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1. Definition of o-minimality and first examples

We start with some notational conventions. Let M = (M,≤) be a linearly (or
’totally’) ordered set (hence ≤ is a binary, reflexive, antisymmetric, transitive and
total relation). We will frequently enlarge M by two elements +∞, −∞ with the
property −∞ < M < +∞.

- A subset C of M is convex if for all c, c′ ∈ C and every m ∈M with c ≤ m ≤ c′
we have m ∈ C.

- An interval of M is a convex subset of M “with endpoints in M ∪ {±∞}”,
i.e. an interval is a set of the form (a, b) (open interval), [a, b] (closed interval),
where a, b 6∈ {±∞}, [a,+∞), where a 6= −∞ and (−∞, b], where b 6= +∞.

- M will always be considered as a topological space given by the interval topol-
ogy that has the set of open intervals as a basis of open sets. The product set
Mn will also be considered as a topological space carrying the product topology.
Hence a subset of Mn is open if it is a (arbitrary) union of open boxes (= n-fold
product of open intervals).

- M is called dense if there are no “gaps” in M , i.e. for all x, y ∈M with x < y
there is some z ∈ M with x < z < y. M is called discrete if every element
x ∈M has a successor and a predecessor, unless x is the smallest or the largest
element of M . For example, (N,≤) is discrete, whereas (ℵ1,≤) is not.
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1.1. Definition. An expansion M = (M,≤, ...) of a totally ordered set (M,≤) is
called o-minimal (an abbreviation for order-minimal), if every definable subset
of M is a finite union of intervals. Here and below “definable” always means,
“definable with parameters from M”. A first order theory T in a language {≤, ...}
is o-minimal if all its models are o-minimal.

Recall that an interval has endpoints in M ∪ {±∞}, so if we expand the totally

ordered set Q by the set S of all rational numbers >
√

2 then this structure is not
o-minimal, since the definable set S is not a finite union of intervals.

1.2. Examples of o-minimal orders Let M = (M,≤) be a totally ordered set.
If M is dense (with or without endpoints), then M has quantifier elimination (after
naming the endpoints, i.e. Th(M) has quantifier elimination in the language {≤}
enlarged by constant symbols for the endpoints); cf. [Mar02, Thm 3.1.3].

Every discretely ordered set has quantifier elimination after naming the end-
points, the successor function and the predecessor function.

Hence in both cases every definable subset is defined by a boolean combination
of formulas of the form a ≤ x and x ≤ b with a, b ∈ M . It is then clear that M is
o-minimal.

Thus for example (Q,≤) and (N,≤) are o-minimal.

On the other hand, if M is a well ordered set (e.g. an ordinal) and M is uncountable,
then M is not o-minimal, witnessed by the set of all elements of M which do not
have a predecessor.

In logical terms, o-minimality is equivalent to saying that every definable subset
of M = (M,≤, ...) is defined by a boolean combination of formulas of the form
a ≤ x, x ≤ b with a, b ∈ M . In this sense M is indeed “order-minimal”. This is
in analogy with the notion of a minimal structure, where the definable subsets of
that structure are boolean combinations of sets defined by a = x.

However there is a fundamental difference between the notions “o-minimal” and
“minimal”: Let M = (N,≤). Then M is o-minimal and minimal (why?). Now
every structure N , elementary equivalent to M is again o-minimal (since N is
again discrete), whereas N is not minimal if N is not isomorphic to M : in this case
there must be some a ∈ N such that both (−∞, a) and (a,+∞) are infinite.

We shall see later that indeed o-minimality of any structure is preserved by
elementary equivalence.

1.3. Remark. Here some easy consequences of o-minimality used throughout. Let
M = (M,≤, ...) be o-minimal and let S ⊆M be definable.

(i) S has a supremum and an infimum in M ∪ {±∞}.
(ii) If S is infinite then S contains an infinite open interval.
(iii) The closure S and the interior of S are definable. The boundary S\interior(S)

of S is finite.
(iv) There is no infinite sequence a1 < a2 < ... in M with the property a1 ∈ S,

a2 6∈ S, a3 ∈ S, a4 6∈ S,... .
(v) If the ordered set underlying M is the natural order of the reals, then M is o-

minimal if and only if every definable subset of M has finitely many connected
components.

It should be noted that (i) together with (iv) imply o-minimality. On the other
hand, the totally ordered set Q expanded by the set S of all rational numbers
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>
√

2, satisfies properties (ii)-(iv), because this structure is weakly o-minimal:
every definable subset is a finite union of convex sets.

Proof. Exercise. �

If M = (M,≤, ...) is an expansion of a totally ordered set and p ∈ S1(M) is a 1-type
of M , then p partitions M into three sets:

pL = {a ∈M | a < x ∈ p}, p= = {a ∈M | a = x ∈ p}, pR = {a ∈M | x < a ∈ p}.
Of course p= is a singleton if and only if p is realised in M . If p is not realised in
M , then pL and pR partition M ; as pL < pR (i.e. a < b for all a ∈ pL, b ∈ pR) and
p induces a (Dedekind) cut of M .

p

��pL pR

Another characterisation of o-minimality of a structure M = (M,≤, ...) is given by
saying that non-realised 1-types of M are determined by the cut they induce on M :

1.4. Proposition. An expansion M = (M,≤, ...) of a totally ordered set is o-
minimal if and only if every 1-type p of M is uniquely determined by the set of
formulas a < x and x < b (a, b ∈M) contained in p.

Proof. Exercise. �

We now characterise o-minimal ordered groups.

1.5. Proposition. ([PS86, Thm. 2.1])
Let M = (M,≤, ·, e) be a totally ordered group (recall: this means x ≤ y ⇒ uxv ≤
uyv). Then M is o-minimal if and only if M is abelian and divisible (i.e. for all
a ∈M and each n ∈ N there is some x ∈M with nx = a).

Proof. Suppose M is o-minimal. We first show that M does not have non-trivial
definable subgroups G: If [g,+∞) ⊆ G for some g ∈ M , then G = M , since for
each m ∈M with e ≤ m we have mg ∈ [g,+∞) and so m = (mg)g−1 ∈ G.

Otherwise, by o-minimality, G has a supremum s in M . Suppose s > e, in
particular there is some g ∈ G, e < g. Then g−1 < e and so g−1s < s. By choice
of s, there is some h ∈ G with g−1s ≤ h. It follows s ≤ gh ∈ G. By choice of s
this implies s = gh. Thus s ∈ G, which is impossible as s < s2 ∈ G and s is the
supremum of G.

Hence M does not have non-trivial definable subgroups. With this information the
rest is easy: For a ∈ M the commutator subgroup C := {b ∈ M | ab = ba} of a is
obviously definable. Hence C = 0 or C = M . As a ∈ C we get C = M in either
case. This shows that M is abelian.

Similarly, for n ∈ N the subgroup (note that M is abelian!) {an | a ∈ M} is
definable in M and it is obvious that this group must be M .

It remains to show that M is o-minimal if M is abelian and divisible. Since the
theory DOAG of Divisible Ordered Abelian Groups has quantifier elimination in
the language {+,−,≤, 0} cf. [Mar02, Cor. 3.1.17], every definable subset of M is a
boolean combination of sets defined by formulas of the form a ± x ≥ 0. It is clear
that each such set is a finite union of intervals. �
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In 2.4 we shall see that the o-minimal ordered fields are precisely the real closed
fields.

A complete description of pure o-minimal ordered sets can be found in [PS86,
(3.12)]. We will from now on focus on o-minimal expansions of densely ordered sets.
Observe that by 1.5, this is automatically satisfied if we work with an expansion of
a group.

Exercises.

1. Show that a totally ordered set X = (X,≤) is compact in the interval topology
if and only if X is Dedekind complete, i.e. every subset of X has a supremum
in X.

2. Let v be the lexicographic order of R×R. Show that there is a subset X of
R×R, definable with parameters in (R,≤) such that X is not a finite union
of v-convex subsets. Is the structure (R×R,v) o-minimal?
Solution. Take X := {(a, b) | a ≥ 0, b ≥ 0}. Yes, the structure (R×R,v) is
o-minimal. �

3. Determine the definable 1-types of an o-minimal expansion M = (M,≤, ...) of
a dense order. Recall that an n-type of a structure M is called definable if
for each formula ϕ(x1, ..., xn, y1, ..., yk) there is a formula ψ(ȳ) (possibly with
parameters) such that

M |= ψ(ā) ⇐⇒ ϕ(x̄, ā) ∈ p (ā ∈Mk).

4. Show that the only connected divisible ordered abelian group is (up to isomor-
phism) the group (R,+,≤). Are there connected densely ordered sets apart
from (R,≤)?
Solution. If G is a connected divisible ordered abelian group, then G has to
be archimedean (i.e. for all g, h > 0 there is some n ∈ N with ng > h) since
for each g > 0, the set of all h with h > Ng is open and closed. It follows that
G can be embedded into (R,+ ≤) and the connectedness of G implies G = R.

Every Dedekind complete order without jumps is connected. E.g. the set
of all non-definable cuts of a densely ordered set is connected. �

5. Show that (R,≤, exp(x)) is o-minimal. Is there a total order v on R such that
(R,v, sin(x)) is o-minimal?
Solution. To show that (R,≤, exp(x)) is o-minimal, note first that this
structure is a model of the theory T of densely totally ordered structures
(M,≤) without endpoint, expanded by a function f : M −→ M with the
following properties:
(a) f is an increasing isomorphism (M,≤) −→ ((a,∞),≤) for some a ∈M
(b) m < f(m) for all m.
Let M be a countable elementary restriction of (R,≤, exp(x)). Then M in-
herits the following property from (R,≤, exp(x)):
(∞) for all m ∈M , the iteration

f (0)(m) = m, f (1)(m) = f(m), f (2)(m) = f(f(m)), ...

is unbounded in M
Now show that every countable model of T with property (∞) is isomorphic
to (Q>0,≤, x 7→ 1 + x): to see this we may replace M by an isomorphic
copy expanding (Q>0,≤) such that f : Q>0 −→ (1,∞) ⊆ Q>0 is an order
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preserving isomorphism with property (∞). Then an isomorphism ϕ : (Q>0,≤
, x 7→ 1 + x) −→ (Q>0,≤, x 7→ f) is given by

ϕ(n+ q) = f (n)(q), n ∈ N0, q ∈ (0, 1].

Observe that ϕ indeed satisfies ϕ(1 + x) = f(ϕ(x)) for every x ∈ Q>0.
Since (Q>0,≤, x 7→ 1 + x) has an o-minimal theory by 1.5, also (R,≤

, exp(x)) is o-minimal.

Finally, there is no total order v on R such that (R,v, sin(x)) is o-minimal:
If we project the graph S of sin onto the y-axis, the image has dimension 1
and each nonempty fibre has dimension 1. So by the dimension formula, S has
dimension 2 (w.r.t. the v-interval topology). But then the projection onto
the x-axis also must have an infinite fibre. Contradiction. Is there an easier
argument? �

2. Basic real analysis and the monotonicity theorem

Let M = (M,≤, ...) be an o-minimal expansion of a dense linear ordering.

2.1. Proposition. If f : M −→M is definable and x ∈M ∪ {±∞}, then lim
t↗x

f(t)

and lim
t↘x

f(t) exists in M ∪ {±∞}.

Proof. We show that lim
t→+∞

f(t) exists, all other cases are analog. By o-minimality,

for each m ∈ M , the set Sm = {t ∈ M | f(t) ≥ m}) is a finite union of intervals.
hence there is some a ∈ M such that (a,+∞) is contained in Sm or disjoint from
Sm.

In other words, f is eventually ≥ m, or f is eventually < m. let G be the
(definable!) set of all m ∈M such that f is eventually ≥ m. If G = ∅, then for all
m ∈ M , f is eventually < m which means lim

t→+∞
f(t) = −∞. If G = M , then for

all m ∈M , f is eventually ≥ m which means lim
t→+∞

f(t) = +∞. Hence ∅ 6= G (M

and every m ∈M \G is an upper bound of G. By o-minimality, G has a supremum
s ∈M and it follows easily that lim

t→+∞
f(t) = s. �

2.2. Intermediate value theorem
Continuous, definable functions map intervals onto intervals.

Proof. The proof is as in classical real analysis. Take a, b, y ∈ M with f(a) < y <
f(b). By o-minimality the supremum c of all x ∈ [a, b] with f(a) ≤ y exists. We
claim that f(c) = y. If y < f(c) then a < c ≤ b and by continuity there is some
d ∈ [a, c) with y < f(x) for each x ∈ (d, c). This contradicts the choice of c.

On the other hand if f(c) < y, then c < b and by continuity there are elements
> c in [a, b] with f(x) < y, which again contradicts the choice of c. �

In fact, 2.2 holds true in greater generality. We say that a definable subset S
of Mn is definably connected, if S can not be written as the disjoint union of
two nonempty definable and open subsets of S. It is then straightforward to see
that the definably connected subsets of an o-minimal structure M are precisely the
intervals. Moreover, images of definably connected subsets S of Mn under contin-
uous definably maps S −→Mk are again definably connected (proof is identical to
the topological one).
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2.3. Corollary. If f : (a, b) −→M is definable, continuous and injective, then f is
strictly monotone.

Proof. Otherwise there are x < y < z such that f(x) < f(z) < f(y), say. By 2.2,
there is some u ∈ (x, y) with f(u) = f(z) which contradicts the injectivity of f . �

The intermediate value property allows us to determine the o-minimal ordered
fields. Recall from [Mar02, Thm 3.3.9] that an ordered field M = (M,+, ·,≤)
is real closed if and only if all polynomials in one variable over M satisfy the
intermediate value property.

2.4. Theorem. An ordered field M is o-minimal if and only if M is real closed.

Proof. If M is real closed then M has quantifier elimination in the language {≤
,+,−, ·, 0, 1} of ordered rings by Tarski’s theorem (cf. [Mar02, Thm 3.3.15]). Hence
a definable subset of M is a boolean combination of sets defined by polynomial
inequalities P (T ) ≥ 0 with P ∈ R[T ], T a single variable. It is therefore enough
to show that these sets are finite union of intervals: This follows easily from the
intermediate value property of univariate polynomials in real closed fields.

Conversely, if M is an o-minimal ordered field, then every continuous and definable
map M −→ M satisfies the intermediate value property (by 2.2). On the other
hand, by copying the proof from real analysis, univariate polynomials are contin-
uous with respect to the order topology in any ordered field. Thus, univariate
polynomials of o-minimal ordered fields satisfy the intermediate value property and
by [Mar02, Thm 3.3.9], M is real closed. �

2.5. Remark. In fact every o-minimal ordered ringM is real closed ([PS86, Thm2.3]).
By 2.4 the only thing we need to show is that M is a field. This is left as an exercise
(hint: show that the positive elements of M are a group, then use 1.5 to show that
this group is abelian).

Sets, definable in a pure real closed field are called semi-algebraic.

2.6. Monotonicity Theorem
Let M = (M,≤, ...) be o-minimal and let f : M −→ M be definable. There are
a0 = −∞ < a1 < ... < an = +∞ such that for each i, f is constant or continuous
and strictly monotone on (ai−1, ai).

Proof. Let

X := {x ∈M | f is constant or strictly monotone and
continuous in an open interval containing x︸ ︷︷ ︸

we say “near x”

}.

and let Y be the complement of X in M . Suppose Y is finite. Then with

X= = {x ∈ X | f is constant near x}
X↗ = {x ∈ X | f is strictly increasing and continuous near x}
X↘ = {x ∈ X | f is strictly decreasing and continuous near x},

and using o-minimality, there are −∞ = a0 < a1 < ... < an = +∞ such that
each (ai−1, ai) is either contained in X=, or in X↗ or in X↘ (the elements in Y
are among the ai). It is clear that f is continuous in each (ai−1, ai). Moreover
if (ai−1, ai) is contained in X=, X↗, X↘ respectively, then f is constant, strictly
increasing, strictly decreasing in (ai−1, ai): for example say (ai−1, ai) is contained
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in X↗ and x ∈ (ai−1, ai). Then the set D of all y ∈ (ai−1, ai) with x < y and
f(x) < f(y) has a supremum in M and by choice of X↗, this supremum must be
ai.

Hence in order to show the theorem, we only need to show that the set Y is finite.
Suppose Y is infinite. By o-minimality, Y contains an open interval I. We will
shrink I to reach a contradiction.

Claim. We can shrink I such that f is injective and bounded on I.

Proof. Every y ∈ f(I) has only finitely many preimages in I: otherwise there would
be a subinterval of I contained in a single fibre, which contradicts Y ∩ X= = ∅.
Thus f(I) is infinite and there is an interval (u, v) contained in it. Moreover we may
define g : (u, v) −→ I by g(y) = min{x ∈ I | f(x) = y}. Obviously g is injective
with infinite image and so the image of g contains an interval. On this interval, f
is injective (with inverse g) and bounded (by u and v). �

Hence we have an injective function f on I which is not strictly monotone in
any open subinterval (as I ⊆ Y ). Let C be the (definable!) set of all points of I,
where f is continuous. If C is infinite, then C contains an open interval and by
2.3 f is strictly monotone on this interval. Thus C is finite and by shrinking I
further we may assume that f is not continuous at any point of I. By shrinking I
even further and applying o-minimality again we may assume that for each a ∈M ,
lim
t↗a

f(t) 6= f(a) (note that the limit exists by 2.1).

Since f is bounded on I we may define for all x ∈ I:

g(x) := lim
t↗x

f(t).

We will now make use of the assumption that M expands a group.

Let h(x) := |f(x)−g(x)|. Routine checking shows that limt↗x h(t) = 0 for all x. By
assumption h has no zero. Therefore h has an infinite image which again contains
an interval (u, v) with u > 0. Then also h−1((u, v)) is infinite and contains an
interval (a, b). Now h(t) ≥ u > 0 for all t ∈ (a, b) which contradicts limt↗x h(t) = 0
for all x. �

If M expands an ordered field, then every definable unary function is in fact
differentiable on a cofinite set. For the proof we need

2.7. Lemma. If F : [a, b] −→ M is a continuous and definable map then there is
some c ∈ [a, b) with

F (x)− F (c)

x− c
≤ F (b)− F (a)

b− a
for all x ∈ (c, b).

Proof. Let l(x) be the line trough (a, F (a)) and (b, F (b)), thus

l(x) = mx+ F (a)−ma with m =
F (b)− F (a)

b− a
.

We may assume that for some x ∈ (a, b) we have F (x)−F (a)
x−a > m (otherwise we

choose c = a). Then r := F (x)− l(x) > 0, as

F (x)− l(x) > F (a) +m(x− a)− l(x) = F (a) +m(x− a)− (mx+F (a)−ma) = 0.

By o-minimality the supremum c of all x ∈ [a, b] with F (x) − l(x) ≥ r exists and
we claim that c satisfies (i). Since F is continuous we have F (c) − l(c) ≥ r. As
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F (b) = l(b) and r > 0 we get c < b (as required). Pick y ∈ (c, b). By the choice of c
we have F (y)− l(y) < r ≤ F (c)− l(c). Hence F (y)−F (c) < l(y)− l(c) = m(y− c)
as desired. �

Note that 2.7 applied to −F says that there is some c ∈ [a, b) with

F (x)− F (c)

x− c
≥ F (b)− F (a)

b− a
for all x ∈ (c, b).

2.8. Theorem. If M is an o-minimal expansion of an ordered field, then every
definable function f : M −→M is differentiable apart from a finite set.

Proof. Suppose not. By the monotonicity theorem we may assume that there is an
interval [a, b] such that F |[a, b] is continuous, a strictly increasing homeomorphism
onto [F (a), F (b)] and nowhere differentiable in (a, b).

For x, y ∈M with x 6= y let

G(x, y) :=
F (y)− F (x)

y − x
.

The set {x ∈ (a, b) | limy↘xG(x, y) = +∞} has to be finite, otherwise it would
contain a proper interval which contradicts 2.7. Similarly (but applying 2.7 to
−F (b + a − x)) shows that the set {x ∈ (a, b) | limy↗xG(x, y) = +∞} is finite,
too. Hence by shrinking [a, b] (and using the fact that G > 0 everywhere) we may
assume that for each x ∈ (a, b),

lim
y↘x

G(x, y) 6= lim
y↗x

G(x, y) and both limits are in M.

By the monotonicity theorem we may shrink [a, b] such that the functions G+(x) :=
limy↘xG(x, y) and G−(x) := limy↗xG(x, y) are continuous on [a, b]. As G−(x) 6=
G+(x) for all x ∈ [a, b] we know from the intermediate value theorem that G− < G+

or G− > G+ on [a, b], say G− < G+. Further shrinking and using continuity we
find some r ∈M with G− < r < G+ on [a, b]. As G− < r we may shrink [a, b] such

that F (b)−F (a)
b−a < r.

By 2.7, there is some c ∈ [a, b) with F (x)−F (c)
x−c ≤ F (b)−F (a)

b−a (x ∈ (c, b)), hence
F (x)−F (c)

x−c < r (x ∈ (c, b)). But then G+(c) ≤ r, a contradiction. �

Many classical statements from Real Analysis also hold true in o-minimal ex-
pansions of arbitrary real closed fields. E.g.:

• Continuous definable functions on intervals (more generally on closed and
bounded sets) are uniformly continuous.
• Rolle’s theorem and the mean value theorem.
• L’Hospital’s rule.
• The implicit function theorem

The proofs are in many cases identical to those from Real Analysis and in expansions
of the real field they hold true by Real Analysis.

Exercise. Let R be an o-minimal expansion of a real closed field and let f :
(r,+∞) −→ R be R-definable and differentiable. If limx→∞ f(x) = 0, then also
limx→∞ x · f ′(x) = 0. (hint: use the mean value theorem).
Solution. Suppose not. By o-minimality we may assume that f(x) > 0 for all x.
As limx→∞ x ·f ′(x) 6= 0, there is some δ > 0 such that x ·f ′(x) < −δ for sufficiently
large x (as f > 0 and limx→∞ f(x) = 0, f must be finally decreasing).
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Let r < a < b. By the mean value theorem, there is some ξ ∈ [a, b] such that

f ′(ξ) =
f(b)− f(a)

b− a
.

Since f ′(ξ) < −δ
ξ and a < b we have f ′(ξ) · (b − a) < − δ(b−a)

ξ , hence f(b) <

f(a)− δ(b−a)
ξ . Since ξ ≤ b we have δ(b−a)

ξ ≥ δ(b−a)
b thus

f(b) < f(a)− δ(b− a)

b
= f(a)− δ +

δa

b
(r < a < b).

Since f(x) → 0 as x → ∞ we can choose a so that f(a) < δ
3 and b = 3a. Then

f(b) < δ
3 − δ + δ

3 = − δ3 in contradiction to f > 0 everywhere. �

3. Definable Skolem functions and elimination of imaginaries

3.1. Theorem. Let M = (M,≤,+, ...) be an o-minimal expansion of an ordered
group and let 1 ∈ M be a positive element. Let Z ⊆ Mk ×Mn be ∅-definable and
let X ⊆ Mk be its projection onto the first k coordinates. For x ∈ Mk we write
Zx = {y ∈ Mn | (x, y) ∈ Z} ⊆ Mn. Then there is a map f : X −→ Mn definable
with parameters from {1} such that

(i) Z contains the graph of f (thus f(x) ∈ Zx for all x ∈ X), and
(ii) for all x1, x2 ∈ X with Zx1 = Zx2 we have f(x1) = f(x2).

Proof. We first do the case n = 1. For a nonempty definable subset W of M we
define a point p(W ) ∈W as follows: Let B be the boundary W \ interior(W ) of W .
By o-minimality, B is finite. If W = M then we take p(W ) = 0. Otherwise B 6= ∅
and B has an infimum b; then we take

p(W ) :=


b if b ∈W
b− 1 if b 6∈W, b− 1 ∈W
b+ 1 if b 6∈W, b− 1 6∈W and B = {b}
b+c

2 if b 6∈W, b− 1 6∈W, B is not a singleton and c = inf(B \ {b})

We now define for x ∈ X,

f(x) := p(Zx).

As p(Zx) ∈ Zx by definition of p, f satisfies (i). By definition the value of f at
x only depends on Zx, hence (ii) holds true. Moreover, the definition of p can be
expressed by a formula using the formula defining Z and the parameter 1. This
shows the theorem in the case n = 1.

We now assume the theorem for n and prove it for n + 1. So here Z ⊆ Mk ×
(Mn ×M). Let Ẑ ⊆ Mk ×Mn be the projection of Z onto Mk ×Mn. We apply

the case n = 1 to Z and k + n, 1 and get a map g : Ẑ −→M satisfying (i) and (ii)

with respect to Ẑ and k + n, 1
Moreover the projection X of Z to Mk is the projection of Ẑ to Mk. We apply

the induction hypothesis to Ẑ and k, n and get a map f̂ : X −→Mn satisfying (i)

and (ii) with respect to X and k, n. In particular (x, f̂(x)) ∈ Ẑ for all x ∈ X. We
may therefore define f : X −→Mn ×M by

f(x) = (f̂(x), g(x, f̂(x))).
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With f̂ and g, also f is {1}-definable. Finally, routine checking shows that f
satisfies (i) and (ii):

(i): As f̂ satisfies (i) we know (x, f̂(x)) ∈ Ẑ; as g satisfies (i) we get (x, f(x)) =

(x, f̂(x), g(x, f̂(x))) ∈ Z.

(ii): Assume Zx1
= Zx2

. Then Ẑx1
= Ẑx2

(for y ∈ Ẑx1
\ Ẑx2

pick m ∈ M with

(x1, y,m) ∈ Z; then (y,m) ∈ Zx1 \Zx2). As f̂ satisfies (ii) we know f̂(x1) = f̂(x2).
Together with Zx1

= Zx2
we obtain Z(x1,f̂(x1)) = Z(x2,f̂(x2)). As g satisfies (ii) we

get f(x1) = f(x2). �

3.2. Corollary. Let M = (M,≤,+, 1, ...) be an o-minimal expansion of an ordered
group and 1 > 0. Then M has definable Skolem functions and elimination of
imaginaries.

Proof. Recall: ”M has elimination of imaginaries” means that for every n ∈ N,
each ∅-definable equivalence relation E of Mn is of the form f(x) = f(y) for some
∅-definable map Mn −→ Mk and some k. Here we can do even better: Each ∅-
definable equivalence relation E of Mn has a ∅-definable subset of representatives:
Take Z = E in 3.1 and let g : Mn −→ Mn be the map from 3.1. Then the image
of g is a set of representatives of E by 3.1(ii). �

The existence of definable Skolem functions implies that definably closed subsets
of a structure are elementary restriction of this structure, as follows easily from the
Tarski-Vaught test (note that the converse is also true!). Thus we obtain

3.3. Corollary. Let M = (M,≤,+, ...) be an o-minimal expansion of an ordered
group. If A ⊆M contains an element different from 0, then the definable closure
dcl(A) of A in M is an elementary substructure of M .

3.4. Examples.

(a) If M is a divisible, ordered abelian group, then M is a Q-vector space. The
definable closure of a subset A of M is the subspace generated by A.

(b) If M is a real closed field then the definable closure of a subset A of M is the
algebraic closure (in the sense of algebra) of the subfield R generated by A
in M .

Another very important consequence of definable Skolem functions in o-minimal
structures is the so called

3.5. Curve Selection Lemma
Let M = (M,≤,+, ...) be an o-minimal expansion of an ordered group. If X ⊆Mn

is definable and y ∈ X \X, then there is a continuous definable map γ : (0, δ] −→ X
(a “curve”) for some δ > 0 such that

lim
t→0

γ(t) = y.

Proof. Let Z ⊆Mn ×M be defined by

Z = {(x, ε) | x ∈ X, ε > 0 and ||y − x|| < ε},

where ||(a1, ..., an)|| is defined to be the maximum of all the |ai|. As y is in the
closure of X, the projection of Z to the last coordinate is (0,∞). By 3.2 there is a
definable map γ : (0,∞) −→ X with ||y−γ(ε)|| < ε for all ε > 0. By 2.1 applied to
the coordinates of γ the limit limt→0 γ(t) exists in Mn. By choice of Z, this limit
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has to be y. By the monotonicity theorem 2.6, there is some δ > 0 such that γ is
continuous on (0, δ]. �

The curve selection lemma 3.5 in the o-minimal context plays the role of con-
vergent sequences in Real Analysis. For example, the compact subsets of Rn are
precisely the closed and bounded sets. However, in a general o-minimal structure
the only compact subsets of M are the finite sets. In the o-minimal context, the
correct notion is “definably compact”: We call a subset S of Mn definably com-
pact if every definable curve γ : (0, 1] −→ S can be completed in S, i.e. the limit
limt→0 γ(t) exists and is in S.

3.6. Corollary. (Characterisation of definably compact sets)
Let M be an o-minimal expansion of an ordered field. A subset S of Mn is closed
and bounded (in Mn) if and only if S is definably compact.

Proof. If S is closed and bounded then S is definably compact as follows easily
from 2.1 (which says that one sided limits exist).

If S is unbounded then S has a projection onto some coordinate axis which
is unbounded. By o-minimality this projection contains an interval of the form
[a,+∞). Using definable Skolem functions and the field structure we can find a
definable map γ : (0, 1] −→ S such that the limit limt→0 γ(t) does not exist in Mn.
Using the monotonicity theorem and another re-scaling gives a curve as desired.

If S is not closed, then the curve selection lemma 3.5 implies that some curve
with values in S can not be completed in S. �

3.7. Corollary. In the situation of 3.6, definable continuous images of closed and
bounded sets are closed and bounded: If f : S −→ Mk is continuous and definable
with S ⊆Mn closed and bounded, then also f(S) ⊆Mk is closed and bounded.

Proof. Exercise. �

4. Dimension, part 1

We fix an o-minimal expansion M of an ordered group which has at least 2
definable constants. Recall from 3.3 that in this case, every definably closed subset
is an elementary substructure of M .

A combinatorial consequence of the monotonicity theorem 2.6 is the following

4.1. Exchange principle for dcl
If A ⊆M and b, c ∈M then

c ∈ dcl(A ∪ {b}) and c 6∈ dcl(A) ⇒ b ∈ dcl(A ∪ {c}).
Here dcl is the definable closure in M .

Proof. c ∈ dcl(A∪{b}) says that for some ∅-definable function f : Mn×M −→M
and some n-tuple ā from A we have c = f(ā, b). Since A ≺ M there are finitely
many intervals of A (so they have endpoints in A ∪ {±∞}) such that f(ā, x) is
constant or injective on each of these intervals. Since c 6∈ dcl(A), b can not be
among the endpoints of any of these intervals. Hence there are u, v ∈ A ∪ {±∞}
with u < b < v such that f(ā, x) is constant or injective on (u, v) (note that A ≺M ,
hence the latter statement can be read in A and in M alike). If f(ā, x) were constant
on (u, v), then this constant would be in A, which contradicts f(ā, b) = c 6∈ dcl(A).
So f(ā, x) is injective on (u, v) and the inverse g is an A-definable map satisfying
g(c) = b. But this means b ∈ dcl(A ∪ {c}). �
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Observe that in any expansion of a totally ordered set, definable closure is the
same as algebraic closure. Hence we will always talk about definable closure here.

4.2. Definition. A subset A of M is called independent if

a 6∈ dcl(A \ {a})
for every a ∈ A.

4.3. Corollary and Definition. By Zorn, every subset S of M contains maximal
independent subsets and each of these sets is called a basis of S.

All bases have the same cardinality, called the dimension of S.

Proof. The proof is literally the same as for the fact that every vector space has a
basis: Replace the notion “linearly independent” with our notion of independence
and use obvious properties of dcl together with the exchange principle 4.1. �

As in linear algebra we may also define the dimension of a subset B of M
over another subset A of M as smallest size of a subset C of B which has the
property dcl(A ∪ C) = dcl(A ∪B). Of course, then

dim(A ∪B) = dimA+ dim(B/A).

4.4. Examples.

(1) If M is a divisible, ordered abelian group, then M is a Q-vector space. The
dimension of a subset A of M is the vector space dimension of the subspace
generated by A.

(2) If M is a real closed field then the dimension of a subset A of M is the
transcendence degree of the subfield generated by A (in M).

5. Cell decomposition

In this section we will discuss a fundamental theorem of o-minimal structures which
gives a nice description of definable subsets S ⊆ Mn. Topologically and very
roughly speaking, the nice description says that S is a finite union of points and
definable subsets C of Mn, each one being homeomorphic to an open box of Mk (k
depending on C); moreover the homeomorphism can also be chosen to be definable
in M .

We start by defining cells of o-minimal structures. Let M be an o-minimal
expansion of a densely linearly ordered set.

5.1. Definition. (cells)

(i) A continuous graph over a definable subset S ⊆Mn is a graph of a contin-
uous definable function S −→M .

(ii) A band B over a definable subset S ⊆ Mn is the open set between two
continuous graphs of S or ±∞, i.e. there are continuous definable maps
f, g : S −→M such that f < g everywhere on S and

B = (f, g)S := {(x, y) ∈Mn ×M | f(x) < y < g(x)},
or B = (f,+∞)S := {(x, y) ∈Mn ×M | f(x) < y},
or B = (−∞, g)S := {(x, y) ∈Mn ×M | y < g(x)},
or B = S ×M

A cell in Mn is any subset of Mn obtained from iterating continuous graph and
band constructions, starting with points and open intervals of M .
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5.2. Warning. The definition above depends on the order of the coordinates: If
C ⊆ Mn+1 is a cell, then by definition, the projection of C to the FIRST n
coordinates is a again a cell (and C is by definition a graph or a band over this
projection). However the projection of C on other n coordinates is in general NOT
a cell.

There is a convenient way to denote cells which indicates how they are con-
structed: We say that a cell C of Mn is an (ε1, ..., εn)-cell, where εi ∈ {0, 1} and
εi = 0 if at stage i, the construction is a graph. Hence a (0)-cell is a point of M , a
(1)-cell is an open interval of M , a (0, 0, 0)-cell is a point in M3 and a (1, 1)-cell is
a band over an open interval of M .

Observe that by definition, the projection of an (ε1, ..., εn)-cell to the first k
coordinates is a (ε1, ..., εk)-cell.

5.3. Lemma. Let C ⊆Mn be an (ε1, ..., εn)-cell and let i1, ..., ik be those coordinates
with εij = 1. Let π be the projection onto these coordinates. Then π(C) is an open
cell (with respect to the coordinates i1, ..., ik) and π|C is a homeomorphism onto
π(C).

Proof. By induction on n, where the case n = 1 is obvious. Assume we know the
lemma for n. Let p : Mn×M −→Mn be the projection onto the first n coordinates
and let π0 be the projection from Mn onto the coordinates i ∈ {1, ..., n} with εi = 1.

As p(C) is a (ε1, ..., εn)-cell, by induction, π0(p(C)) is an open cell and π0|p(C)

is an homeomorphism onto π0(p(C)).

If εn+1 = 0, then C is the graph of a definable continuous function f : p(C) −→M

and π(C) = π0(p(C)) is open. Clearly, the restriction of p to the graph of f
(hence to C) is an homeomorphism onto p(C) (with inverse ā 7→ (ā, f(ā))). Thus
π|C = (π0|p(C)) ◦ p|C is the composition of two homeomorphisms.

Now suppose εn+1 = 1, i.e. C is a band over p(C), say C = (f1, f2)p(C) with

continuous definable maps fi : p(C) −→ M (the other cases being similar). Then

π = π0 × p. We define functions f̂i : π0(p(C)) −→M by

f̂i = fi ◦ (π0|p(C))
−1.

As f1 < f2 everywhere, also f̂1 < f̂2 everywhere and so

(f̂1, f̂2)π0(p(C)) = {(ā, b) ∈ π0(Mn)×M | ā ∈ π0(p(C)), f̂1(ā) < b < f̂2(ā)}

is an open cell in π0(Mn)×M . It is now straightforward to see that (f̂1, f̂2)π0(p(C)) =
(π0 × p)(C) = π(C) and π|C is an homeomorphism onto π(C) with inverse

(ā, b) 7→ ((π0|p(C))
−1(ā), b).

�

So it seems that cells ”are” more or less open cubes. However the situation is not
quite so simple, in particular if we want to understand how the cell lies in its ambient
space. For example, the paper [BeFo] contains a 2 dimensional semi-algebraic cell
C in R4, whose closure has a ”hole” (i.e. C is homotopic to a circle).

Exercise. Find an open semi-algebraic cell C ⊆ R2 and a bounded continuous s.a.
function f : C −→ [0, 1] ⊆ R which can not be extended continuously to the closure
of C.
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Find a semi-algebraic (1, 1, 0)-cell in R3 whose closure in R3 contains the z-axis
{0}2 ×R.
Solution. Let C be the open right half space of R2 and let f : C −→ R

f(x, y) =
y

x

Then f is semi-algebraic, continuous, f can not be continuously extended to the
origin´ and the graph C of f is a (1, 1, 0)-cell whose closure contains the z-axis.
This answers the second question. �

A fundamental property of o-minimal structures says that definable sets in all di-
mensions are finite unions of cells. This alone implies that every o-minimal structure
has an o-minimal theory (cf. 5.6). In fact we have

5.4. Cell decomposition theorem
Let M be an o-minimal expansion of a densely ordered set, let S ⊆ Mn and let
f : S −→Mm be definable. There is a decomposition of Mn into finitely many cells
C1, ..., Ck (i.e. Mn is the disjoint union of the Ci), which is compatible with S (i.e.
each Ci is either disjoint from S or contained in S), such that f |Ci

is continuous
for each i.

Proof. This is a lengthy induction and can be found in [vdD98, Chapter 3, (2.11)]
and in [PS86]. �

Obviously, in dimension 1, this specialises to the monotonicity theorem.

There are many variants and improvements of this theorem in the literature; most
of them modify the definition of a cell by saying that all functions used in the
definition of ”cells” have to be of a particular form. Some examples:

• If M expands a field, then the cell decomposition theorem is also true in its
Ck-version, where k ∈ N. That is, if we replace in the theorem and in the
definition of “cell” every occurrence of “continuous” by k-times differentiable,
then the theorem is still true, cf. [vdD98, Chapter 7, (3.2)].
• One can improve 5.4 to include certain monotonicity assertions about the

occurring functions; this is called the regular cell decomposition, cf. [vdD98,
Chapter 3, (2.19)]
• If M is a pure real closed field then all data in 5.4 can be chosen to be ”Nash”,

i.e. all occurring functions are definable and infinitely differentiable in an open
neighborhood of their domain. Cf. [BCR98]

We state various consequences of cell decomposition. First a notation. For
S ⊆Mn ×Mk and a ∈Mn let

Sa := {b ∈Mk | (a, b) ∈ S}.

It is good to think of Sa as the fibre of S above a (under the projection π :
Mn ×Mk −→Mn), although this is not true, since this fibre actually is {a} × Sa.
The set S is sometimes thought of as the definably family (Sa)a∈Mn .

Note that by definition, for a cell C ⊆ Mn ×Mk and a ∈ Mn, the set Ca is
a cell of Mk (replace in the inductive definition of C, the variables x1, ..., xn by
a1, ..., an).

5.5. Corollary. (Uniform finiteness property)
If M is an o-minimal L -structure and ϕ(x̄, y) is an L -formula, then there is some
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K ∈ N such that for all x̄-tuples ā from M , the subset of M defined by ϕ(ā, y) is a
union of at most K intervals.

Proof. Let Z ⊆Mn×M (where n is the length of x̄) be the set defined by ϕ(x̄, y).
By cell decomposition, Z is a union of K cells C of Mn ×M . Each C is a band
or a graph over its projection onto the first n coordinates and so for ā ∈ Mn, the
set Cā = {b ∈ M | (ā, b) ∈ C} is empty, a singleton or an open interval. Since the
set defined by ϕ(ā, y) (which is Zā) is the union of the Cā’s, this set consists of at
most K intervals. �

5.6. Corollary. If M is an o-minimal structure and N is elementary equivalent to
M , then also N is o-minimal. This property is referred as ”o-minimal structures
are strongly o-minimal”.

Proof. We have to show that every (parametrically!) definable subset S ⊆ N is a
finite union of intervals. Let S be defined by a formula ϕ(ā, y) with an L -formula
ϕ(x̄, y) and some x̄-tuples ā from N . Choose K ∈ N according to uniform finiteness
5.5. The property described in 5.5 is clearly expressible in a first order statement.
Since N is elementary equivalent to M , this statement also holds true in N . Thus
S is a union of at most K intervals. �

5.7. Corollary. O-minimal structures are geometric. Recall that a structure M
is geometric if model theoretic algebraic closure has the exchange property in all
N ≡ M and if ”∃∞” is definable, i.e. for each L -formula ϕ(x̄, y) there is some
K ∈ N such that for all x̄-tuples ā from M , the subset of M defined by ϕ(ā, y) is
infinite or os size at most K.

Proof. By 5.6, all N ≡ M are again o-minimal and so by the exchange principle
4.1, acl (which is equal to dcl here) has the exchange property. By 5.5, M defines
”∃∞”. �

Remark. The interest in geometric structures is the presence of a definable dimen-
sion function: As in 4.3 we can associate a dimension to subsets of the geometric
structure M and in all of its elementary extensions. We then define the dimension
of a definable subset S of Mn as the maximum dimension over M of an n-tuple ᾱ
from an elementary extension N � M with N |= S(ᾱ). Using the second require-
ment of geometric structures one can then show that dimS ≥ k if and only there
is a projection π of S onto k coordinates such that in M ,

∃∞x1 ... ∃∞xk (x1, ..., xk) ∈ π(S)

holds true.

5.8. Proposition. Definable connectedness is definable, i.e. for a definable sets
S ⊆ Mn ×Mk, the set of all a ∈ Mn for which Sa is definably connected is itself
definable.

Proof. Sketch: Firstly, it is easy to see by induction on d that cells of Md are
definably connected.

Now a finite union C1∪ ...∪CK of cells is definably connected if and only if there
is some sequence i1, ..., iN of indices from {1, ...,K}, enumerating {1, ...,K} with
N ≤ K2 such that for each j < N , Cj ∩ Cj+1 6= ∅ or Cj ∩ Cj+1 6= ∅.

In order to see the proposition, choose finitely many cells C1, ..., CK of Mn×Mk

whose union is S. Then for each a ∈ Mn, Sa = C1,a ∪ ... ∪ CK,a and the Ci,a are
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again cells (in Mk). Now use the characterisation above to write down a formula
which expresses that C1,a ∪ ... ∪ CK,a is definably connected. �

Exercise. Show that for every cell C of an o-minimal expansion of a group, the
closure is definably path connected, i.e. for all a, b ∈ C there is a continuous
definable map [0, 1] −→ C starting at a and ending in b.
Exercise. Show that for an o-minimal structure on the set of real numbers, every
definably connected set is connected.

6. Dimension, part 2

We will now describe the dimension of o-minimal structures (cf. 4.3) in geometric
terms:

6.1. Definition. For a nonempty definable subset S ⊆Mn we define its dimension
as

dimS := max{d ∈ N0 | there is a projection π onto d coordinates such that
π(S) has nonempty interior in π(Mn)}

Here M0 stands for a singleton. We extend this to dim ∅ := −1

Important observation. The dimension of definable sets is definable in the fol-
lowing sense: for a definable set S ⊆Mn×Mk, the set of all a ∈Mn for which the
fibre Sa = {b ∈ Rk | (a, b) ∈ S} has dimension d, is again definable. This property
is called “definability of dimension”.

6.2. Proposition. Let M be o-minimal.

(i) If S ⊆Mn is definable then

dimS = max{dim(ᾱ/M) | ᾱ ∈ Nn, N �M and N |= S(ᾱ)}.
(ii) If N �M and ᾱ ∈ Nn, then

dim(ᾱ/M) = min{dimS | S ⊆Mn definable and N |= S(ᾱ)}.

Proof. (i). Let d := dimS.

“≤”: We may assume that the projection π onto the first d coordinates has
nonempty interior in Md. Let a1 < b1, ..., ad < bd ∈M such that π(S) contains the

open box B =
∏d
i=1(ai, bi). Observe that dim(α1/M) = 1 as α1 6∈M .

Take α1 from an elementary extension N1 of M such that a1 < α1 < c for every
c ∈M with a1 < c.

Take α2 from an elementary extension N2 of N1 such that a2 < α2 < c for every
c ∈ N1 with a2 < c. Observe that dim(α2/Mα1) = 1 as α2 6∈ dclMα1 ⊆ N1. From
the additivity of dimension we get dim(α1, α2/M) = 2.

Continuing in this way we see that we can produce a d-tuple ᾱ in some elementary
extension of M with ai < αi < bi and dim(ᾱ/M) = d. Since B ⊆ π(S) is an
elementary statement and N |= B(ᾱ) we get N |= π(S)(ᾱ). Now this means we
can extend the d-tuple ᾱ to an n-tuple which satisfies N |= S(ᾱ).

“≥”: Take ᾱ ∈ Nn, N � M and N |= S(ᾱ). After decomposing S into finitely
many cells C, we see that N |= C(ᾱ) for one such cell. Let ε1, ..., εn ∈ {0, 1} such
that C is a (ε1, ..., εn)-cell and let i1, ..., ik be those indices for which εij = 1. Let π
be the projection onto these coordinates. By 5.3, π(C) is open. Thus d ≥ k and it
suffices to show k ≥ dim(ᾱ/M). By 5.3, π|C is an homeomorphism onto π(C), hence
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for each s ∈ C, (π|C)−1(π(s)) = s. As N |= C(ᾱ) we also have (π|C)−1(π(ᾱ)) = ᾱ.
As (π|C)−1 is definable in M , we get

ᾱ ⊆ dcl(M ∪ {π(ᾱ)})

and so dim(ᾱ/M) = dim(π(ᾱ)/M) ≤ k (note that π(ᾱ) is a k-tuple).

(ii). By (i), the inequality ≤ of (ii) holds true. To prove “≥”, let d = dim(ᾱ/M).
We may assume that αd+1, ..., αn ⊆ dcl(M ∪ {α1, ..., αd}), in other words there is
a definable function F : Md −→ Mn−d such that F (α1, ..., αd) = (αd+1, ..., αn).
Let S ⊆ Mn be the graph of F . Clearly N |= S(ᾱ) and it suffices to show that
dimS ≤ d. We use (i) again: We know that dimS = dim(β̄/M) for some n-tuple
β̄ from some elementary extension N ′ of M with N ′ |= S(β̄); thus F (β1, ..., βd) =
(βd+1, ..., βn) and β̄ ⊆ dcl(M ∪ {β1, ..., βd}). It follows dimS = dim(β̄/M) =
dim(β1, ..., βd/M) ≤ d. �

Let us examine how the dimension of definable sets behave under definable maps.
The proof is basically an application of 6.2:

6.3. Proposition. Let S ⊆Mn and F : S −→Mk be definable. Then

dimF (S) + min
y∈F (S)

dimF−1(y) ≤ dimS ≤ dimF (S) + max
y∈F (S)

dimF−1(y)

Proof. To see the first inequality, assume that all fibres of F have dimension ≥ d.
Take β̄ ∈ Nk for some N �M with N |= F (S)(β̄) such that dim(β̄/M) = dimF (S)
(cf. 6.2(i)). Since all fibres of F have dimension ≥ d and this is an elementary
statement about M , the fibre F−1(β̄) ⊆ Nn also has dimension ≥ d. Hence there
are N1 � N and ᾱ ∈ Nn

1 with N1 |= S(ᾱ) and F (ᾱ) = β̄ such that dim(ᾱ/N) ≥ d,
in particular dim(ᾱ/Mβ̄) ≥ d. It follows

dimS ≥ dim(ᾱ/M) = dim(ᾱ, β̄/M) = dim(β̄/M) + dim(ᾱ/Mβ̄) = dimF (S) + d.

To see the second inequality take N � M and some ᾱ ∈ Nn with N |= S(ᾱ) and
dim(ᾱ/M) = dimS (cf. 6.2(i)). Let β̄ = F (ᾱ) ∈ Nk and let d := dim(ᾱ/Mβ̄).
Then

dimS = dim(ᾱ/M) = dim(ᾱ, β̄/M) = dim(β̄/M) + dim(ᾱ/Mβ̄) ≤ dimF (S) + d

and it suffices to show that F has a fibre of dimension ≥ d.
By 3.3, N0 := dcl(Mβ̄) is an elementary substructure of N (provided M has

definable Skolem functions, e.g. if M expands a group; we assume this here for
simplicity). We apply 6.2(i) to the fibre of F : S(Nn

0 ) −→ Nk
0 above β̄ and see that

the dimension of this fibre is at least d. Hence F considered in N0 has a fibre of
dimension ≥ d . Since this is an elementary statement, also the original map F has
a fibre of dimension d. �

Here a list of obvious consequences of 6.3:

6.4. Corollary. Let S ⊆Mn be definable.

(1) If F : S −→Mk is a definable map then dimS ≥ dimF (S) and if the dimen-
sion of the fibres is constant d, then dimS = dimF (S) + d. In particular, if
F is injective then dimS = dimF (S).

(2) dim(S × T ) = dimS + dimT for all definable T ⊆Mk.
(3) dim(S ∪ T ) = max{dimS,dimT} for all definable T ⊆Mn.
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A very useful and more complicated property of the dimension function is the
following:

6.5. Theorem. ([vdD98, chapter 4, (1.8)])
If S ⊆ Mn is definable then the frontier S \ S of S has dimension strictly less
than dimS.

7. Restricted analytic functions and global exponentiation

So far we have seen real closed fields and divisible ordered abelian groups as ex-
amples of o-minimal structures. In the mid 1980’s the first proper o-minimal ex-
pansions of the real field R was discovered by van den Dries (the expansion of R
by the restricted exponential function exp |[0, 1]). In the meantime a huge class of
non-algebraic functions defined on subsets of Rn is known. We give here a brief
introduction to two types of such functions which were and are studied in many
areas of mathematics and for which the discovery of their o-minimality had big
impact outside (and of course also inside) model theory.

Recall that a function f : U −→ R, U ⊆ Rn open, is analytic if for each a ∈ U ,
the Taylor series expansion of f in U converges in an open neighborhood of a and
it converges to f in that neighborhood. Observe that, in contrast to the complex
case, for analytic f : R −→ R the power series expansion of f at 0 in general does
not converge everywhere: for example the function f(x) = 1

1+x2 is real analytic on

R, but its Taylor series about 0 is 1− x2 + x4 − x6 + ....

If U is an open subset of Rn with [−1, 1]n ⊆ U and f : U −→ R is analytic, we

define f̂ : Rn −→ R by

f̂(x) :=

{
f(x) if x ∈ [−1, 1]n,

0 otherwise.

Let Ran be the expansion of the real field together with all functions f̂ for every
analytic function f defined on an open superset of [−1, 1]n and every n ∈ N.

So Ran in a Lan-structure, where Lan is the language of ordered rings together

with an n-ary function symbol f̂ for every analytic function f defined on an open
superset of [−1, 1]n.

7.1. Theorem. (Denef, van den Dries, [DvdD88])
Ran is o-minimal and admits quantifier elimination in the language Lan extended
by a name for the function x 7→ 1

x .

Comments on the proof: After re-scaling, we can restrict the universe to [−1, 1].
Quantifier elimination is achieved by first applying the Weierstrass preparation
theorem to analytic functions in n variables to write them in terms of polynomials
with respect to one of the variables (here some work is involved as the Weierstrass
preparation theorem is only applicable to regular germs and we have to reduce to
this case first). Then quantifier elimination for the real field is used to eliminate
this variable locally. By compactness, the variable is then eliminable globally.

Observe that every function defined on a compact subset K of Rn which has an
analytic extension on some open neighborhood of K, has an Ran-definable analytic
extension on some open neighborhood of K (Exercise!). For example, the complex
exponential function viewed as a map R2 −→ R2 restricted to every ball is definable
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in Ran. On the other hand, global complex exponentiation R2 −→ R2 is not o-
minimal (why?) and therefore not definable in Ran.

Real exponentiation is also not definable in Ran since Ran is polynomially
bounded, i.e. for every unary definable function f : M −→ M , there is some
d ∈ N such that f(x) ≤ xd for all sufficiently large x (cf. [vdD86]); in fact in this
paper van den Dries shows that f(x) is asymptotic to c · xq for some c ∈M and a

rational number q (so limx→∞
f(x)
cxq = 1). In particular, the function x 7→ x

√
2 is not

definable in Ran. Of course, x 7→ x
√

2 would be definable if global exponentiation
R −→ R were available.

Let Rexp be the expansion of the real field by the real exponential function in the
language Lexp of ordered rings expanded by a unary function symbol exp.

7.2. Theorem. (Wilkie) Rexp is model complete and o-minimal.

Comments on the proof (cf. [Wil96]). Recall that a structure M is model
complete if all ∅-definable subsets are projections of quantifier free ∅-definable sets
(these are precisely the existentially definable sets). Wilkie uses the Robinson test
for model completeness and shows that for any extension M ⊆ N of models of
Th(Rexp), M is existentially closed in N (the language here is Lexp).

It was shown by Khovanskii earlier that o-minimality follows from model com-
pleteness: Khovanskii proved that every exponential variety, i.e. zero set in Rn

of a system of equations

P1(x1, ..., xn, e
x1 , ..., exn) = 0
...

Pk(x1, ..., xn, e
x1 , ..., exn) = 0,

with polynomials Pi ∈ R[X1, ..., Xn, Y1, ..., Yn], has only finitely many connected
components. Now it is an easy exercise to show that every set, existentially defin-
able in Rexp, is the projection of an exponential variety. Hence model completeness
implies that all Rexp-definable sets are projections of sets with only finitely many
connected components. So these sets also have only finitely many connected com-
ponents, which implies o-minimality.

We can also merge Ran and Rexp: Let Ran,exp be the expansion of Ran by the
real exponential function in the language Lan,exp = Lan(exp).

7.3. Theorem. ([vdDMM94])
Ran,exp has quantifier elimination after naming the logarithm (i.e., in the language
Lan,exp(log)) and Ran,exp is o-minimal.

There are much more o-minimal expansions of the real field known, e.g. if M
is an o-minimal expansion of the real field, I ⊆ R is an open interval and a ∈ I
then for every continuous function f : I −→ R, definable in M , we can add the
function x 7→

∫ x
a
f(t)dt (defined on I) to M and get again an o-minimal structure.

This is a special case of the construction of the so-called Pfaffian closure of an
o-minimal expansion of the real field by Speissegger (cf. [Spe99]). The integration
of functions in this way indeed is not possible in Ran,exp: In [vdDMM97] the error

function x 7→
∫ x

0
e−t

2

dt is shown to be not definable in Ran,exp.

A surprising result by Miller says that any o-minimal expansion of the real field
which is not polynomially bounded must define global exponentiation R −→ R.
This is called the growth dichotomy (cf. [Mil94]).
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The first order theory of Rexp.

Beside the geometric interest in producing o-minimal structures of large classes of
functions (and therefore providing the o-minimal machinery for these functions),
decidability questions were a strong motivation for the development of the theory.

Recall that Tarski proved the decidability of the real field R by showing effective
quantifier elimination in the language L = {≤,+,−, ·, 0, 1}. Hence an algorithm
for testing truth of an L -sentence ϕ in R explicitly transforms ϕ into a quantifier
free L -sentence χ, equivalent to ϕ in R. In a second step it is then trivial to decide
whether χ holds in R, since χ is only a boolean combination of expressions of the
form P (ā) ≥ 0, where P is a polynomial with coefficients in Z and ā ⊆ Z.

Tarski asked whether the decidability can be extended to Rexp. Both steps in
Tarski’s approach are not directly accessible: Firstly, Rexp does not have quantifier
elimination in the language Lexp (a counterexample can be found in [vdD84]).
Secondly, how to decide existential sentences of Rexp? Note that we at least have
to decide quantifier free sentences like

P (e, e2, ee) = 0 (P ∈ Z[x1, x2, x3])

in Rexp.

Here some highlights of what is known about Tarski’s problem: Ressayre, van
den Dries, Marker and Macintyre have shown that the elementary theory of Rexp is
decidable provided the theory of the restricted exponential exp( 1

1+x2 ) is decidable.
Wilkie has shown that the theory ofRexp( 1

1+x2 ) is effectively model complete. Wilkie

and Macintyre in [MW96] have shown that the theory of Rexp is decidable provided
the following number theoretic conjecture holds true:

7.4. Schanuel’s Conjecture If λ1, ..., λn ∈ C are linearly independent over Q,
then the field Q(λ1, ..., λn, e

λ1 , ..., eλn) has transcendence degree at least n.
Note that this conjecture is known to hold true if λ1, ..., λn are algebraic over

Q by the Lindemann-Weierstrass Theorem. Also note that Schanuel’s Conjecture
would imply the algebraic independence of e and π (choose λ1 = 1, λ2 = 2πi).
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8. NIP and neural networks

8.1. Vapnik-Chervonenkis dimension.

8.1.1. Definition. Let X be a set and let S be a collection of subsets of X. We
say that S shatters a subset B ⊆ X if every subset of B is of the form B ∩ S for
some S ∈ S.

If there is some d ∈ N such that S does not shatter any subset of size d of X,
then the smallest such d is called the VC-dimension, or VC-index, of S. ‘VC’
stands for Vapnik-Chervonenkis. In this case S is called a VC-class.

If there is no such d, then VC(S) :=∞.

Let S be a collection of subsets of a set X. For B ⊆ X, let B∩S = {B∩S | S ∈ S}.
For n ∈ N let

fS(n) = max{|B ∩ S| | B ⊆ X and |B| = n}.
Thus fS(n) = 2n if and only if S shatters a set of size n. Surprisingly, fS(n) is
polynomially bounded for large n, if S has finite VC-dimension:

8.1.2. Theorem. [vdD98, chapter 5, (1.6)] Suppose S does not shatter any subset
of X of size d. Then for all n ≥ d, fS(n) is at most the number of subsets of an
n-element set of size < d, given by

pd(n) =
∑
i<d

(
n

i

)
.

Observe that pd(n) is a polynomial of degree d− 1.

Proof. First note (by counting subsets of size < d of an n-element set) that pd(n) =
pd−1(n− 1) + pd(n− 1).

We proceed by induction on n. If n = d then fS(n) < 2n = pn(n) − 1. Now
let n > d and let B ⊆ X be of size n. We must show that |B ∩ S| ≤ pd(n) and of
course we may replace S by B ∩ S. Fix x ∈ B and define

S0 = {S ∈ S | x 6∈ S and S ∪ {x} ∈ S}
S1 = {S ∈ S | x ∈ S or S ∪ {x} 6∈ S}

Since S does not shatter any subset of X of size d, S0 does not shatter any subset
of X \ {x} of size d− 1.

Hence the induction hypothesis says |(B \ {x}) ∩ S0| ≤ pd−1(n − 1). As x 6∈ S
for any S ∈ S0, (B \ {x}) ∩ S0 = S0 and |S0| ≤ pd−1(n− 1).

On the other hand |S1| ≤ |(B \ {x}) ∩ S1| since the map S1 −→ (B \ {x}) ∩ S1

which removes x is injective (by definition of S1 and since all S ∈ S1 are assumed
to be a subset of B).

By the induction hypothesis we have |S1| ≤ pd(n− 1). Thus |S| = |S0|+ |S1| ≤
pd−1(n− 1) + pd(n− 1) = pd(n). �

8.2. O-minimal structures have NIP. First a reminder: Let T be an L -theory
and let ϕ(x̄, ȳ) be an L -formula. We say that ϕ has the independence property
(w.r.t. x̄,ȳ) if in some model M of T , the set of fibres (Sā)ā∈M x̄ , where S is defined
by ϕ, shatters some infinite subset of M ȳ. Hence there are

āI ∈M x̄ and b̄i ∈M ȳ (i ∈ ω, I ⊆ ω)

such that

M |= ϕ(āI , b̄i) ⇐⇒ i ∈ I.
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This is equivalent to saying that the collection (ϕ[M x̄, b̄i])i∈ω is independent in the
sense of boolean algebras.

The theory T has the independence property if some formula has the inde-
pendence property. If T does not have the independence property, then T is called
dependent, or T is said to have the NIP.

A structure M has (N)IP, if its theory has (N)IP. By compactness, M has the
independence property if and only if there is a definable family (Sā)ā∈Mn ⊆ Mk

which shatters finite subsets of Mk of arbitrary size (Exercise!); in other words if
(Sā)ā∈Mn has infinite VC-dimension.

In [vdD98, chapter 5], it is explicitly proved that no formula in an o-minimal
structure has the independence property. We shall use the following general model
theoretic criterion instead:

8.2.1. Theorem. ([Poi85, théorème 12.28])
An arbitrary L -theory T has the independence property if and only if there is a
1-type p over some model M of T with cardM ≥ card L and some N � M such

that p has at most 22card M

coheirs on N .

In order to apply 8.2.1 we describe coheirs of 1-types of o-minimal structures:
Recall that for an elementary extension M ≺ N of L -structures, an n-type q of N
is called a coheir over M if q is finitely realisable in M . In this case q is a coheir
of its restriction p to M . Since M,N are o-minimal, p and q are determined by the
cuts they induce on M .

8.2.2. Proposition. Every 1-type of an o-minimal structure M has at most 2 co-
heirs on any N �M .

Proof. Suppose there are 3 distinct coheirs q1, q2, q3 of p on N . By 5.6, also N is o-
minimal and the qi are determined by the cuts they induce onN . Up to permutation
we may therefore assume that we have α, β ∈ N such that the position of q1, q2, q3

and α, β looks as follows:

N q1 α q2 β q3

M
pL

p
pR

As q1 and q3 lie over p, α and β realise p. But then the interval (α, β) of N does
not contain elements of M , in other words, the formula α < x < β is contained in
q2 and not realisable in M . Thus q2 cannot be a coheir of p. �

8.2.3. Corollary. Every o-minimal structure has NIP.

Proof. By 5.6 every model of the theory of M is o-minimal. Hence the result follows
from 8.2.1 and 8.2.2. �

Hence in an o-minimal structure M for every definable family S ⊆Mn×Mk, there
is some d ∈ N such that (Sā)ā∈Mn does not shatter any subset of Mk of size d.

8.2.4. Corollary. If M is o-minimal and S ⊆Mn ×Mk is definable, then there is
some d ∈ N such that for all sufficiently large n ∈ N and every subset X ⊆Mk of
size n, there are at most nd sets of the form X ∩ Sa where a varies in Mn.
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Proof. By 8.2.3, the collection {Sa | a ∈ Mn} has finite VC-dimension d. Now
apply 8.1.2 and notice that pd(n) is a polynomial of degree d− 1. �

8.3. An application to neural network learning. In this section I describe
a main instance of how the NIP property is applied in neural network learning.
The first two subsections are an attempt to motivate the architecture of a neural
network and to develop the intuition behind the mathematical theory of neural
network learning. I’m introducing some terminology from the neural network lit-
erature to help the reader approaching these texts. The last subsection gives a
formal definition of neural network learning for binary output networks and shows
in which way the NIP property is fundamental to the subject (cf. 8.3.3.2). Most
of the material here is from [AB99]. Further reading and computations of the VC-
dimension of various families, definable in o-minimal structures can be found in
[MS93] and [KM97].

8.3.1. A neuron. I want to start with a rough description of a biological neuron
and what can be observed when the neuron (or better its host) is learning.

axon

dendrites

cell
body

�

R

zsynapse

A neuron is a cell consisting of a cell body, several input filaments called dendrites
and a single long output filament called an axon. The cell body receives inhibitory
or excitatory electrical impulses through the dendrites and sends an impulse down
the axon depending on these inputs. The axon splits into thousands of branches
which end in a terminal button. Each terminal button is connected to dendrites
of other neurons across a small gap called a synapse. The synapses convert the
activity from the axon into inhibitory or excitatory impulses and transmit them
into the dendrites of other neurons.

During learning the synapses change their effect on the dendrites. Now this
does not explain how the brain learns, it is merely what can be observed form the
neuron during the learning process. However, it is this behavior of the neuron which
is rebuilt in artificial neural networks.

8.3.2. Artificial neural networks and simulation of learning.
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An artificial neuron receives real numbers ri as inputs, computes the weighted
sum

∑
riwi and applies an activation function F to this sum. The weights

wi are adjustable and play the role of the synaptic activity during learning of
a biological neuron. Hence, in mathematical terms, a neuron is a family H of
functions r̄ 7→ F (

∑
riwi), where the wi vary in some parameter space.

Typical activation functions used in practice are characteristic functions of an
interval (a,+∞), piecewise linear functions or the sigmoid function F (t) = 1

1+e−t .

An (artificial) neural network consists of a number of artificial neurons, whose
input and output wires are connected in some way. Here is an example of a network
with 10 neurons and 4 layers; since each neuron is only sending output to neurons
in the next layers, we have an example of a feed-forward network:

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10
- {0, 1}

Let X be the input space of our network. X can be a finite set or in our
example, the network receives a tuple of points from R2 × {0, ..., 255} (describing
the coordinates and the color value of a point), say of l points. So X = (R2 ×
{0, ..., 255})l; l = 12 in the picture above. The network is supposed to recognise
patterns and has Y = {0, 1} as output space. Each of the artificial neurons is
equipped with an activation function Fi(x̄, w̄), and so the network is capable of
computing a class H of functions X −→ Y .

8.3.2.1. Remark. For our discussion here, in particular for the result 8.3.3.2, the
only thing that matters is that an artificial neural network is modeled as a family
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of functions F (x̄, w̄), where the w̄ vary in some parameter space. In the quan-
titative analysis of a neural network it is important though how the neurons are
implemented, e.g. in [AB99, Section 8.4] a two-layer feed-forward network using
sigmoid functions is analysed.

Mathematically, the network’s physical configuration is modeled by an input
space X (an arbitrary but fixed set), the output space Y = {0, 1} and a class H of
functions X −→ Y . This is the model for a binary output network and there
are many others discussed in the literature, e.g. real valued output networks.

We want to formalise the way in which the weights in the network are adapted
during the learning process so that the network is able to “learn” a pattern which
is presented to it. Let us make this process more precise:

The learning cycle:

• At the beginning of the cycle the network is in a certain state, given by the
weights, or simply given by a function h ∈ H coded by the weights.
• The network receives a training sample (x, y) ∈ X × Y , which is randomly

chosen by a “teacher”. It is a good idea to think of a training sample as a
“correct sample”.
• We then compute h(x) using the function h ∈ H of the network’s current

state.
• Finally we adapt the weights wij of the Fi(x̄, w̄) depending on whether h(x) =
y or h(x) 6= y. In this last step of the cycle we also want to take into account
the training samples of previous cycles, so that we can make use of the infor-
mation h(x) = y.

Goal:

After a finite number of training samples the network has “learned” a function
h ∈ H which approximates the pattern in a best possible way and can now
recognise the pattern; so we can give the network an input x ∈ X and hopefully
get a good approximation to an answer of the question on whether x is an
instance of the correct pattern.

More formally, the learning cycles indicate that we are looking for an algorithm L
receiving training samples, or better sequences of training samples, and returning a
weight vector (wij), or simply: a function h ∈ H (coded by the weights). In other
words the learning cycles are mimicked by a single function

L :
∞

⋃
m=1

Zm −→ H, where Z = X × Y.

We consider the goal above to be achieved by L if for largem, and almost all z ∈ Zm,
the function L(z) computes the pattern as good as possible. The mathematical
definition expressing this goal can be found in 8.3.3.1 below and we want to motivate
this definition a bit further. The evaluation of a state h ∈ H of the network for a
particular pattern and training method, is mimicked with the aid of a probability
measure p on the set of samples Z = X × Y . At this stage it is important to note
that during the design of the network and the implementation of the algorithm L,
we do not have any information about the pattern or how the training samples are
presented to us; both information are captured in the measure p. Recall that the
network only consists of the class of functions H and we have to design an algorithm
independent of p.
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8.3.3. A mathematical formulation of neural network learning.

Here we describe the mathematical formulation of what we have motivated in the
previous section. Let X be a set, Y = {0, 1} and let H be a set of functions
X −→ Y . Of course we may also think of H as a collection of subsets of X.

Let Z = X × Y be the sample space and let p be a probability measure on Z.
We define the error of h ∈ H, given p by

erp(h) = p{(x, y) ∈ Z | h(x) 6= y}.
p measures the probability that a sample is chosen as a training sample. The best
approximation in H for given p is defined as

optp(H) = inf
h∈H

erp(h).

8.3.3.1. Formal definition of learning
A learning algorithm L for the network given by H (and X, Y = {0, 1}) is a
map

L :
∞

⋃
m=1

Zm −→ H

with the following property:

∀ ε, δ ∈ (0, 1) ∃ m0(ε, δ) ∈ N ∀ m ≥ m0(ε, δ) :

for every probability measure p on Z = X × Y and each m-tuple of
samples z ∈ Zm we have

pm{erp(L(z)) < optp(H) + ε} ≥ 1− δ,
where pm is the product measure on Zm.

The class H is called learnable if there is a learning algorithm L for the network
(X,Y,H) and in this case the minimum of all the bounds m0(ε, δ), were L varies
through the learning algorithms is called the inherent sample complexity, de-
noted by mH(ε, δ).

8.3.3.2. Theorem. ([AB99, Thm 5.5])
H is learnable if and only if H has finite VC-dimension, by which we mean that
the collection of all subsets of X of the form h−1(1) has finite VC-dimension.

In this case the inherent sample complexity of H is asymptotic to

1

ε2
· log(

1

δ
),

i.e. there is some K ∈ N such that for sufficiently small ε, δ we have mH(ε, δ) ≤
K · 1

ε2 · log( 1
δ ) and 1

ε2 · log( 1
δ ) ≤ K ·mH(ε, δ).

Observe that the estimating term 1
ε2 · log( 1

δ ) of the inherent sample complexity
in 8.3.3.2 is independent of H (!)

Summing up, if H is a definable family of functions from an o-minimal expansion
of R (e.g. if in our network picture above, F1 − F10 are definable in Ran,exp), then
H is learnable.

If H is learnable then the following SEM-algorithm (”Sample Error Minimisation”)
is also a learning algorithm for H: We define for z = (x, y) ∈ Zm and h ∈ H, the
observed error

êrz(h) =
1

m
· |{i ∈ {1, ...,m} | h(xi) 6= yi}|.
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Then every map L :⋃∞m=1 Z
m −→ H satisfying

êrz(L(z)) = min
h∈H

êrz(h) (z ∈ Zm,m ∈ N)

is called a SEM-algorithm.

This describes the principal use of NIP for binary-output networks. The formal-
ism for learning with other neural network architectures can be found in [AB99,
parts II, III]. For example [AB99, Def 16.1] gives the formal definition of learning
real valued functions. The VC-dimension then is slightly altered (cf. [AB99, sec-
tion 11]) and results comparable to 8.3.3.2 are available; an example is [AB99, Thm
19.1].
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