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Abstract. We study the model theoretic strength of various lattices that oc-

cur naturally in topology, like closed (semi-linear or semi-algebraic or convex)

sets. The method is based on weak monadic second order logic and sharpens
previous results by Grzegorczyk. We also answer a question of Grzegorczyk

on the ’algebra of convex sets’.
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1. Introduction

A lattice in this note is a partially ordered set that has suprema and infima for finite
nonempty subsets. We are concerned with lattices arising naturally in topology, e.g.
as zero sets of certain algebraic structures of continuous functions on topological
spaces. Examples are:

- Closed subsets of Rn: zero sets of continuous functions Rn −→ R.
- Zariski closed subsets of Cn: zero sets of polynomial maps Cn −→ Cm.
- Linear subspaces of Kn for a field K: zero sets of linear functions Kn −→ Km.
- Convex hulls of finite sets in Kn for some ordered field K: zero sets of convex

continuous semi-linear functions Kn −→ K.
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2 Strength of topological lattices, M. Tressl

We call lattices of such kind topological lattices; there is no formal definition given,
but we use the terminology to explain ideas.1 Given such a lattice L, we are in-
terested in the strength of the first order structure (L,≤), i.e., we want to know
what is interpretable in the partially ordered set (L,≤). An important sub-question
is: When is (L,≤) decidable? Many of such decidability questions have been ad-
dressed in A. Grzegorczyk’s paper on Undecidability of some topological theories,
[Grzego1951]. We revisit parts of Grzegorczyk’s paper, improve some results as
well as answer questions from [Grzego1951, end of §5]. I have included footnotes
en route when there are strong contact points to [Grzego1951].

On the other hand, our method and our context is different from those in
[Grzego1951]. We study topological lattices with the aid of weak monadic second
order structures: These are first order structures where it is allowed to quantify
over finite subsets of the universe (however we will use a first order implementation
of this second order structure, see section 2).

Conceptually, our results say that a topological lattice is decidable, when it comes
from a 1-dimensional topological space, or, when the space has few connected sets;
otherwise it interprets (N,+, ·) (or its theory).

Here is an outline of the paper. Our main focus are topological lattices related
to some ordered context, although we talk briefly about Zariski closed sets and the
p-adics in section 7. For this introduction, think of a given topological space X,
like Rn or Qn and the lattice as some lattice of closed subsets of X, like all closed
subsets of X, closed semi-linear subsets of Qn or closed 1-dimensional semi-algebraic
subsets of R2.

In many lattices L of closed sets one can find isomorphic (in a sense to be made
precise in the text) copies of a unit interval I, like the unit interval in R or in Q.
This is explained in section 4. The overall strategy is to analyse which structure
is imposed by the ambient L on these intervals. It turns out that L imposes the
weak monadic order structure of the total order on I. More precisely L defines the
partially ordered set of finite unions of closed subintervals [a, b] of I. In section 3
we will study this partially ordered set first and show that it is essentially the same
as the ordered set I extended by quantification over finite sets (cf. 3.1). Using
Rabin’s landmark result on the decidability of the monadic second order theory of
two successor functions (cf. [Rabin1969]) it follows that this extension is decidable
(cf. 3.6).

In particular topological lattices are decidable, when the space itself is 1-di-
mensional (in an informal sense). If the space is not 1-dimensional then one can
frequently find a first order definition of ”equal size” of finite sets (these are present
as elements in the lattice). This phenomenon suffices to interpret arithmetic in the
lattice (cf. 3.2).

In section 6 then, the method leads to interpretations of (N,+, ·) in various
topological lattices that are not based on a 1-dimensional space, see 6.3, 6.7, A
particular case is given by lattices of convex (not necessarily closed) sets in some
Kn, K an ordered field. Here we show, using the strategy above, that L indeed
interprets the ordered field K expanded by integers. This answers a question of
Grzegorczyk at the end of [Grzego1951, §5].

1In the literature, a topological lattice is a lattice equipped with a topology. Our lattices carry
natural Vietoris-like topologies, but this does not play a role here.
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Our standard model theoretic set up follows Hodges book [Hodges1993]. The
main reference for o-minimal structures is [vdDries1998]; however the text does
not strongly depend on o-minimality and one can just read “semi-linear” or “semi-
algebraic” instead of “o-minimal”.

2. The weak monadic structure of a first order structure

A common feature of the topological lattices that we are concerned with is that
they frequently interpret the (weak) monadic second order logic of a structure. We
will encompass this logic itself in a first order structure and first look at some model
theory of these structures.

2.1. Notation. Let L = (L,≤,∧,∨,⊥) be a lattice with smallest element ⊥. An
atom of L is an element that is minimal among all elements different from ⊥. We
say that an element x ∈ L is L-connected (or just connected if L is clear from the
context) if there are no y, z ∈ L, with y ∧ z =⊥6= y, z and y ∨ z = x.

For example, if L is the poset of linear subspaces of Cn. Then L is a (bounded)
lattice with a ∧ b = a ∩ b, a ∨ b = a + b (sum of linear spaces), ⊥= {0}. Then the
atoms of L are the one dimensional subspaces and these are the only L-connected
elements of L. Notice that L is not distributive.

We will frequently work with a sublattice of some powerset. In this case we write
⊆,∩,∪, ∅ instead of ≤,∧,∨,⊥.

2.2. Definition. Let L be a language (by which we always mean a first order
language). Let L be the language that extends the language of lattices (⊆,∩,∪, ∅)
with bottom element by adjoining an n-ary predicate symbol Zϕ for every L -
formula ϕ in n variables.

Let M be an L -structure. The monadic second order structure of M is
defined as the following first order structure MSO(M) in the language L : MSO(M)
is the expansion of the lattice P(M) (the powerset of M) by the following sets: For
each L -formula ϕ in n variables the predicate Zϕ is interpreted in MSO(M) as

{({z1}, . . . , {zn}) | (z1, . . . , zn) ∈M, M |= ϕ(z1, . . . , zn)} ⊆ P(M)n.

We identify an element m ∈ M with the atom {m} of P(M). In particular M is
considered as a subset of P(M) and more generally any subset Z of Mn is identified
with the subset {({z1}, . . . , {zn}) | (z1, . . . , zn) ∈ Z} of P(M)n. 2 Notice that then,
elements of M are, a priori, not 0-definable in MSO(M).

The weak monadic second order structure of M is defined to be the substruc-
ture W (M) of MSO(M) induced on the finite subsets of M . Explicitly, W (M) is the
first order structure expanding the lattice of finite subsets of M by the 0-definable
(in M) subsets of Mn (where again we identify M with {{m} | m ∈M} ⊆ P(M)).

2.3. We mainly work with W (M) and record a few basic properties and conven-
tions.

(i) When dealing with definable subsets of W (M) we use a human readable for-
mat. This mainly concerns subsets of Mn when Mn is considered as a sub-
set of P(M)n. For example if M = (M, ·) is a semigroup, then we still

2 Another set up could be to introduce a new sort for the powerset of M and the element
relation between M and its powerset. We choose a single sorted set up, since this fits better with

applications later.
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write x · y for the partial function W (M) × W (M) −→ W (M) defined on
M ×M ⊆W (M)×W (M).

(ii) The structure M is 0-definable in W (M) as follows immediately from the
definition of W (M).

(iii) For a map f : M −→ N of L -structures, let W (f) : W (M) −→W (N) be the
map that sends a finite subset of M to its image under f . If f is elementary
then clearly W (f) is an L -embedding, but it is in general not elementary. 3

On the other hand, if W (f) is elementary then f is elementary by (ii).
(iv) If N is an elementary L -substructure of W (M), then the intersection N of

N with M (recall that M is identified with the set of atoms) is an elementary
substructure of M and N = W (N): Let N be the set of atoms of N . Each
element of N is an atom of W (M), hence N ⊆ M (using the convention of
identifying atoms with elements of M). Now by (ii), M (as a structure) is
defined in W (M). The definition, when applied to N , creates an L -structure
on N . We consider N equipped with this structure. Now, W (M) ’knows’
that it is the monadic second order structure of an L -structure and so does
N : If ϕ is an L -formula in n variables, then using the definition from (ii),
there is an L -formula ψ in n-variables such that for all ā ∈ Mn we have
M |= ϕ(ā) ⇐⇒ W (M) |= ψ(ā). By definition of N it follows for ā ∈ Nn

that N |= ϕ(ā) ⇐⇒ N |= ψ(ā). Since N ≺ W (M), this shows that N is
the induced structure of M on N and N = W (N) (and so N ≺M).

(v) There are not many model theoretic properties that pass from L -structures
(or maps between them) to their weak monadic second order correspondents;
the reason is that W (M) has in general a much richer structure of definable
sets than M , see for example 2.6. To deal with definability in W (M) it is
useful to think of a second order language; I comment on this now in order to
help the reader parsing the text, without explicitly using it later on: Given a
first order language L , a second order formula of L is built just like a first
order formula, with the exception that we have a second kind of variables
X,Y, Z . . . and quantifiers ∀X,∃Y over these variables; further we may use
atomic formulas of the form X(v) expressing v ∈ X, for a second order variable
X and a first order variable v. In a first order L -structure M , the variables
and their quantifiers in a second order formula are thought of as ranging over
(special classes) of subsets of the universe. In MSO(M) we can read second
order quantification over subsets of M as first order quantification over the
powerset of M . In W (M) we can read second order quantification over finite
subsets of M as first order quantification over W (M). This means: we can
explicitly translate second order formulas ϕ of L into first order formulas ϕ̃
of L such that ϕ is true in M at some tuple (where second order quantifiers
and variables range over finite sets) iff ϕ̃ is true in W (M) at that tuple.

Many undecidability results in this note rely on the undecidability of W ((N,+)).4

We address this first, and, for subsequent use, in a slightly more general setting. If
S = (S, ·) is a semigroup (i.e. · is associative) then we write X · Y = {x · y | x ∈
X, y ∈ Y } for X,Y ⊆ S and sK = {sk | k ∈ K} for K ⊆ N. An element s ∈ S is

3To see an example: If K is a field of characteristic 0, then, using results from [Bauval1985]

one can interpret in L , only depending on Th(K), the pair of fields (K,Q). But in general the

theory of this pair changes when we replace K by an elementary extension.
4N = {1, 2, 3, . . .}.
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called torsion if sN is finite. Notice that sN does not need to be cancellative. On
the other hand, if s is not torsion, then (sN, ·) ∼= (N,+).

2.4. Proposition. If S = (S, ·) is a semigroup, then the binary relation t ∈ sN of
S is 0-definable in W (S), independently of S; i.e., the defining formula is the same
for all semigroups S.

Proof. In this proof, “definable” means 0-definable in W (S). We proceed in several
steps.

(a) Obviously, the map W (S) ×W (S) −→ W (S), (X,Y ) 7→ X · Y is definable.
Further it is clear that the set of finite semigroups (by which we mean sub-
semigroups of S) is definable. Consequently the torsion elements of S are
definable by saying that s ∈ X for some finite semigroup X.

(b) The following property of (s,X), s ∈ S, X ∈W (S) is definable:

(∗) s is not torsion and ∃n ∈ N : X = s{1,...,n}.

Proof. It suffices to show that (∗) holds if and only if the following properties
hold (as ”torsion” and the other properties are 0-definable in W (S)):

s ∈ X, s is not torsion and

∃x ∈ X
(
X ∩ x ·X = ∅ and s · (X \ {x}) ⊆ X

)
.

If (∗) holds, then x = sn has the required properties as sN is cancellative.

Conversely, suppose s ∈ X is not torsion and there is some x ∈ X with
X∩x·X = ∅ and s·(X \{x}) ⊆ X. Let n ∈ N be maximal with s{1,...,n} ⊆ X.
Since sn+1 /∈ X and s · (X \ {x}) ⊆ X we must have x = sn. Consequently,
X ∩ sn ·X = ∅. Now take y ∈ X and let k ∈ {0, . . . , n− 1} be maximal with
sk · y ∈ X (where s0 · y stands for y). Since sny /∈ X we have sk+1y /∈ X and
therefore sky = x. Hence sky = sn, which implies y = sn−k ∈ s{1,...,n} by
cancelation. �

(c) We can now define t ∈ sN by saying
t is in the smallest finite semigroup containing s, or, there is some
X ∈W (S) with t ∈ X such that property (∗) holds for s and X.

�

2.5. Corollary. Let S be the semigroup (N,+). Then in W (S) multiplication of
natural numbers is 0-definable.

Proof. By 2.4 we can define, without parameters, division of natural numbers by
saying that k|n if and only if n is in the (additive!) semigroup generated by k. It
is routine to check that multiplication is 0-definable in (N,+, |). �

2.6. For infinite abelian groups G with p · G = 0, p prime, the structure W (G)
is also undecidable, but for a different reason: Let T be the common theory of all
finite dimensional Fp-vector spaces expanded by 5 subspaces. This is known to be
undecidable by [Toffal1997, Example 2, p. 246]. Now notice that G is an Fp-vector
space and as G is infinite the set of finite dimensional Fp-vector spaces is (up to
isomorphism) a definable subset of W (G). It is then not difficult to effectively
construct for each sentence ϕ in the language of T a sentence ϕ̃ in the language of
W (G), such that

T ` ϕ ⇐⇒ W (G) |= ϕ̃.
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As T is undecidable, also W (G) must be undecidable. We omit the details here as
we do not use it later on. However it is worth mentioning because it has a nice
application in our context:

If M is an infinite set (viewed as a first order structure in the empty language),
then W (W (M)) is undecidable: The reason is that W (M) expands an infinite
abelian group of exponent 2, where addition is symmetric difference of finite sets.
It should be said that the undecidability of T here is based on the insolvability
of the word problem for the class of finite groups. I do not know if W (W (M))
interprets Peano arithmetic.

We see from 2.4 and 2.6 that W (M) may become wild for fairly simple structures
M . There is one notable exception:

2.7. Proposition. Let T be an ω-categorical theory in a countable language.

(i) If M ≺ N are models of T , then W (M) ≺W (N).
(ii) For every M |= T , M is stably embedded into W (M). In fact, every S ⊆Mn

that is definable in W (M) with parameters a1, . . . , ak ∈W (M) is definable in
M with parameters from a1 ∪ . . . ∪ ak.

Proof. (i). First assume M is countable and N is strongly ℵ1-homogeneous. Take
a countable elementary substructure N of W (N). By 2.3(iv), there is a countable
N0 ≺ N with N = W (N0). Since M,N0 ≺ N are countable they are isomorphic
(by ω-categoricity) and there is a an automorphism of N mapping M to N0. This
automorphism then extends to an automorphism of W (N) and this extension maps
W (M) to W (N0) = N ≺W (N). It follows that W (M) ≺W (N).

For the general case choose N1 � N strongly ℵ1-homogeneous and take a sen-
tence ϕ in the language of L with parameters from W (M) with W (M) |= ϕ. Take
a countable elementary substructure M0 ≺W (M) containing the parameters of ϕ.
By 2.3(iv), we know that M0 = W (M0) for some countable M0 ≺M . By what we
have shown above we get W (N1) |= ϕ. But then W (N) |= ϕ, too: Otherwise, the
same argument as for M would entail W (N1) |= ¬ϕ.

(ii) Let S ⊆ Mn be definable in W (M) by an L -formula ϕ(x̄, ā), x̄ an n-tuple,
ā ∈ W (M)k. Let E be the union of the finite sets a1, . . . , ak. By (i) we may
replace M by a countable elementary substructure containing E. Suppose S is not
definable in M with parameters from E.

Claim. There are b̄, c̄ ∈Mn such that b̄ ∈ S, c̄ /∈ S and tpM (b̄/E) = tpM (c̄/E).

Proof of the claim. Since T is ω-categorical, SM
n (E) is finite by Ryll-Nardzewski

([Hodges1993, Theorem 7.3.1]), say SM
n (E) = {q1, . . . , qm} is of size m. For each

i ∈ {1, . . . ,m} take an L (E)-formula ψi(x̄) isolating qi. Since we assume that S
is not definable in M with parameters from E, the set S is not a finite union of
sets defined by some ψi(x̄). Hence for some i, both S and Mn \ S hit ψi[M

n].
Take b̄ ∈ S ∩ ψi[M

n] and c̄ ∈ ψi[M
n] \ S. Then tpM (b̄/E) = qi = tpM (c̄/E), as

required. �

Now take b̄, c̄ ∈ Mn as in the claim. Then tpM (b̄/E) = tpM (c̄/E). Since M is
countable and T is ω-categorical, M is saturated and there is an E-automorphism
σ of M with σ(b̄) = c̄ (cf. [Hodges1993, Cor. 7.3.3]). But then σ extends to an
a1, . . . , ak-automorphism σ̄ of W (M) and this contradicts the assumption that S is
defined in W (M) by ϕ(x̄, ā). �
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2.8. Remark. Let M be an ω-categorical structure in a relational language L . If
the universal theory T∀ of T is finitely axiomatisable, then the age of M (i.e. the set
of finite substructures of M , cf. [Hodges1993, p. 324]) is a definable set in W (M):
There is obviously an L -formula that holds in W (M) at just those A ∈W (M) for
which T∀ is true, when A is considered as a substructure of M . This applies, for
example, to the countable atomless boolean algebra A (in the language {≤}, say).
Notice that W (A) still is undecidable by 2.6.

The following consequence of 2.5 will be used several times later to check if a
structure interprets Peano arithmetic, or even (N,+, ·).

2.9. Proposition. Let M be an infinite set and let E ⊆W (M)×W (M) be defined
by

E(a, b) ⇐⇒ a and b are disjoint and of the same size.

Let (W (M), E) be the expansion of W (M) by E.

(i) (W (M), E) defines (without parameters) the relation “a and b have the same
size” of W (M). If we identify the equivalence classes with N0 = {0, 1, 2, . . .},
where n ∈ N0 stands for the size of a representative, then (W (M), E) inter-
prets addition of natural numbers on N0 without parameters. 5

(ii) Suppose N is an expansion of (W (M), E) and S(x, ȳ) is a formula of N with
the following properties:
(a) For each b̄ ∈ W (M)ȳ the set {size(a) | a ∈ W (M), N |= S(a, b̄)} is

finite.
(b) For all k ∈ N and all n1, . . . , nk ∈ N there is some b̄ ∈W (M)ȳ such that

{n1, . . . , nk} = {size(a) | a ∈W (M), N |= S(a, b̄)}.
Then N interprets (N,+, ·) without parameters. The interpretation only de-
pends on S and not on M .

Notation: If N is an expansion of (W (M), E) for which there is a formula S(x, ȳ)
satisfying (a) and (b) then we say that N defines finite sequences of integers.

Proof. (i). Two finite subsets a, b of M have the same size if and only if E(a\b, b\a).
This condition is first order in (W (M), E), hence we may define the relation “a and
b have the same size” of W (M). We thus may replace E by this relation. We write
[a] for the equivalence class of a modulo E. Then the relation

A([a], [b], [c]) ⇐⇒ ∃a′, b′, c′ : E(a, a′) & E(b, b′) & E(c, c′) & a′∩b′ = ∅ & a′∪b′ = c′

defines in (W (M), E) the graph of addition induced by (N0,+) via the bijection

W (M)/E −→ N0; [a] 7→ size(a).

(ii). This follows from (i) and 2.5, since (a) and (b) guarantee that N (or better,
the expansion of (W (M), E) by the predicate S) interprets W (N,+). �

2.10. Outline on how 2.9 will be applied. An important lattice that appears
in topologies related to orders is the lattice L0 of finite unions of closed intervals
of the form [a, b] for a, b ∈ T , where T is a dense linear order. In 3.1 we will
see that the poset (L0,⊆) is bi-interpretable with a certain weak monadic second
order structure W (M) of some first order structure M with universe T . This will
be applied later as follows: In a topological lattice L one can frequently interpret

5(W (M), E) is decidable, see [FefVau1959, Last paragraph on p.101].
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W (M) through the lattice L0; then if L is essentially not based on a 1-dimensional
set (the precise formulation can be found in 6.3), one can define the expansion
(W (M), E) of W (M) as in 2.9. Condition (ii) of 2.9 for (W (M), E) then comes for
free from the presence of an order on T (see 3.2) and so by 2.9, (L,⊆) will interpret
(N,+, ·) (or at least its theory when parameters are involved).

3. Finite unions of closed intervals

First some notation. If T = (T,≤) is any totally ordered set, then consider the
betweenness relation B defined by T : B is a ternary relation and B(x, y, z) holds
just if x ≤ y ≤ z or z ≤ y ≤ x. Betweenness relations will show up axiomatically
in 4.1 below. Currently there is no need to talk about this axiomatically. We write
[[x, y]] = [x, y] ∪ [y, x], for the set of all z ∈ T between x, y and similarly ((x, y)) for
the set of all z ∈ T properly between x, y. Hence z ∈ [[x, y]] just means B(x, z, y)
and this relation is 0-definable in the structure (T,B).6

3.1. Proposition. Let (T,≤) be an infinite totally ordered set with betweenness
relation B and let L = (L,⊆) be the partially ordered set of finite unions of closed
intervals of T of the form [a, b] (which is a distributive lattice with bottom element).
Let B be the betweenness relation of (T,≤) and consider the first order structure
(T,B).

(i) The poset L is interpretable in W (T,B) without parameters.
(ii) If T is densely ordered, then W (T,B) is definable in the poset L without

parameters and – using the interpretation from (i) – L and W (T,B) are bi-
interpretable.7

The definition and the interpretation are independent of T .

Proof. We write M = (T,B).

(i). For finite sets E,F,G ∈W (M) consider the set

AE,F,G :=⋃{[[e, f ]] | e ∈ E, f ∈ F,
[[e, f ]] ∩ E = {e}, [[e, f ]] ∩ F = {f}, [[e, f ]] ∩G = ∅}.

Clearly AE,F,G ∈ L. Conversely, if U ∈ L, then there are elements

e1 ≤ f1 < g1 < e2 ≤ f2 < g2 < . . . < gn−1 < en ≤ fn
in T with U = [e1, f1]∪ . . .∪ [en, fn]. Then U = AE,F,G with E = {e1, . . . , en}, F =
{f1, . . . , fn} and G = {g1, . . . , gn−1}. We can then interpret L in W (M) without
parameters as follows: The universe is W (M)3. Routine checking shows that the
binary relation AE,F,G ⊆ AE′,F ′,G′ of W (M)3 is 0-definable in W (M). Hence
also the equivalence relation (E,F,G) ∼ (E′, F ′, G′) ⇐⇒ AE,F,G = AE′,F ′,G′ of
W (M)3 is 0-definable in W (M). Thus L is interpreted as W (M)3/ ∼ together with
the partial order induced by AE,F,G ⊆ AE′,F ′,G′ .

6Obviously (T,≥) has the same betweenness relation B as (T,≤). Routine checking shows that

these are the only orders with betweenness relation B. Conversely, for a first order definition of
≤ in (T,B) one generally needs to name two elements: think of Q with its betweenness relation

and consider reflections 2q − x at q ∈ Q: They preserve the betweenness relation and fix q.
7Hence after naming two singletons of T (seen as elements of L), W (T,≤) is definable in the

poset L.
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(ii). Assume now that T is densely ordered. Then we can define that a set C ∈ L
is definably connected8: We say that it is not the disjoint join of two nonempty
sets in L. Consequently we can also talk about definably connected components of
A ∈ L. This shows that, as a set, W (M) is 0-definable in L as those A ∈ L for
which every definably connected component is an atom of L.

Having identified the finite subsets of T as a 0-definable subset of L it suffices
to define the betweenness relation on the atoms of L that is naturally given by T :
Given atoms {a}, {b}, {c} of L we say that {b} is between {a} and {c} if {b} is
included in the smallest definably connected set A with {a}, {c} ⊆ A.

The bi-interpretability is now routine checking and left to the reader. Both methods
(i) and (ii) are independent of T . �

3.2. Proposition. Let (T,≤) be an infinite totally ordered set and let B be the
betweenness relation defined by (T,≤). Let M be the structure (T,B).

Let E ⊆W (M)×W (M) be defined by

E(a, b) ⇐⇒ a and b are disjoint and of the same size.

(i) The structure (W (M), E) defines without parameters and independently of
(T,≤), finite sequences of integers in the sense of 2.9.

(ii) The structure (W (M), E) interprets (N,+, ·) without parameters and inde-
pendently of (T,≤). More precisely, it interprets the natural definition of ad-
dition and multiplication on the equivalence classes of T modulo the relation
that identifies sets of equal size.

Since (T,B) is 0-definable in (T,≤) items (i) and (ii) are also true for M = (T,≤).

Remark: For the full monadic version of this proposition also see [Gurevi1985,
Proposition 1.3.1].

Proof. Item (ii) follows from 2.9(ii) once we have shown (i). In order to see (i) we
may assume by using 2.9(i) that E satisfies

E(a, b) ⇐⇒ a and b are of the same size.

for all a, b ∈W (M).

We call x, y ∈ T a jump of b ∈ W (M) if x, y ∈ b, x 6= y and ((x, y)) ∩ b = ∅. For
a, b, c ∈W (M) we define a relation

S(a, b, c) ⇐⇒ ∃x, y ∈ b
(

((x, y)) ∩ b = ∅ & E(((x, y)) ∩ c, a)

)
.

Hence S(a, b, c) holds just if there is a jump x, y of b such that the size of ((x, y))∩ c
is the size of a. Since the relation z ∈ ((x, y)) is definable in M = (T,B) by
B(x, z, y) & z 6= x, y, it is clear that S is 0-definable in (W (M), E). Further, for
all b, c ∈ M , the set of E-equivalence classes of a ∈ W (M) with S(a, b, c) is finite:
It consist of all the E-classes of a ∈ W (M) such that the size of a is the size of
((x, y)) ∩ c for some jump x, y of b. Hence 2.9(ii)(a) holds.

On the other hand, also 2.9(ii)(b) holds: If n1, . . . , nk ∈ N, then we may obvi-
ously choose finite subsets b, c of T such that the cardinalities of the sets ((x, y))∩ c
are n1, . . . , nk, when (x, y) runs through the jumps of b. Hence S(u, b, c) defines a
set of representatives of the elements of {n1, . . . , nk}. �

8Definably connected means definably connected in the o-minimal structure (T,≤)
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We turn to decidability of the lattice of finite unions of closed intervals.

3.3. Theorem. Let S2 be the binary tree 2<ω together with the two successor
functions σ 7→ σˆ1 and σ 7→ σˆ0. Then any expansion of MSO(S2) by naming
finitely many elements from W (S2) is decidable.

Proof. This is the main result in [Rabin1969], see [Rabin1969, Theorem 1.1] and
[Rabin1969, Corollary 1.9] �

3.4. Remark. The following binary relations on S2 are 0-definable in W (S2):

(i) σ ≤ τ defined as ’τ extends σ’. (One can express that σ is in the smallest
finite subset of S2 containing τ , that is closed under immediate predecessors.)

(ii) σ 4 τ defined as ‘σ is to the right of τ ’ in the natural horizontal order of the
binary tree 2<ω. Explicitly, this means σ = τ , or, σ 1̂ ≤ τ , or, τ 0̂ ≤ σ, or σ
and τ are incomparable for ≤ and if γ is the infimum of σ and τ for ≤, then
γ 0̂ ≤ σ.

(iii) It is clear that the poset (S2,4) is a countable dense linear order without
endpoints. Hence (S2,4) ∼= (Q,≤) and therefore we may consider W (S2) as
an expansion of W (Q,≤).

3.5. Corollary. If T is a densely linearly ordered set, then any expansion of W (T )
by naming finitely many elements is decidable. 9

Proof. Since T is ω-categorical we may assume that T is countable, using 2.7(i).
Then T is isomorphic to an interval of (Q,≤) with endpoints in Q. Since all these
intervals are parametrically definable in (Q,≤) we may assume that T = (Q,≤).
By 3.4(iii) it is therefore enough to show that any expansion of W (S2) by naming
finitely many elements is decidable. But this follows from 3.3, since W (S2) is
0-definable in MSO(S2): A subset S of 2<ω is infinite if and only if there is a
nonempty subset Y of the down set generated by S for ≤ such that for all σ ∈ Y
either σ 1̂ ∈ Y or σ 0̂ ∈ Y . �

3.6. Corollary. Let T be a dense linear order. Any expansion of the lattice of
finite unions of closed intervals of the form [a, b] by finitely many parameters, is
decidable.

Proof. By 3.5 and 3.1. �

3.7. Remark. The lattice (Q × Q,≤) with component wise order is obviously de-
finable in the totally ordered set (Q,≤). However, the weak monadic second order
structure of the lattice (Q×Q,≤) is not interpretable in the weak monadic second
order structure of (Q,≤); in other words, we can not talk about finite sets of pairs
of rational numbers in the first order structure (W (Q,≤)): We know from 3.5 that
W (Q,≤) is decidable; however W (Q×Q,≤) interprets the theory of (N,+, ·), see
6.7 (and 6.6).

4. Defining closed and bounded intervals

In order to apply the results from the previous section we need a method to define a
totally ordered set T in a topological lattice. The lattice will then frequently define
finite unions of closed intervals of T .

9This is generally attributed to Läuchli, see [Laeuch1968], but I was unable to find a precise
reference. So below is a proof relying on Rabin’s work.
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4.1. Definition. Let X be a set and B be a ternary relation on X. We say that
B is a bounded betweenness relation if there are a, b ∈ X such that

(a) B(a, x, y) and B(x, y, b) define the same total order ≤ on X with smallest
element a and largest element b.

(b) B is the betweenness relation of ≤.

We write [[x, y]] = {z ∈ X | B(x, z, y)}, ((x, y)) = [[x, y]] \ {x, y}, and [[x, y)) =
[[x, y]] \ {y}. Then B is called dense if ((x, y)) 6= ∅ for all x 6= y.

Clearly bounded (dense) betweenness relations are first order axiomatisable in
the language that has a ternary relation symbol.

4.2. Definition of I(x). Let I(x) be the formula in the language of posets saying
the following:

I1. x is connected, not an atom.
I2. The ternary relation of the set of atoms contained in x, defined as “u is in

the smallest connected element ≤ x containing v, w”, is a bounded and dense
betweenness relation.10

I3. For all atoms u ≤ x and every y ≤ x with u � y one of the following hold
true:
(a) There are atoms v, w ≤ x such that u ∈ ((v, w)) and ((v, w)) contains no

atom ≤ y.
(b) u is one of the boundary points for one/both of the two total orders given

by the betweenness relation in I2, and there exists an atom v ≤ x such
that u 6= v and [[u, v)) contains no atom ≤ y.

In both (a) and (b) the double bracketed expression refer to the betweenness
relation given by I2.

The idea here is that for an element a in a lattice L (and assuming that L is atomic),
I(a) says that the set of atoms of L underneath a should be orderable as a dense
linear order with endpoints, in such a way that the elements of L are (or, mimic) a
basis of closed sets of the order topology. We use the formulation with betweenness
relations as this avoids the use of parameters in applications.

4.3. Nota Bene. For a ∈ L the formula I(x) is true in L at a if and only if it is
true in the lattice {b ∈ L | b ≤ a} at a.

4.4. Proposition. Let X be a Hausdorff space that has a countable basis and let
L be a lattice of closed subsets of X with the following properties:

(a) If A ∈ L with L |= I(A), then all closed subsets of A are in L
(b) If A ⊆ X is homeomorphic to [0, 1]R then all closed subsets of A are in L.

(The largest such lattice is the set of all closed subsets of X, the smallest such
lattice is the set of all closed subsets of X that are contained in a finite union of
homeomorphic copies of [0, 1]R.)

Then I(x) defines in L the set of all subsets of X that are homeomorphic to the
closed unit interval of R.

Proof. By 4.3 and (b), I(x) is satisfied for subsets of X that are homeomorphic to
the closed unit interval of R. Conversely take T ∈ L with L |= I(T ). Since T also
has a countable basis we may use 4.3 again and assume X = T . Now condition (a)

10This implicitly implies that for all atoms v, w ≤ x there is a smallest connected b ≤ x with
v, w ≤ b.



12 Strength of topological lattices, M. Tressl

says that L is the lattice of all closed subsets of X, in particular L-connected is just
connected in the usual sense of topology. We pick one of the two linear orders v
on X defined by the betweenness relation B asserted to exist by the formula I(x).
Since v has B as its betweenness relation we know for all a, b ∈ X that the smallest
L-connected set from L containing {a, b}, is the interval [a, b]v. This shows that
[a, b]v ∈ L is closed in X. Therefore the order topology of v is contained in the
original topology of X. Now property I3 for X precisely says that the converse is
true as well. Hence the order topology of v is the original topology of X. Since X
has a countable basis it also has an infinite countable dense subset Y (X is infinite
since the betweenness relation B is dense).

Altogether we see that the topology of X is given by the order topology of a dense
and bounded order that has a countable dense subset and that is connected. By
[Bing1960] this characterizes the homeomorphism type of the closed unit interval
of R. �

4.5. Example. Without condition I3 of 4.2, the formula I(x) would not define
homeomorphic copies of [0, 1]R: For example let S = { 1

n | n ∈ N} and let

τ = {O \A | O ⊆ [0, 1]R open and A ⊆ S}.
Then τ is Smirnov’s Deleted Sequence Topology on [0, 1]R see [SteSee1995, no. 64,
p. 86]. Let X be [0, 1]R with this topology. Then X still has a countable basis,
e.g. take all O \ Y , where O runs through a countable basis of [0, 1]R in the order
topology and Y ⊆ S is cofinite. Routine checking shows that all intervals of [0, 1]R
are τ -connected and in the lattice of closed subsets of X, the element X satisfies I1
and I2. The order v in the proof of 4.4 is the natural order of [0, 1]R or its inverse,
but clearly X is not homeomorphic to the unit interval.

4.6. Proposition. Let R be an o-minimal expansion of a dense linear order and
let X ⊆ Rn be definable with parameters. Let L be a lattice of parametrically
definable subsets of X that are closed in X and suppose L contains all such sets of
dimension ≤ 1. Then I(x) defines in L the set of all subsets of X that are definably
homeomorphic to an interval of the form [a, b] of R, a < b.

Proof. Using 4.3, it is clear that I(x) is satisfied for all A ∈ L that are definably
homeomorphic to some [a, b] ⊆ R.

Conversely, by the cell decomposition theorem [vdDries1998, chapter 3, 2.11, p.
52] we see that every A ∈ L at which I(x) is true must be definably connected and
of dimension 1 (if dimA ≥ 2, then there are points x, y ∈ A such that there is no
smallest L-connected B ∈ L containing x, y). Then A is a finite union of definably
homeomorphic copies of intervals of R and routine checking shows that A must be
definably homeomorphic to some [a, b] ⊆ R. �

5. Linear spaces and convex sets

In [Grzego1951, §5] the “algebra of convexity” is shown to be undecidable. A
prototype of such an algebra is the Boolean algebra of subsets of Rn, n ≥ 2, together
with the convex hull operator. Generalizations of this type of closure operators have
shown to be undecidable, e.g. see [Davis2013] and [Dornhe1998]. However lattices
of convex sets themselves are much less studied from a logic perspective. At the
end of [Grzego1951, §5] the question is raised whether the lattice of closed convex
subsets of Rn, n ≥ 2 is undecidable. We confirm this in a strong sense, see 5.2.
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5.1. Reminder on incidence geometry.
For any field k, the lattice U of sub-vector spaces of k3 interprets the field k after
naming three parameters. In fact (U,⊆) and (k,+, ·) are bi-interpretable with
definable parameters (cf. [Hodges1993, Remark 5, section 5.3, p. 215]). This is
done via incidence geometry. We recall it briefly. Fix a 2-dimensional subspace H
of k3 (hence a maximal element of U \ {k3}). Let P be the set of all 1-dimensional
subspaces of k3 (these are the minimal elements of U \{(0)}) that are not contained
in H and let L be the set of all 2-dimensional subspaces of k3, except H. Then
the relation p ⊆ l between p ∈ P and l ∈ L is isomorphic to the affine incidence
geometry defined by k between points of k2 and affine 1-dimensional subspaces of
k2. The isomorphism between the incidence geometries is given as follows: We may
assume that H = k × k × {0}. Then the map

τ : k2 −→ P ; (a, b) 7→ (a, b, 1) · k ⊆ k2

is a bijection and the induced map between affine 1-dimensional subspaces of k2

and L that maps A to τ(A) is a bijection as well. This also shows that the partially
ordered sets (P ∪L,⊆) and (A,⊆) are isomorphic, where A is the set of all proper,
nonempty affine subspaces of k2.

Having the incidence geometries identified we may define the field k in (A,⊆)
after naming two points 0 6= 1 of A as parameters (in order to get the field in (U,⊆)
we need a third parameter for the definition of (A,⊆) in (U,⊆)): As a set it will
be the line through 0, 1 in the affine geometry, or a 2-dimensional subspace in the
poset of sub-vector spaces of k3:

Addition of A and C on a line with fixed point 0 is defined as follows: Choose
a point B not on the line and then use twice the fact that opposite lines in a
parallelogram are of the same length (this is independent of B). Of course in an
arbitrary field this has to be phrased appropriately, but over an ordered field it is
exactly this. The pictures show how to construct A+C out of 0, A and C step by
step:

0 A C 0 A C

B

0 A C

B

0 A C

B D

D − B = A− 0

0 A C

B D

0 A C A+C

B D

D − B = (A + C)− C

Multiplication of A and C on a line with fixed points 0 and 1 is done by applying
the Intercept Theorem twice. Choose a point B not on the line. The pictures show
how to construct A · C out of 0, 1, A,C step by step.

0 1 A C

B

0 1 A C

B

0 1 A C

B

D

D
B = A

1
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0 1 A C

B

D

0 1 A C

B

D

A·C

D
B = A·C

C

Hence the field is defined in (A,⊆) once we have named two distinct points 0 6= 1.

The method of defining ”intervals” is particularly easy for convex sets and iden-
tifies the strongest topological lattices: these are lattices of convex sets in higher
dimensions. For example the lattice of (semi-linear) convex subsets of Rn, n ≥ 2,
interprets (R,N,+, ·), the expansion of the real field by the set of natural numbers.
In detail:

5.2. Theorem. Let K be an ordered field and let M be any expansion of the
ordered K-vector space K. Let L be the poset of all parametrically definable and
convex subsets of Mn and let L = {C ∈ L | C is closed}. Then the map L −→ L
that sends C to its closure is 0-definable in (L,⊆); in particular L is 0-definable in
(L,⊆). The formulas defining these objects are independent of M and n.

Further, in the poset (L,⊆) the following sets are 0-definable:

(i) The set of all segments [a, b] (= the convex hull of {a, b} in Mn).
(ii) The set of affine subspaces of Mn as well as the set of affine subspaces of Mn

of a fixed dimension d.
(iii) The set {C ∈ L | C is bounded }.
(iv) If n ≥ 2, then (L,⊆) defines the ordered field K on any 1-dimensional subspace

` after naming two atoms of ` (` itself is then definable over these atoms).

Now assume n ≥ 2 and every definable, bounded subset of M that is discrete in M ,
is finite.11 Then

(v) The family

({`} × F | ` is a line and F is a finite set of atoms ≤ `)
is 0-definable in L.

(vi) The expansion of the ordered field K by naming Q as a subset, is interpretable
in the poset (L,⊆).

All formulas in (i)-(vi), defining the various objects can be chosen to be independent
of M and n.

Proof. Firstly, observe that any A ∈ L is uniquely determined by the atoms ≤ A.
We will talk about points ofA rather than atoms≤ A when we formulate elementary
properties within the poset (L. ⊆).

Claim 1. The set of all segments [a, b] is 0-definable in L by the formula I∗(x),
which says that there are atoms A,B ≤ x such that x is the supremum of {A,B}
in L. This is clear.

The formula I∗(x) also defines the segments in L̄ = (L,⊆), which shows (i).

Claim 2. The map L −→ L that sends C to its closure is 0-definable in L.

Proof. It is routine to check that indeed for every C ∈ L, the closure of C is in L
(just copy the proof for M = R). Let C ∈ L. Then the convexity of C implies that
C ∈ L if and only if for every proper (i.e., not a singleton) segment S and all a ∈ S

11This for example is true if M is o-minimal, or, if K = R.
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with S \ {a} ⊆ C we have a ∈ C. This shows that L is 0-definable in L. But then
the map L −→ L that sends C to its closure is also 0-definable in L: For C ∈ L its
closure C is the smallest D ∈ L with C ⊆ D. �

Claim 3. The set of all lines (i.e. 1-dimensional affine subspaces of Mn) is 0-
definable in L: A set A ∈ L is contained in a line if and only if for all a, b, c ∈ A
there is a segment containing a, b, c. Then a set A ∈ L is a line if and only if it is
maximal among elements of L that are contained in a line.

(ii). A set A ∈ L is an affine subspace if it is not empty and for all proper segments
S and every line ` with S ⊆ A, ` we have ` ⊆ A. A set A ∈ L is an affine subspace of
dimension d if there is a non refinable chain of affine subspaces A0 ( . . . ( Ad = A.

We will from now on assume that n ≥ 2; item (iii) holds for n = 1 by (i).

(iv). By (ii) the plane, affine incidence geometry of K is definable in L after naming
a 2-dimensional subspace U . Hence (K,+, ·) is definable in L after naming U , a line
` ⊆ U and two points 0, 1 ∈ ` (see 5.1). However, this field structure is independent
of the chosen U , so we can wrap U in an existential quantifier (by (ii), the set of
two-dimensional subspaces is 0-definable in L). Furthermore, the order of the field
is definable by using the betweenness relation on the segments of ` and declaring
0 < 1. This shows (iv).

Claim 4. For each affine hyperplane A of Mn and each line ` * A, let πA,` be
the projection: Mn −→ ` along A. If we consider πA,` as a map atoms(L) −→
{atoms ≤ `}, then the family of (graphs of) all the πA,` is 0-definable in L (by a
formula that is independent of n and M).

Proof. The affine hyperplanes are precisely the maximal elements in the poset of
proper affine subspaces. For a ∈ Mn and b ∈ ` we then have πA,`(a) = b if and
only if a ∈ ` and b = a, or, the unique affine hyperplane containing a and disjoint
from A, intersects ` in b. This gives a 0-definable definition of the family of all the
πA,`. �

(iii). A convex set C is bounded if and only if for every projection πA,` as in claim 4
there is a segment contained in ` that contains πA,`(C). (Of course it suffices to test
with the n coordinate axes, but in our formulation the definition is independent of
n.)

For the rest of the proof we now also assume that every definable bounded subset
of M that is discrete in M , is finite.

Claim 5. The set of all C ∈ L that are convex hulls of finitely many points is
0-definable in L.

Proof. If F ⊆ Kn is finite, then the convex hull C of F in Kn is the convex hull of
the extremal points of C; this is proved as for Rn. The extremal points of C are
the points a ∈ C with the property that for all segments [c, b] ⊆ C with a ∈ [b, c] we
have a = b or a = c. Further, the extremal points of C are contained in F . Hence
we can express the property of C ∈ L being the convex hull of finitely many points
as follows:

C is the smallest element in L containing the set F of extremal
points (or atoms) of C and any projection of F with a projection
function πA,` as in claim 4 is bounded and discrete in `.
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Using segments we can express “πA,`(F ) is discrete in `” as a first order property

of C,A, ` in (L,⊆). Notice that F here is seen a definable set of atoms (defined
using the parameter C ∈ L); F is not an element of L. Further, by the assumption
made right before claim 5, we know that then F must be finite. �

(v). Consider the following property of A, `, C,D ∈ L:

(∗) A is an affine hyperplane, ` * A is a line, C is the convex hull of finitely many
points and there is an extremal point E of C with D = πA,`(E)

Using claims 4 and 5, this can be expressed by an ≤-formula ϕ(u, v, w, x). Con-
sequently, given a line ` the sets defined by the formulas ϕ(A, `, C, x), where A,C
vary in L is the set of finite subsets (of atoms) of `.

(vi). By (iv) and (v), the weak monadic second order structure W (K,+, ·) is
interpretable in L. By [Bauval1985] this implies that the polynomial ring in one
variable over K is interpretable in L. In this ring the rational numbers are definable
(cf. [Robins1951, Section 2]). �

6. Lattices of closed definable sets in the ordered context

We start with a combinatorial tool needed here and in 7.1.

6.1. Lemma. Let K be an infinite field, m ∈ N and let S be a set of functions
K −→ K containing all scalar multiplication functions, such that for all mutually
distinct α1, . . . , αm ∈ K and all β1, . . . , βm ∈ K, there is some f ∈ S with f(αi) =
βi (1 ≤ i ≤ m).

Fix n ≥ 2 and let V be the set of all functions (t1, . . . , tn) : Kn −→ Kn where
the tj are terms in x1, . . . , xn built from addition and the functions from S.

Take a1, b1, . . . , am, bm ∈ Kn with ai 6= aj and bi 6= bj for all i 6= j ∈ {1, . . . ,m}.
Then there is a bijective F ∈ V whose compositional inverse is in V such that
F (ai) = bi for all i ∈ {1, . . . ,m}.12

Proof. Since ai 6= aj for all i 6= j and K is infinite, some projection on a one
dimensional subspace of Kn must be injective on {a1, . . . , am} (choose a line that
does not contain any ai − aj , i 6= j; then the projection to a linear complement
of this line is injective on {a1, . . . , am} and then use induction). Hence there is a
K-vector space isomorphism l : Kn −→ Kn such that the first coordinates of the
points l(a1), . . . , l(am) are mutually distinct

Since V is closed under composition and V contains all linear maps Kn −→ Kn,
we may replace ai by l(ai) and assume that ai = (αi, ci) ∈ K×Kn−1 with αi 6= αj

for all i 6= j. Similarly we may assume that bi = (di, βi) ∈ Kn−1 ×K with βi 6= βj
for all i 6= j.

We will now find a bijective map G ∈ V with G−1 ∈ V such that

G(ai) = (αi, 0̄, βi) (1 ≤ i ≤ m),

where 0̄ ∈ Kn−2. Similarly there is then also some H ∈ V with H−1 ∈ V such that
H(bi) = (αi, 0̄, βi) and so with F = H−1 ◦ G ∈ V we have a function as required
for the lemma.

12We will apply this for S = K[X] and (when K is ordered) for the set of all piecewise linear
continuous functions K −→ K. In the first case, all functions in V will be polynomial maps and

in the second case all functions in V will be piecewise linear continuous functions Kn −→ Kn.
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For the definition of G we use the assumption on S, which implies that there are
f2, . . . , fn ∈ S with

(f2, . . . , fn)(αi) = ci − (0̄, βi)

for all i ∈ {1, . . . ,m}. Then the function G : Kn −→ Kn defined by

G(x1, . . . , xn) = (x1, x2 − f2(x1), . . . , xn − fn(x1))

is in V and G(ai) = G(αi, ci) = (αi, ci − (f2, . . . , fn)(αi)) = (αi, 0̄, βi). The com-
positional inverse of G maps (x1, . . . , xn) to (x1, x2 + f2(x1), xn + fn(x1)). Hence
G−1 ∈ V . �

6.2. Corollary. Let K be an orderd field and let n ≥ 2. If p1, q1, . . . , pk, qk ∈ Kn

are 2k distinct points then there are piecewise linear homeomorphisms σ1, . . . , σk :
[0, 1]K −→ Kn onto their respective images with mutually disjoint images such that
σi(0) = pi and σi(1) = qi for all i.

Proof. By 6.1 applied to the set S of continuous piecewise linear maps K −→ K
there is a piecewise linear homeomorphism F : Kn −→ Kn such that F (pi) =
(2i − 1, 0) ∈ K ×Kn−1 and F (qi) = (2i, 0) ∈ K ×Kn−1. For these points we can
just take σi to be the segment between pi and qi. Applying F−1 then gives the
corollary. �

For the rest of this section we fix an ordered field K and work with an expansion
M of the ordered K-vector space K. We will always assume that M is o-minimal,
or, K = R and M is the full structure on R, meaning that all subsets of all Rn are
definable.

6.3. Theorem. Let n ≥ 2. Let L be a lattice of closed and definable subsets of Mn

and suppose that L contains all closed subsets of Mn that are contained in a finite
union of definably homeomorphic copies of [0, 1]K ; when M is the total expansion
of R we also assume that condition (a) of 4.4 is satisfied.13 Then in L the binary
relation

E(A,B) ⇐⇒ A,B are finite and of the same size

is 0-definable in L. Further, (L,⊆) interprets (N,+, ·) after naming an element
A ∈ L with L |= I(A) (see 4.2). The interpretation is independent of M and n.14

Proof. Firstly, by 4.4 (if M is the full structure on R) and 4.6 (if M is o-minimal)
we can define the property ”A is finite”: We say that there is some C ∈ L with
L |= I(C) such that A is a subset of C that is discrete in C (for the o-minimal case
recall that every definable and discrete set is finite). By 2.9 it then suffices to show
that for disjoint A,B ∈ L we can define that they are of the same size. We claim
that this is the case if and only if there is some C ∈ L such that

(a) each L-connected component of C hits A in exactly one atom and for each
atom a ≤ A there is a unique L-connected component of C containing a, and,

(b) each L-connected component of C hits B in exactly one atom and for each
atom b ≤ B there is a unique L-connected component of C containing b.

13The largest such lattice is the lattice of all definable subsets and the smallest such lattice is

the set of all closed subsets that are contained in a finite union of definably homeomorphic copies
of [0, 1]K .

14In [Grzego1951, §3] the undecidability of the lattice of all closed subsets of Rn, n ≥ 2 is
proved; but it is neither shown that the lattice interprets (N,+, ·) nor that the property ”finite”

is definable in the lattice. See section 8 for a discussion.
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The condition implies that the map from the L-connected components of C to the
atoms of A, D 7→ D ∩ A is a bijection, and similarly with B. Conversely, if A and
B are disjoint and of size k, say, then choose σ1, . . . , σk according to 6.2. Then
the union C of the images of the σi satisfies (a) and (b) since L contains all closed
subsets of C and L is contained in the lattice of all closed sets.

This shows that E is definable. It follows that for each A ∈ L with L |= I(A), the
structure (W (A,B), E|W (A,B)) is definable in (L,⊆), where B is the betweenness
relation of A asserted to exist by the formula I(x). Now 3.2 implies that (N,+, ·)
is interpretable in L. �

6.4. Corollary. Let n ≥ 2 and assume M is o-minimal with the convention of this
section in force. Let P be the set of all closed, definable, definably connected and
bounded subsets of Mn of dimension ≤ 1, partially ordered by inclusion.15 Then
the poset P interprets, independently of M , the lattice L of all closed and bounded
subsets of Mn of dimension ≤ 1. Hence by 6.3, (P,⊆) interprets (N,+, ·).
Proof. (L,⊆) is interpretable in (P,⊆) because every set A in L is the intersection of
two sets in P : By o-minimality, there is a definable continuous map σ : [0, 1]K −→
Mn that has A in its image. A suitable perturbation of σ will then cut out the
complement of A in the image of σ; the easy details are left to the reader.

Now we can interpret (L,⊆) in (P,⊆) as P ×P modulo the equivalence relation
(A,B) ∼ (C,D) ⇐⇒ the set of atoms below A and B is the set of atoms below C
and D. Similarly inclusion of L can be interpreted. �

6.5. Remark. When the dimension of the ambient space is 1 or if the ambient space
has no definably connected sets, the lattices in 6.3 generally behave better:

(i) The lattice of closed subsets of Qn is decidable and also the closure algebra
of Qn is decidable16. This is because Qn is homeomorphic to Q and for Q it
is deduced by Rabin from 3.3 in [Rabin1969].

(ii) In [Rabin1969], Rabin also shows that the lattice of closed subsets of R is de-
cidable, answering a question of [Grzego1951]. In contrast, Shelah has proved
in [Shelah1975] (under the continuum hypothesis) that the closure algebra of
R is undecidable.

(iii) If X is a Boolean space, then the lattice of closed subsets is decidable, see 7.2
below.

6.6. It follows from 6.3 that for every ordered field K, the lattice of closed and semi-
linear subsets of K2 interprets (N,+, ·). We can also interpret (N,+, ·) in finite
unions of rectangles of various sorts. 17 We focus on one case, which also addresses
the theme of 3.7: If T is an infinite totally ordered set, then consider the lattice L of
finite unions of closed infinite rectangles of the form (−∞, p]×(−∞, q] ⊆ T×T with
p, q ∈ T . The partially ordered set of such rectangles is obviously itself a lattice,
which is isomorphic to the poset T ×T with componentwise partial order. Further,
the elements of L are in bijection with the nonempty, finite anti-chains of T ×T and

15The interest in P comes from the observation that P is the set of images of continuous
definable maps [0, 1]K −→ Mn. In [Tressl2016, 4.2] it is shown that the lattice ordered abelian

group of these function is decidable, in contrast to the assertion of the corollary.
16The closure algebra of Qn is the expansion of the boolean algebra of all subsets of Qn by

the map that sends a set to its closure.
17In [Grzego1951, §5] the closure operation on the powerset of R2 with values in such lattices

is dealt with, but not the lattices themselves.
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the order of L translates to the partial order A ≤ B of finite anti-chains of T × T
given by ∀a ∈ A∃b ∈ B : a ≤ b. All these data are 0-definable in W (T × T,≤) and
so L is 0-definable in W (T × T,≤).

6.7. Proposition. Let T be an infinite totally ordered set and let ≤ be the com-
ponentwise partial order on T × T . Let L be the poset of finite anti-chains of
(T ×T,≤) under the partial order described in 6.6 (hence L indeed is the lattice de-
scribed there). Then L interprets (N,+, ·) after naming two definable parameters.18

The interpretation is independent of T .

Proof. In a nutshell, this is true because L is in bijection with the set

{(U, V ) ∈W (T )×W (T ) | U and V have the same size};

the map sends A ∈ L to (p1(A), p2(A)), where pi are the projections onto the
coordinate axes. Hence L “is” the equivalence E of the structure (W (T ), E) of 3.2.
In detail:

Firstly, the poset (T × T,≤) is 0-definable in (L,≤) as the sub-poset of join irre-
ducible elements. We now define certain data in (T × T,≤).

For x, y ∈ T 2 = T × T we write [x, y] = {z ∈ T 2 | x ≤ z ≤ y}. Let p, q ∈ T 2.
We say p, q define a line segment if p 6= q and the binary relation x ≤ y restricted
to [p, q] is a total order with least element p and largest element q.

Hence the binary relation ”p, q define a line segment” is 0-definable in (T 2,≤).
Obviously, p, q define a line segment if and only if p ≤ q, p 6= q and (p1 = q1 or
p2 = q2). A line segment is a set of the form [p, q], where p, q define a line segment.

Suppose p, q ∈ T 2 define a line segment. We define

`(p, q) = {r ∈ T 2 | [p, r] ∪ [r, p] ∪ [p, q] is a line segment},

which is the line through p and q. Hence the ternary relation ”r ∈ `(p, q)” is
0-definable in (T 2,≤). Further, we define a map πp,q : T 2 −→ `(p, q) by

πp,q(r) =


r, if r ∈ `(p, q),
the unique s ∈ `(p, q) s.th. r, s define a

line segment, or, s, r define a line segment, if r /∈ `(p, q).

Hence πp,q is the projection onto `(p, q).

Let o, p, q ∈ T 2. We say o, p, q define a coordinate system if o, p and o, q define line
segments and q /∈ `(o, p), p /∈ `(o, q). Hence the ternary relation ”o, p, q define a
coordinate system” is 0-definable in (T 2,≤).

Now fix o, p, q ∈ T 2 defining a coordinate system. We write ` = `(o, p) and show
that the structure (W (`,≤), E) from 3.2 is interpretable in (L,≤) by using the
bijection from the beginning of the proof.

Firstly, we now read the data above in the poset L. Hence for example, πo,p is a
map from the join irreducible elements of L onto the set of join-irreducible elements
that correspond to points of `o,p. Further, we read elements of L as the set of join
irreducible elements contained in it. In this set up then, W (`,≤) is interpretable
in L by using the identification of A,B ∈ L when πo,p(A) = πo,p(B) (which is
definable in L). Observe that projections are injective on anti-chains.

18This means that the set of parameters needed for the interpretation is 0-definable.
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It remains to interpret “equal size” of elements of W (`,≤): Let A,B ∈ L. Then
πo,p(A) and πo,p(B) have the same size if and only if there are G,HA, HB ∈ L such
that

• πo,p(HA) = πo,p(A),
• πo,p(HB) = πo,p(B),
• πo,q(HA) = πo,q(G),
• πo,q(HB) = πo,q(G).

This is first order expressible in (L,≤), using o, p, q as parameters.

Hence indeed (W (`,≤), E) is interpretable in L and 3.2 entails that (L,≤) interprets
(N,+, ·) after naming the two definable parameters o, p; the appearance of q above
can be wrapped into an existential quantifier. �

7. Zariski closed sets and p-adic sets

7.1. Proposition. Let n ≥ 2, and let K be an infinite field. Let L be the lattice
of Zariski closed subsets of Kn, let L1 be the lattice of Zariski closed sets of Krull
dimension ≤ 1 and let L2 be the lattice generated by all absolutely irreducible Zariski
closed sets of Krull dimension ≤ 1.19 Then L defines L1 and L1 as well as L2

interpret (N,+, ·). The definition and both interpretations are parameter free and
independent of K and n.20

Proof. By definition of the Krull dimension of Zariski closed subsets of Kn, a set
Z ∈ L is in L1 if and only if there are no irreducible sets (i.e., join irreducible
elements of L) ∅ 6= A ( B ( C ⊆ Z. Hence L1 is definable in the lattice L.

The interpretation of (N,+, ·) in L1 and in L2 is the same (just evaluated on
different structures) and we write L∗ to mean either of them.

Notice that the set of finite subsets of Kn is 0-definable in L∗ as those sets whose
irreducible components are atoms. We will show that the structure N induced by
L∗ on the set W (Kn) defines “same size” as required for 2.9(i) and that N has a
definable relation as in 2.9(ii). Then 2.9 will give us an interpretation as required.

(a). Let p1, . . . , pk, q1, . . . , qk ∈ Kn be 2k points. Then there is a Zariski closed
subset V ⊆ Kn of dimension 1 such that

• each irreducible component of V is absolutely irreducible,
• for each irreducible component C of V there is some (necessarily unique)
i ∈ {1, . . . , k} with C ∩ {p1, . . . , pk, q1, . . . , qk} = {pi, qi}, and,

• the resulting map from the set of irreducible components of V to {1, . . . , k}
is a bijection.

This property implies that the structure (W (Kn), E) from 2.9(i) is 0-definable in
(L∗,⊆).

Proof. Firstly, if E,F ⊆ Kn are finite and disjoint, then there is an absolutely
irreducible curve C ⊆ Kn containing E and disjoint from F . To see this we apply
6.1 with S being the polynomials over K in one variable. By 6.1 then, there is a
polynomial isomorphism f : Kn −→ Kn (so all entries of f and f−1 are polynomials

19We are dealing here with the naive Zariski topology on Kn, which has zero sets in Kn of

polynomials ∈ K[X1, . . . , Xn] as a basis of closed sets. An absolutely irreducible Zariski closed

set then is a set whose Zariski closure in K
n

is still irreducible, K = algebraic closure of K.
20The undecidability of the lattice L is also established in [Grzego1951, §3]. See section 8 for

a discussion.
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over K in n variables), such that f(E ∪ F ) ⊆ K × {0}n−1. So we may assume
E∪F ⊆ K×{0}n−1 all along. Write E = {(a1, 0), . . . , (am, 0)} with ai 6= aj ∈ K for
i 6= j. Then the curve defined by X2 = (X1−a1)·. . .·(X1−am), X3 = 0, . . . , Xn = 0
has the required property.

Using this fact for each i ∈ {1, . . . , k} and writing P = {p1, . . . , pk} and Q =
{q1, . . . , qk} we get an absolutely irreducible curve Ci ⊆ Kn with Ci ∩ (P ∪ Q) =
{pi, qi}. Then V = C1 ∪ . . . ∪ Ck has the required property. �

(b) Now we define a family as required in 2.9(ii). Define a ternary relation S on L∗
by

S(a, b, c) ⇐⇒ a, c are finite and there is an irreducible

component x of b with a = c ∩ x.

It is clear that S is 0-definable in L∗. For all b, c ∈ L∗, the set of cardinalities of
a ∈ L∗ with S(a, b, c) is finite: c has to be finite and the size of a is the size of c∩x
for some irreducible component x of b. Hence 2.9(ii)(a) is satisfied for S.

On the other hand, if T = {n1, . . . , nk} ⊆ N is finite of size k then pick a set
b ∈ L∗ with exactly k irreducible components, each infinite and choose a finite set
ai of size ni in the ith-irreducible component, disjoint from the other components.
Then for c = a1 ∪ . . .∪ ak, the set of cardinalities of a ∈ L∗ with S(a, b, c) is T . �

7.2. p-adic sets. In contrast to the ordered case (cf. 6.3), lattices of closed sets
coming from a valuation topology of a valued field behave much better. This again
follows from a result of Rabin in [Rabin1969]: He shows that any Boolean algebra
with a second order quantifier over ideals is decidable. In topological terms, this
means that the lattice of closed subsets of any Boolean space is decidable. Hence,
for example, the lattice of closed subsets of Zn

p is decidable as this space is Boolean.

8. Grzegorczyk’s paper

We give a brief outline of [Grzego1951] and talk about the parts that have not
been addressed in our note. This hopefully helps the reader studying the beautiful
results in [Grzego1951] (which are a bit dipped in logic formalism).

The main theme of Grzegorczyk’s paper is the creation of a topological version of
Robinson Arithmetic (see [Grzego1951, §1] and [TaMoRo1953, II.3, page 51]) and
then to find models of that. This means, he states an axiom system for partially
ordered sets (mainly intended to be applied to topological lattices) such that any
lattice that is consistent with these axioms is undecidable. In fact, ordinary Robin-
son Arithmetic is interpreted in the topological set up and then Tarski’s theorem
on interpretations is invoked. As with ordinary Robinson Arithmetic, models of
the topological axioms do not need to interpret Peano arithmetic, or the standard
model (N0,+, ·).

The models of this topological Robinson Arithmetic in [Grzego1951, §2, §4 and
§5] are then “closure systems”. This means that Boolean algebras are furnished with
an operator that behaves in one sense or another like taking closures of arbitrary
subsets of a topological space. The set up also encompasses closure operators like
S 7−→ convex hull of S ⊆ Rn, see [Grzego1951, §5]. (For a comparison: In our
paper the weaker structures of the images of such operators are studied; recall from
6.5(ii) that the two points of view can differ quite substantially.) The set up in
[Grzego1951, §2] is stated as a formal axiom system A1-A6, but this system is
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infinitary (see A4) and not first order. So the class of closure algebras addressed
in §2 is not first order. A more down to earth way of reading the results in §2
is: Every closure algebra satisfying A1-A6 is a model of the topological Robinson
arithmetic from §1.

In [Grzego1951, §3], topological lattices are studied in the sense of our paper.
More precisely they are studied as a particular class of so-called Brouwerian alge-
bras, also known as (co-)Heyting algebras. However they are still implicitly defined
in terms of the infinitary language from §2 and again one might want to read the
theorems in that section as “every lattice satisfying the properties stated at the
beginning of §3 satisfies the topological Robinson arithmetic from §1”. This should
be compared with our results in section 6. For example 6.3 is stronger for the
lattices addressed there, because we can also define finite elements in the lattice
and interpret (N,+, ·); on the other hand 6.3 is weaker because there are lattices
outside the ordered context where [Grzego1951, §3] applies. For example Zariski
closed sets, see 7.1.

In [Grzego1951, §4] the topic is ”the algebra of bodies”. Boolean algebras with a
binary predicate ”A,B are tangent” are studied. The theme here is closely related
to what is called mereotopology (see [AiPrvB2007, Definition 2.5, p. 18]): One
should think of the Boolean algebra as the algebra of regular open subsets of a
topological space and then “being tangent” could be read as “the closures intersect”,
or as “contact” in mereotopological terminology. Our paper is not addressing this
interesting subject, instead we refer to the handbook of spatial logics [AiPrvB2007]
(for example see p. 69 there).

We conclude with two questions.

(1) Let P be the set of irreducible Zariski closed subsets of C2. Is the partially
ordered set (P,⊆) decidable?

Does (P,⊆) interpret the poset of affine subspaces of C2 (and therefore also
(C,+, ·) by 5.1)? Notice that the affine subspaces are not 0-definable, even
in the lattice of Zariski closed subsets of C2 since C2 is k-transitive for all k
under the group of polynomial isomorphisms (use 6.1).

(2) Let L be the lattice of closed subsets of R2. Does L interpret the real field
(R,+, ·)? Note that by 6.3 together with standard coding tricks, we can
interpret the field of real algebraic numbers in L. There is evidence that
in the lattice of closed and semi-algebraic subsets of R2 the real field is not
parametrically definable; this will be explained in a forthcoming paper.
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reading the manuscript and for many valuable comments to improve the text.
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