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This note is based on the thesis [1] of the first author written under the guidance of
the second author. The main technical input is Theorem 6 below. It will be proved in
more generality in the subsequent paper [4].

Let f1, ..., fl be differential polynomials in one derivative and N variables with coef-
ficients in IR. Suppose I ⊆ IR is an open interval and c : I −→ IRN is a C∞-map with
f1(c(t)) = ... = fl(c(t)) = 0 (t ∈ I). Let a be the differential ideal generated by f1, ..., fl
in the differential polynomial ring IR{X1, ..., XN}. Then a is certainly a semi real ideal,
i.e. for all g1, ..., gm ∈ IR{X1, ..., XN} we have 1+

∑m
j=1 g

2
j ̸∈ a. This follows immediately

from our assumption that c is a differential solution of the generators f1, ..., fl of a. We’ll
prove here the converse of this observation, in other words we’ll prove

Theorem 1. If a is a differential ideal of IR{X1, ..., XN} and a is semi real, then
there is some nonempty open interval I ⊆ IR and an analytic map c : I −→ IRN with
f(c(t)) = 0 (f ∈ a, t ∈ I).

In order to find an analytic map c = (c1, ..., cN ) : I −→ IRN solving each relation
f = 0 with f ∈ a it is enough to find a nonempty open interval I of IR together with
a differential homomorphism IR{X1, ..., XN}/a −→ Cω(I) - then take ci :=the image of
Xi mod a under this map. We divide this problem into an algebraic part (Theorem 2) and
an analytic part (Proposition 3).
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Theorem 2. Let F be a differential field and let A be a differentially finitely generated
F -algebra. Suppose A is semi real, i.e. −1 is not a sum of squares in A. There is a
real, differential F -algebra C, which is an integral domain and finitely generated as an
F -algebra, together with a differential F -algebra homomorphism A −→ C.

Proposition 3. Let C be a real, differential IR-algebra, which is an integral domain
and finitely generated as an IR-algebra. Then there is a differential IR-algebra homomor-
phism C −→ Cω(I) for some open interval I ⊆ IR.

Clearly 1 follows from 2 and 3 applied to A = IR{X1, ..., XN}/a. Before we prove
Theorem 2 and Proposition 3 we need some real algebraic preparations.

Definition 1. A ring A is called semi real if −1 is not a sum of squares in A. A is
called real if a21+ ...+a2n = 0 implies a1 = ... = an = 0 for all n ∈ IN and all a1, ..., an ∈ A.
An ideal a of A is called (semi) real if the ring A/a is (semi) real.

Definition 2. Let A be a differential ring in K derivatives and let a be an ideal of
A. We define

a# := {a ∈ a | every derivative of a is in a}

The useful construction a# was first introduced by Keigher in [2]. Clearly a# is the
largest differential ideal of A contained in a. Let σ : A −→ B a ring homomorphism into a
ring B. Let B[[T ]] be the power series ring over B in one variable T . B[[T ]] is a differential
ring with the standard derivative d

dT . We define the Taylor morphism Tσ : A −→ B[[T ]]
by

Tσ(a) :=
∑
n≥0

σ(dna)

n!
Tn.

Here dna denotes the n-th derivative of a ∈ A.

The Leibniz rule implies that Tσ is a differential homomorphism. If σ : A −→ A/a is the
residue map corresponding to an ideal a of A, then clearly a# is the kernel of Tσ.

Proposition 4. Let a be an ideal in the differential ring A. If a is prime, semi real,
real respectively then a# is prime, semi real, real respectively.

Proof. If a is prime, semi real, real respectively, then A/a is a domain, semi real, real
respectively. Hence the power series ring A/a[[T ]] is a domain, semi real, real respectively
and so a# = Ker(TA−→A/a) is prime, semi real, real respectively.

Proposition 5. Let A be a differential ring and let p ⊆ A be a differential ideal.
Then p is maximal among the proper, semi real and differential ideals of A if and only if
p is maximal among the proper, real and differential ideals of A. In this case p is prime.

Proof. Let p be maximal among all proper, semi real and differential ideals of A. The
Proposition is proved if we can show that p is real and prime. By classical real algebra
(c.f [3],III,§3, Satz 2), there is a real prime ideal q of A containing p. By Proposition 4,
q# is a real, differential prime ideal of A. Since q# contains p, the maximality of p implies
p = q#, thus p is real and prime.

Finally we use a structure theorem for differential algebras (in one derivative), as
explained in [4].
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Theorem 6. Let S = (S, d) be a differential domain in one derivative, containing Z
and let R = (R, d) ⊆ (S, d) be a differential subring such that S is differentially finitely
generated over R. Then there are R-subalgebras B and U of S and an element h ∈ B,
h ̸= 0 such that:

(a) B is a finitely generated R-algebra and Bh is a finitely presented R-algebra.

(b) Sh = (B ·U)h is a differentially finitely presented R-algebra.

(c) The homomorphism B ⊗R U −→ B ·U induced by multiplication is an isomorphism
of R-algebras.

(d) U is a differential polynomial ring over R in finitely many variables.

Proof. This is Theorem 1 in [4] for the case of one derivative. Take U := P{d} and
replace B by B ·P∅ in [4], Theorem 1.

Proof of Theorem 2. Since A is semi real, A contains an ideal p, which is maximal
among all proper, semi real and differential ideals of A. By Proposition 5, p is a real,
differential prime ideal. Let S be the differential F -algebra S := A/p. Take F -subalgebras
B,U of S and an element h ∈ B, h ̸= 0 as in Theorem 6. Since S is real, B and Bh are
real, too. It is enough to show that U = F , then the differential map A −→ A/p = S ↪→
Sh = Bh =: C has the required properties. Suppose U ̸= F . Since Bh is a finitely
generated, real F -algebra, Tarski’s principle gives an homomorphism φ : Bh −→ F into a
real closed field F containing F . Since U ̸= F is a differential polynomial ring, there is a
differential F -algebra homomorphism τ : U −→ F with non trivial kernel. By Theorem 6,
there is an F -algebra homomorphism σ : S −→ F , extending φ|B and τ . Thus q := Kerσ
is a real ideal of S containing Ker τ . By Proposition 4, q# is a real, differential ideal of
S. Since τ is a differential homomorphism, q# contains Ker τ , hence q# is a non trivial,
real, differential ideal of S, which contradicts the maximality of p.

Proof of Proposition 3. Let C = IR[a1, ..., an] and let gi ∈ IR[X1, ..., Xn] such that
gi(a) is the derivative of ai in C. We consider the ring IR[X1, ..., Xn] as a differential
ring with derivation d : IR[X1, ..., Xn] −→ IR[X1, ..., Xn] defined by dXi = gi. Then the
homomorphism λ : IR[X1, ..., Xn] −→ C sending Xi to ai is differential. Since C is a
real, finitely generated IR-algebra, there is an IR-algebra homomorphism ε : C −→ IR.
The fundamental theorem on ordinary differential equations gives an open interval I of
IR containing 0 and analytic maps ci : I −→ IR (1 ≤ i ≤ n) such that ci(0) = ε(ai) and

c′i(t) = gi(c1(t), ..., cn(t)) (1 ≤ i ≤ n)

Now a straight forward computation shows that the Taylor morphism Tε of ε : C −→ IR
maps ai to the Taylor expansion of ci at 0. By shrinking I if necessary, we get that Tε

has values in Cω(I), which proves Proposition 3.
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