¢* (¥, ) and q_( ,J) is a coheir over M*, there
is some a C M with N* |= S(a) A —(a,b), contradicting the choice of S. Similarly,
if =S(z) € p*(z), then as p*(z) C ¢’ (7,y) and ¢* (Z,y) is a coheir over M*, there
is some @ C M with N* |= =S(a) A 1(a, b), contradicting the choice of S, too. [
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Let (a+,B+) be a realization of ¢%(Z,7) in some elementary extension of N*.
By the claim, tp(a; /N) = tp(a_/N), hence there is an Z-automorphism o over
N with o(a4) = a—. Since (a4, 4) = q(z,9) (€ ¢ (Z,7)), also

(6‘—) UB-F) = (O-@-i-’ OB+> ): Q(i‘vg)

As (a_,B-) E q¢*(7,9) > -3y R(z,y) we have = -37 R(a;, 7). It follows that
= —=R(a_,oBy), which identifies (&_, 03, ) as a realization of ¢(z,y) U {-R(Z,7)}
in some elementary extension of N*.

This finishes the proof of 5.1 (I

6. INVARIANT EXTENSIONS

6.1. Definition. Let M < N and let ¢ € S7(N). ¢ is called invariant over M,
or special over M if for every p(Z,y) € Fml.Z and all ¢,d € NY with tp(¢/M) =
tp(d/M) we have

p(z,0) €q <= p(7,d) € q.
Warning: Poizat calls ¢ special, only when ¢ has an extension ¢’ on some N’ = N
which realizes all n-types over M, such that ¢’ is special over M (in our sense).

Hence membership of ¢(Z,¢) in ¢ only depends on the type of ¢ over M. Note
that if ¢(z,9) € Fml.Z(M) and ¢,d € NY with tp(¢/M) = tp(d/M) then we
certainly also have ¢(Z,¢) € ¢ < ¢(z,d) € q.

Also note that every ¢ € S,,(IV), invariant over M is fixed under each M-auto-
morphism of N. If N is sufficiently saturated, this characterizes all types of N that
are invariant over M.

6.2. Example. Coheirs are invariant.

Proof. Let ¢ € S,(N) and M < N. Let o(z,7) € Fml.Z and ¢,d € N¥ with
tp(¢/M) = tp(d/M) and suppose ¢(7,¢), ~p(z,d) € q.

As q is a coheir over M, there is some m € M7 with N | ¢(m,¢) A —p(m, d),
in contradiction to tp(¢/M) = tp(d/M). O

6.3. Lemma. Let M < N < N’ and let ¢ € S,,(N) be invariant over M. If N
realizes every type from Si(M) for every k € IN, then there is a unique extension
q" of g on N' which is invariant over M.

Proof. We must define ¢’ as

{p(z,d) € Fml %, (N') | ¢(Z,¢) € q for some ¢ € N" with tp(¢/M) = tp(c'/M)}.

Since N realizes every type from S (M) for every k € IN, ¢’ is a type of N’ (]
The following lemma produces indiscernible sequences from invariant extensions

as we have obtained indiscernible sequences from coheirs in 4.2. The proof is iden-

tical to the proof of 4.2, in fact 4.2 is a corollary of 6.4, since coheirs are invariant.
As this section was not a topic durng the lecture we repeat the proof.

6.4. Lemma. Let M < N andletq € S, (N) be invariant over M and let I = (I, <)
be a totally ordered set. Fori € I leta; € N™ such thata; =q [ (M U{a; | j <i})
foralli € I. Then s = (a;)icr is an indiscernible sequence over M.
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Proof. Firstly, notice that our assumption implies
ar =ql (MU{a; | j<i}) forali<k<el. (%)

Let i1 < ... < i, and j; < ... < ji be finite sequences from I. We have to show
that

tp(aiu'"’aik/M) :tp(aj17~-~7djk/M)' (+)
Claim. (+) holds true if il = jl, ...,ik_l = jk—1~
The claim holds true, since by (x),

tp(aik/Mdh 3oy a’ik—l) = tp(ajk/Md]i ey a’jk—l)7
which gives (4) in the case i1 = j1, ..., 051 = Jjg—1-

In order to show (4) we do an induction on k, where the case k = 1 holds true
by (*). Assume we know (+) for k — 1. We may first apply the claim and enlarge
ik, jr such that i = ji. We write i := i, = ji Suppose (+) fails. Then there is
some (Z1, ..., Tr) € Fml £ (M) such that

N E (@i, ey @iy, @) A =Y(@5y ey Gy, )
Since ¢ > i1, ...,%%—1, 1, ---, Jk—1 We get that
’y((lil,...7aik_17.’fk) AN ﬁ’}/(djl, ey djk_ui'k) S tp(ai/M U {dj ‘ j < Z})
By definition, ¢ extends tp(a;/May, ..., a;—1). Since q is invariant over M it follows

tp(@iy s -, Qi /M) # tp(@j,, ..., a5, _, /M), which contradicts (+) in the case k —
1. O

6.5. Lemma. Let I = (I,<) be a totally ordered set and let (a;)icr, (G:)icr be
sequence of n-tuples from M = T with tp((@;)icr) = tp((bi)icr). Suppose (@;)icr
is indiscernible. Then
(i) (bi)ier is indiscernible.
(i) If o(Z,7) € Fml.Z and if there is no € in any elementary extension of M
such that (T, ¢) splits (@;);cr, then there is no € in any elementary extension

of M such that ©(Z,¢) splits (b;)icr-

Proof. (i) is obvious and (ii) follows with compactness: there is some N € IN such
that for all i > N, either for all ¢, ¢(a;, ¢) is true or for all ¢, ~¢(a;, ¢) is true. Note
that we use the indiscernability of the sequence here. (Il

6.6. Lemma. Let M < N such that N realizes every type from Sy (M) for every
k€ IN. Let q,r € S,(N) be invariant over M. Let @;,b; € N™ such that a = q |
(M U {ag,...,a,_1}) and by =7 [ (M U {bg,...,bg_1}) for all k < w.

If (@;)ic. is unsplittable and tp(ag,ay,.../M) = tp(bg, b1, .../ M), then q¢ = 7.

Proof. (cf. [Poi], 12.26).

We construct a sequence ¢y, ¢, ... by induction as follows: If 7 is odd, then we
take ¢; 11 to be a realization of the unique (by 6.3) extension of ¢ on N U{¢cy,...,;}
which is invariant over M. If i is even, then we take ¢; 1 to be a realization of the
unique extension of r on N U {&, ..., ¢} which is invariant over M.

Claim. tp(do, ai, /M) = tp(éo, cy, /M) = tp(bo, bl, /M)

We prove by induction on 7 that

tp(&o, ,C_ZZ/M) = tp(éo, ,EZ/M) = tp(go, veny l_)i/M) (+)
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If 4 = 0 this holds true, since ¢ and r extend tp(ag/M) = tp(by/M). Suppose we
know (+) already for i. By symmetry we may assume that i is odd. Since ¢;11 is
a realization of an extension of ¢, ¢; 11 also realizes ¢ [ (M U {ay, ...,a;}). Hence by
choice of a@; 1 we have

tp(éi_;,_l/M U {&0, ey @1}) = tp(ai+1/M U {@0, ey dz})
Pick w(jo, ...,fi,fi+1) € FIHIZ(M) with IV ): 1/1((_7,0, ey Qg C_Ll'_;,_l). Then

¥(@o, .., @i, Tiy1) € tP(aip1/M U {ao, ..., a:}),
thus

¢(@0, ey &ia-fi—&-l) € tp(@.;,q/M ] {E,O, ey ELi}) - tp(5i+1/N U {Eo, ,El})
Since the latter type is invariant over M by choice of ¢; 11 and by the induction
hypothesis we have tp(ao, ..., a;/M) = tp(co,...,¢;/M), we get 1(Co, ..., Ci, Tit1) €
tp(Cit1/N U {c,...,&}). This shows = 9(cy, ..., &, ¢+1) and finishes the proof of
tp(éo,...,éi+1/M) th(éo,...,éi+1/M). B B
By assumption, we have tp(ao, ..., a;+1/M) = tp(bo, ..., bi+1/M), hence we get
the claim.

By 6.4, (@;)ie. is indiscernible. Hence by 6.5, (¢;);c. is unsplittable. Since the
¢; are alternating between realizations of ¢ and r, this is only possible if g =r. 0O

6.7. Corollary. Let M < N be models of T such that N realizes every type from
Sk(M) for every k € N. If T has NIP, then the number of n-types of N which are
invariant over M is bounded by card S,,(M).

Proof. By 3.8, every indiscernible sequence is unsplittable. Hence the corollary
follows from 6.6 and 6.4. O

7. NIP VIA COUNTING COHEIRS

7.1. Theorem. 7T has the independence property if and only if there is a 1-type p
over some model M of T with card M > card £ and some N >~ M such that p has
22" ™ Coheirs on N.
Proof. First suppose T has the independence property. By 3.9 (and 1.1) there is a
formula ©(Z,y) which has the independence property. Take A > card ., a model
N of T and
a; € Nybg € N* (i€ \,S C\)
such that
N = p(bs,a;) < i€ S.
Since A > card .Z, there is an elementary substructure M < N of size A containing
each a;.
Let u be an ultrafilter of subsets of A and define p, € S1(V) via

pu=A{(y,0) e FmLA(N) [{i € M| N |=¢(ai, 0)} € u}.
Straightforward checking shows that p,, is indeed a 1-type of N.

P, is a coheir over M, since every formula of p, by definition is satisfiable in M.
Since N |= ¢(bs,a;) <= i€ S foralli € S C A we have p, # p, whenever v # u
are ultrafilters of subsets of \.

This shows that there are at least as many coheirs of 1-types of M on N as there
are ultrafilters of subsets of A. On the other hand, there are at most 2* 1-types of
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M and there are 22" ultrafilters of subsets of A (cf. A.5 in the appendix below).
Since 2* is strictly less than the cofinality of 22° (cf. A.4 in the appendix below)
there must be some p € S;(M) which has at least 22" coheirs on N.

Conversely suppose T has the NIP. By 6.7, the number of invariant extensions
of a given type p € S, (M) on some N = M is bounded by card S, (M). Since
card S, (M) < 2°44M and every coheir is invariant (cf. 6.2), this gives the assertion.

(Il

As an application:

7.2. Corollary. IfT is a weakly o-minimal theory, then T has the NIP. In partic-
ular every o-minimal structure has NIP (recall that for every o-minimal structure,
the theory of this structure is o-minimal).

Proof. Recall that T is a theory in a language containing < and weak o-minimality
says that every parametrically definable subset of each T-model M is a finite union
of convex sets. It is an exercise to show directly from this condition that

(a) every Dedekind cut £ of a model M of T is induced by at most two 1-types p
of M, i.e. there are at most two 1-types p with the property a < £ <= a <
z€p(aeM).

(b) Every l-type p of a model of M has at most two coheirs ¢ on any N = M,
namely the cut determined by ¢ on N has to be the least or the largest
extension of the cut determined by p on M.

Hence by 7.1, T' has NIP. (]

8. VAPNIK-CHERVONENKIS DIMENSION

8.1. Definition. Let X be a set and let S be a collection of subsets of X. We say
that S shatters a subset B C X if every subset of B is of the form BN.S for some
Ses.

If there is some d € IN such that & does not shatter any subset of size d of X,
then the smallest such d is called the VC-dimension, or VC-index, of §. ‘VC’
stands for Vapnik-Chervonenkis. In this case S is called a VC-class.

If there is no such d, then VC(S) := occ.

Let S be a collection of subsets of a set X. For B C X, let BNS = {BNS | S € S}.
For n € IN let

fs(n) =max{|BNS|| BC X and |B| =n}.
Thus fs(n) = 2™ if and only if S shatters a set of size n. Surprisingly, fs(n) is
polynomially bounded for large n, if S has finite VC-dimension:

8.2. Theorem. Suppose S does not shatter any subset of X of size d. Then for
all n > d, fs(n) is at most the number of subsets of an n-element set of size < d,

given by
pa(n) = (?)

i<d

Observe that pa(n) is a polynomial of degree d — 1.
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Proof. First note (by counting subsets of size < d of an n-element set) that py(n) =
pa—1(n—1) + pa(n —1).

We proceed by induction on n. If n = d then fs(n) < 2™ = pp(n) — 1. Now
let n > d and let B C X be of size n. We must show that |B N S| < pg(n) and of
course we may replace S by BNS. Fix x € B and define

So={SeS|z¢Sand SU{z} €S}

S ={SeS|zeSor Su{z} ¢S}

Since S does not shatter any subset of X of size d, Sy does not shatter any subset
of X \ {z} of size d — 1.

Hence the induction hypothesis says (B \ {z}) N So| < pg—1(n —1). Asx ¢ S
for any S € Sp, (B\ {z})NSp = Sp and |So| < pg—1(n —1).

On the other hand |S1| < |(B\ {z}) N &;] since the map S — (B \ {z}) NS,
which removes x is injective (by definition of S; and since all S € S; are assumed
to be a subset of B).

By the induction hypothesis we have |S1| < pg(n — 1). Thus |S| = [So| + |S1] <
pa-1(n — 1) + pa(n — 1) = pa(n). O

8.3. Corollary. If M is a structure that has NIP and S C M™ x M is definable,
then there is some d € IN such that for all sufficiently large n € IN and every subset
X C MF of size n, there are at most n? sets of the form X N S, where a varies in
M™.

Proof. Since M has NIP, the collection {S, | a € M™} has finite VC-dimension d.
Now apply 8.2 and notice that pg(n) is a polynomial of degree d — 1. O
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APPENDIX A. THEOREMS OF HAUSDORFF AND KONIG

A.1. Theorem. (Theorem of Kinig)
Let I be an index set and for each i € I let A;, B; be sets with card A; < card B;.

Then
card Z A; < card H B;.
i i

Proof. We may assume that the A; are disjoint. Let s : UAZ- — [[, Bi be a map.
We construct an element not in the image of s: For i € I let 7; : [[, B, — B; be
the projection. By assumption ;(s(A;)) # B; for each i. Pick b; € B; \ m;(s(4;)).-
We claim that (b;); is not in the image of s. Otherwise there is some k € I and some
a € Ay, with s(a) = (b;);. But then by = m(s(a)) € mi(s(Ax)) in contradiction to
the choice of by. O

A.2. Corollary. For every infinite cardinal k we have Kk < Kk°*.

Proof. For i < cfr let A\; < £ such that s = sup; ;. Then x < 3", \; < [, k = £°I*
by A.1. 0

A.3. Corollary. For all cardinals k, A\ with k > 2 and X\ > w we have Cf(KJ)‘) > .
Proof. Otherwise (HA)Cf(KA) < (kM)A = kM = K in contradiction to A.2. O

A.4. Example. For every infinite cardinal x we have cf(2%) > k.

A.5. Theorem. (Theorem of Hausdorff)
If k is an infinite cardinal, then there are 22" ultrafilters of subsets of k.

Proof. Tt is enough to construct an independent subset {.S; | i < 2%} of subsets of &,
i.e for all distinct i1, ..., 7, < 2% and all €4, ...,&, € {0, 1} we have S;' N..NS;™ # 0,
where S° = S and S! = k\ S; then for every subset T of 2* the set {S; | i €
TIU{k\ S;|i€2"\ T} is a basis of a proper filter of subsets of x and different
T’s can not be contained in the same ultrafilter.

Now the construction:

Let F be the set of all finite sequences (F, Fy, ..., F},), where F' C & is finite and
Fy,...,F, C F. Then card F = k. We define a subset {S’ | S C 2"} of subsets of
F as follows: Pick S C 2" and define

S'={(F,Fy,...F,) € F| SNF € {F,....F,}}.

Now take distinct Si,...,S, C k and e1,....,e, € {0,1}. Take F C & finite
such that the map {S1,...,5,} — P(F), S — F NS is injective. Let i3 <
. < i be an enumeration of those indices ¢ € {1,...,n} with ; = 0 and let
FF=FnS,,...F,=FnNS,,. Then for each i € {i1,...,1}, S contains the point
(F, Fy,..., Fy). Whereas, if ¢ € {1,...,n} \ {i1,...,ix} then S; N F is not among the
Fi,...,Fy, so (F,Fh...,Fk) S ]:\S{

This shows that {S" | S C 2"} i an independent set of subsets of F. Observe
that S; # Sy implies S] # S5. As card F = k, this finishes the proof. O
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