
GÖDEL’S INCOMPLETENESS THEOREMS 2018/2019

MARCUS TRESSL

Lecture Notes
http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/index.php

Contents

1. Recursive functions 1

1.1. Definition and the Church-Turing thesis 1
1.2. The pairing function and Gödel’s β-function 7
1.3. Primitive recursion 11
1.4. Sequence numbers 15
1.5. Recursively enumerable sets 22

2. Formal proofs and the completeness theorem 24

2.1. Languages and formulas 24
2.2. Structures and Tarski’s definition of truth 31
2.3. Logical axioms and the definition of a formal proof 33
2.4. Soundness and the Completeness Theorem 35
2.5. Propositional Tautologies and the Prenex Normal Form 36

3. Representation of recursive functions in arithmetic 39

4. Arithmetisation of Logic: Gödelisation 47

5. Undecidability and incompleteness 52

5.1. Recursively axiomatizable and decidable theories 52
5.2. The first incompleteness theorem 56
5.3. Undecidable sentences 60

6. Applications to decision problems 64

6.1. Interpretations 65
6.2. Strongly undecidable structures 68

7. The Arithmetic Hierarchy 72

7.1. The structure of arithmetic formulas 72
7.2. Recursion revisited 75
7.3. Kleene’s Enumeration theorem 77
7.4. Hilbert’s 10th problem 78

8. Gödel’s second incompleteness theorem 82

References 85

Index 86

Date: May, 2019.

1

http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/index.php

Definition and the Church-Turing thesis 1

1. Recursive functions

1.1. Definition and the Church-Turing thesis.

We first need to formalize the intuitive notion of a program or an algorithm. At
the moment we think of a program as a device that receives finite tuples of natural
numbers as input and returns a natural number as output, according to some rules.
This will be done implicitly, i.e. we will define what a program or an algorithm is
supposed to accomplish and then we may think of a program as a machine who can
carry out this task.

The set-up of input and output data being natural numbers seems rather restric-
tive. However we will later introduce a coding process which will explain why our
special setup covers all conceivable programs.

• The set of natural numbers including 0 is denoted by ω, whereas N denotes
{1, 2, 3, ...}. For n ∈ ω, the set ωn denotes the set of all n-tuples of elements
of ω; thus for n = 0, ωn is just {∅}.
• For any n ∈ ω and any subset R of ωn we also use the notation R(a) for
a ∈ R and think of R as an n-ary relation of ω. Further, we write 1R for
the characteristic function of R in ωn, i.e. the function 1R −→ {0, 1} with
1−1
R (1) = R, hence

1R(a) = 1 ⇐⇒ a ∈ R ⇐⇒ R(a).

• For 1 ≤ i ≤ n ∈ N, let Ini : ωn −→ ω be the projection onto the ith coordinate,
hence

Ini (a1, ..., an) = ai.

The Ini are also called coordinate functions.

• For any non-empty subset R of ω let

µx(R) := min(R)

denote the smallest element of R. If we think of R as a property of natural
numbers including 0 it is convenient to write

µx(R(x)) instead of µx({n ∈ ω | n has property R}.
We now define a class of functions of which we think as being computable by a
program, i.e. for each of these functions f , there is a program that accepts inputs
a from the domain of f and returns f(a) as output.

2 Recursive functions

1.1.1. Definition. A function ωm −→ ω (where m ∈ N) is called recursive or
computable, if it is obtained by a finite iteration from the following rules:

R1 Elementary functions: Each of the following functions is recursive.
• for all i ≤ n, all coordinate functions Ini .
• addition and multiplication of ω, both being functions ω2 −→ ω.
• the characteristic function 1≤ : ω2 −→ ω of the order relation ≤ of ω.

R2 Composition rule:
If n, k ∈ N and F : ωn −→ ω and G1, ..., Gn : ωk −→ ω are recursive

functions, then also the composition

F ◦ (G1, ..., Gn) : ωk −→ ω

is a recursive function. We will also write F (G1, ..., Gn) for this composition.
Thus F (G1, ..., Gn) maps a = (a1, . . . , ak) to F (G1(a), . . . , Gn(a)).

R3 µ-recursion (or minimalisation or search):
If n ∈ N and F : ωn × ω −→ ω is a recursive function such that for

every a ∈ ωn there is some x ∈ ω with F (a, x) = 0, then also the function
G : ωn −→ ω defined by

G(a) := µx (F (a, x) = 0) (recall, this is min{x ∈ ω | F (a, x) = 0}).
is recursive.

A set (or a relation) R ⊆ ωn is called recursive, if its characteristic function
1R : ωn −→ ω is recursive.

It is very plausible that every particular recursive function F : ωn −→ ω can be
computed by some machine, e.g.: On any modern computer (ignoring time and
space limitations) one can in principle write a program that accepts input a from
ωn and returns F (a). Surprisingly we have the following

Church-Turing thesis:
Every function ωn −→ ω that can be computed somehow, is recursive.

This is a philosophical statement and the term ”can be computed somehow” is
informal. It comprises all possible ways a function F : ωn −→ ω could be manu-
factured by some device. We will first develop some basic properties of recursive
functions and come back with more evidence for the Church-Turing thesis later on.

In case you have seen Turing machines before: They all manufacture recursive
functions and conversely, every recursive function can be computed with a Turing
machine. In this sense the notions recursive and computable coincide. We will
not talk about concrete implementations here (as we do not need it) and omit this
interesting part of the theory.

Note that the content of our course does not depend on whether the Church-
Turing thesis holds true, i.e. we do not depend on it in any way.

� Please read definition 1.1.1 carefully. Firstly, observe that only functions
defined on all of ωm are recursive in this course. Hence if S ⊆ ωm is a proper

subset and f : S −→ ω is a function, then it does not make sense to say that f is
recursive. Obviously some of such functions are computable (in the naive sense):
For example set m = 2, S = {(a, b) ∈ ω2 | a ≥ b}; then the subtraction, considered
as a function f : S −→ ω (hence f is defined by f(a, b) = a − b) is computable
in the naive sense. However, this function is not recursive in the sense of the

Definition and the Church-Turing thesis 3

definition 1.1.1 of recursivity. The reason why we exclude such ’partially defined’
functions in the first place has merely technical reasons: It makes the theory easier.
Computability (in the naive sense) of such ’partially defined’ functions is captured
in this course by saying that the graph of f (which a priori is a subset of S × ω) is
a recursive subset of ωm × ω.

A second warning is related to the clause ”by a finite iteration” at the beginning
of 1.1.1. The objects that are defined in 1.1.1 are functions ωm −→ ω. And
these objects have to be produced in finitely many steps. Hence, for example the
function 2n is a priori not obtained from a finite application of the composition
rule R2 starting with multiplication (given in R1). Make sure you understand this
reasoning. Still, after some work we will see in 1.2.5 that the function f : ω −→ ω,
f(n) = 2n is recursive.

In this subsection we will look at some basic constructions and show that they
give new recursive functions.

1.1.2. Lemma.

(i) Let m,n ∈ N, let F : ωn −→ ω be recursive and let σ : {1, ..., n} −→ {1, ...,m}
be a map. Then also the map Fσ : ωm −→ ω defined by

Fσ(x1, ..., xm) := F (xσ(1), ..., xσ(n))

is recursive.
Thus, for example, the map defined by

(x1, ..., xn+1) 7→ F (xn+1, x1, x1, ..., x1︸ ︷︷ ︸
n−1 entries

)

is recursive.

(ii) The relations ≥ and = of ω2 are recursive.

(iii) If F1, ..., Fk : ωn −→ ω and R ⊆ ωk are recursive, then also

R(F1, ..., Fk) := {a ∈ ωn | R(F1(a), ...Fk(a))}
(which is the preimage of R under the map (F1, ..., Fk) : ωn −→ ωk) is recur-
sive.

(iv) For all i ∈ ω, the constant function

cni : ωn −→ ω

with value i is recursive.

Proof. (i) follows from R2, because

Fσ = F (Imσ(1), ..., I
m
σ(n)).

(ii) follows from R1 and (i) because 1≥(x, y) = 1≤(y, x) and 1=(x, y) = 1≤(x, y) ·
1≥(x, y).

(iii) follows from R2 because

1R(F) = 1R(F1, ..., Fk).

(iv). We have

• c11 = 1≤(I1
1 , I

1
1) and c10 = 1≤(I1

1 + c11, I
1
1).

• c1i+1 = c1i + c11 and cni = c1i (I
n
1).

�

4 Recursive functions

1.1.3. Corollary. Let F : ωn −→ ω be recursive.

(i) F considered as a function ωn × ωm −→ ω is recursive. Formally: The
function G : ωn × ωm −→ ω defined by G(a, b) = F (a) is recursive.

(ii) For m ≤ n and a ∈ ωm, also the function F (a, x1, ..., xn−m) : ωn−m −→ ω is
recursive.

(iii) If G : ωn −→ ω is another recursive function then the sets given by the n-ary
relations F (x) = G(x), F (x) ≤ G(x) and F (x) ≥ G(x) of ω are recursive.

Proof. (i) follows from 1.1.2(i) because G = Fσ for the inclusion σ : {1, ..., n} ↪→
{1, ..., n + m}. Item (ii) follows from 1.1.2(iv) and R2. Item (iii) follows from
1.1.2(ii),(iii). �

1.1.4. Boolean operations
For R,S ⊆ ωn we write

¬R := ωn \R, R ∧ S := R ∩ S, R ∨ S := R ∪ S and

R→ S := (¬R) ∨ S, R↔ S := (R→ S) ∧ (S → R).

If R and S are recursive, then all these relations are recursive.

Proof. If R and S are recursive, then R∧S is recursive, since 1R∧S = 1R ·1S . The
relation ¬R is recursive, since ¬R(a) ⇐⇒ 1R(a) = cn0 (a) (now use 1.1.3(iii)).

All the other relations defined here are built up from conjunction and negation,
hence they are recursive, too. �

1.1.5. Examples.

(i) The binary relations < and > on ω are recursive, because these are the com-
plements of ≥ and ≤ respectively (use 1.1.4 and also see 1.1.2).

(ii) For every a = (a1, . . . , an) ∈ ωn the singleton subset {a} is recursive as
x1 = a1 ∧ . . .∧ xn = an is recursive1. Consequently, by 1.1.4, all finite and all
cofinite 2 subsets of ωn are recursive.

1.1.6. Definitions by cases
Let R1, ..., Rk ⊆ ωn be recursive such that for every a ∈ ωn there is a unique
i ∈ {1, ..., k} with Ri(a).

(i) If F1, ..., Fk : ωn −→ ω are recursive, then also the function F : ωn −→ ω
defined by

F (a) =


F1(a) if R1(a)

...

Fk(a) if Rk(a)

is recursive.

(ii) If S1, ..., Sk ⊆ ωn are recursive, then also the relation S ⊆ ωn defined by

S(a) ⇐⇒


S1(a) if R1(a)

...

Sk(a) if Rk(a)

1Hence {a} is the intersection of n recursive subsets of ωn. Make sure you understand this
argument

2A subset S of a set X is called cofinite if X \ S is finite

Definition and the Church-Turing thesis 5

is recursive.

Proof. (i) follows from R2 and

F = F1 · 1R1
+ ...+ Fk · 1Rk

.

(ii) follows from 1.1.4 and

S = (S1 ∧R1) ∨ ... ∨ (Sk ∧Rk).

�

Now we start using µ-recursion.

1.1.7. µ-recursion for relations
Let R ⊆ ωn×ω such that for every x ∈ ωn there is some y ∈ ω with R(x, y). Thus
we may define a function F : ωn −→ ω by

F (x) = min{y | R(x, y)}.

Then

(i) If R is recursive, then F is recursive.

(ii) If R is the graph of a function, then F is this function and R is recursive if
and only if F is recursive.

Proof. (i) follows from µ-recursion because

F (x) = µy(1¬R(x, y) = 0)

and because we know that with R also ¬R is recursive (see 1.1.4).

(ii) By (i) it remains to show that the graph of F is recursive if F is a recursive
function. This follows from 1.1.3(iii)

R(a, b) ⇐⇒ F̃ (a, b) = In+1
n+1 (a, b),

where F̃ (a, b) := F (a) (which is also recursive by 1.1.3(i)). �

We shall see later on that 1.1.7 can indeed not be proved without µ-recursion.

We also need subtraction, whenever defined:

1.1.8. Almost subtraction

The map � : ω2 −→ ω defined by

a�b :=

{
a− b if a ≥ b
0 if a < b.

is recursive.

Proof. We have

a�b = µx(b+ x = a ∨ a < b).

Observe that the ternary relation R(a, b, x) defined by b+x = a∨a < b is recursive
and for all a, b ∈ ω, there is some x ∈ ω with R(a, b, x). Hence we may apply
µ-recursion for relations, 1.1.7. �

6 Recursive functions

1.1.9. Bounded µ-recursion
For S ⊆ ω and b ∈ ω we define

µx<b(S) or µx<b(S(x))

to be the least x ∈ S with x < b if there is such an x and b otherwise. The letter
‘b’ here indicates a bound. So

µx<b(S) = min(S ∪ {b}), also written as µx<b(S) = µx(S(x) ∨ x = b)

For R ⊆ ωn × ω we define FR : ωn × ω −→ ω by

FR(a, b) := µx<b(R(a, x)).

Since FR(a, b) := µx(R(a, x)∨x = b), FR is recursive ifR is recursive (by µ-recursion
for relations, 1.1.7).

For better readability we shall write µx≤b instead of µx<b+1.

1.1.10. Bounded quantification
Let R ⊆ ωn × ω be recursive. The relations ER, AR ⊆ ωn × ω defined by

ER(a, b) ⇐⇒ ∃x < b R(a, x) and

AR(a, b) ⇐⇒ ∀x < b R(a, x)

are recursive.

Proof. Define FR as in bounded µ-recursion, 1.1.9. Then

ER(a, b) ⇐⇒ FR(a, b) < b and AR(a, b) ⇐⇒ F¬R(a, b) = b.

�

Of course we shall also write ∃x ≤ b instead of ∃x < b + 1 and ∀x ≤ b instead of
∀x < b+ 1.

1.1.11. Lemma. The ternary relation

n ≡ mmod d

(defined by n−m ∈ d ·Z) is recursive.

Proof. We have n ≡ mmod d if and only if

∃x ≤ n (n = x · d+m) ∨ ∃x ≤ m (m = x · d+ n).

Hence from 1.1.10 (and 1.1.4 for the disjunction) we get the lemma. �

The pairing function and Gödel’s β-function 7

1.2. The pairing function and Gödel’s β-function.

1.2.1. Theorem and Definition. The Pairing Function Pair : ω2 −→ ω,
defined by

Pair(x, y) :=
(x+ y)(x+ y + 1)

2
+ x

is recursive and bijective. The compositional inverse of Pair is denoted by

(L,R) : ω −→ ω2.

The functions L and R are recursive and given as follows: For n ∈ ω, let z ≤ n be

maximal with z(z+1)
2 ≤ n. Then

L(n) = n− z(z + 1)

2
and R(n) = z +

z(z + 1)

2
− n.

Further, we have the following properties of Pair, L and R:

(i) For all x, y, n ∈ ω we have x, y ≤ Pair(x, y) and L(n), R(n) ≤ n.
(ii) Pair(0, 0) = L(0) = R(0) = 0.

(iii) If n 6= 0, then L(n) < n.

Proof. Take n ∈ ω and let z ∈ ω be maximal with z(z+1)
2 ≤ n. Then n < (z+1)(z+2)

2
and therefore

0 ≤ n− z(z + 1)

2
<

(z + 1)(z + 2)

2
− z(z + 1)

2
.

Since (z+1)(z+2)
2 − z(z+1)

2 = z + 1 we have

0 ≤ x := n− z(z + 1)

2
≤ z and so

y := z − x ≥ 0

Now

Pair(x, y) =
(x+ y)(x+ y + 1)

2
+ x =

z(z + 1)

2
+ x = n,

as required.

Pair is injective:

If also Pair(x′, y′) = n, then (x′+y′)(x′+y′+1)
2 ≤ n and so by choice of z, x′+y′ ≤ z.

If x′ + y′ < z, then

n = Pair(x′, y′) =
(x′ + y′)(x′ + y′ + 1)

2
+ x′ ≤ (z − 1)z

2
+ z − 1 <

<
z(z + 1)

2
≤ Pair(x, y) = n, a contradiction.

Thus x′ + y′ = z, which implies x′ = n − (x′+y′)(x′+y′+1)
2 = n − (x+y)(x+y+1)

2 = x
and then y′ = (x′ + y′)− x′ = (x+ y)− x = y.

This shows that Pair is bijective. Pair is recursive because addition, multiplica-
tion and the function f : ω −→ ω,

n 7→

{
n
2 if n is even,
n−1

2 if n is odd

are recursive: we have

f(n) = µ≤nx(2x > n)�1.

8 Recursive functions

In the proof of surjectivity, the definitions of x and y show that L(n) = x
and R(n) = y can be written as claimed. Properties (i)-(iii) are readily verified
and they imply that L and R are recursive using bounded µ-recursion 1.1.9 and
bounded quantification 1.1.10:

L(n) = µ≤nx(∃y ≤ n Pair(x, y) = n) and

R(n) = µ≤ny(∃x ≤ n Pair(x, y) = n).

�

We need a fundamental fact from elementary number theory, we include a proof
for the sake of completeness.

1.2.2. Chinese remainder theorem
Let k1, ..., kn ∈ Z be pairwise coprime (i.e., for all i 6= j, no natural number > 1
divides ki and kj). Then, for all a1, ..., an ∈ Z, there is some x ∈ ω, x ≤ k1 · ... · kn
that solves all congruences

x ≡ a1 mod k1

...

x ≡ an mod kn.

Proof. First note that for a solution x in Z of all the congruences in our theorem,
we may add or subtract a suitable multiple of k1 · ... · kn to x and obtain another
solution which is in the range {0, 1, 2, ..., k1 · ... · kn}. Hence it suffices to find a
solution x ∈ Z.

We do this by induction on n starting from n = 1, where we may choose x = a1.
Now assume we know the theorem for n − 1. Hence there are y, γ1, ..., γn−1 ∈ Z
with

(†) y = ai + γi · ki (1 ≤ i < n).

As kn is coprime to each of k1, ..., kn−1, it is also coprime to k1 · ... · kn−1. Using
the euclidean algorithm, we therefore can find α, β ∈ Z with 1 = αkn + βk1...kn−1.
Multiplying this through by y − an, there are also α, β ∈ Z with

y − an = αkn + βk1...kn−1.

We take
x = y − βk1...kn−1 = an + αkn

and see that x = an +αkn ≡ an mod kn. But from (†) we also see for all i < n that

x = y − βk1...kn−1 = ai + γi · ki − βk1...kn−1 ≡ ai mod ki.

�

1.2.3. Lemma. (Gödel)
Let β∗ : ω3 −→ ω be defined by

β∗(a, b, i) := µx

(
x ≡ amod

(
1 + b(i+ 1)

))
.

So β∗(a, b, i) is the remainder when we divide a by 1 + (i+ 1)b.
Then β∗ is recursive and for each n ∈ ω and all a0, ..., an−1 ∈ ω there is some

(a, b) ∈ ω2 with
β∗(a, b, i) = ai (0 ≤ i < n).

The pairing function and Gödel’s β-function 9

In fact we can choose b = n!·(1+a0+...+an−1) and find such an a with a ≤ (1+nb)n.

Proof. β∗ is recursive by 1.1.11 and µ-recursion.
Pick b ∈ ω, b ≥ a0, ...an−1, such that p|b for all primes p ≤ n. For example

b = n! · (1 + a0 + ...+ an−1) will do. We first show that 1 + b, 1 + 2b, ..., 1 + nb are
pairwise coprime.

Let 1 ≤ i < j ≤ n and suppose p is a prime that divides 1 + ib and 1 + jb. Then
p|(j − i)b, so p|j − i or p|b. As j − i ≤ n, the choice of b implies p|b in either case.
But then p cannot be a divisor of 1 + ib,

By the Chinese Remainder Theorem, there is some a ∈ ω with a ≤ (1 + nb)n

such that

a ≡ a0 mod 1 + b

a ≡ a1 mod 1 + 2b

. . .

a ≡ an−1 mod 1 + nb

From the choice of b we have ai ≤ b < 1 + (i + 1)b. But then ai is the smallest
x ∈ ω with

a ≡ xmod 1 + (i+ 1)b.

By definition of β∗ we see that β∗(a, b, i) = ai (0 ≤ i < n). �

1.2.4. Gödel’s β-function

We define Gödel’s β-function β : ω2 −→ ω by

β(a, i) := β∗(L(a), R(a), i).

β has the following properties:

(1) β is recursive.
(2) β(a, i) ≤ a�1 for all a, i ∈ ω.
(3) For each n ∈ ω and all a0, ..., an−1 ∈ ω there is some a ∈ ω with

β(a, 0) = a0, β(a, 1) = a1, . . . , β(a, n− 1) = an−1.

Proof. (1) By 1.1.11, β∗ is recursive. By 1.2.1 also L and R are recursive. Hence β
is a composition of recursive function and therefore recursive itself.

(2) For a = 0 we have L(a), R(a) = 0 and β(a, i) = β∗(0, 0, i) = 0.
Now let a > 0. Since β∗(a, b, i) < 1 + (i + 1)b by definition and β∗(a, b, i) is

congruent to a mod 1 + (i+ 1)b it is clear that

β∗(a, b, i) ≤ a

for all a, b, i ∈ ω. Since L(a) < a for a > 0 (see 1.2.1(iii)) we get

β(a, i) = β∗(L(a), R(a), i) ≤ L(a) < a.

(3) is immediate from the corresponding property of β∗ in 1.2.3. �

It should also be noted that in the literature, sometimes the function β∗ from 1.2.3
is called Gödel’s β-function.

So β ‘codes’ finite sequences. It will also allow us to code finite sequences of
formulas (in an appropriate language) and to attach natural numbers to ‘formal’

10 Recursive functions

proofs (yet to be defined). In the next two sections we will see that β gives us a
strong tool to produce new recursive functions. An ad hoc example right away:

1.2.5. Examples. The function ω −→ ω, n 7→ 2n is recursive (please also reread the
second warning before 1.1.2) To see this, we use the function g : ω −→ ω defined
by

g(n) := µx

(
β(x, 0) = 1 ∧ ∀i < n β(x, i+ 1) = 2β(x, i)

)
.

Hence g(n) is the smallest natural number x that defines a sequence a0, ..., an via
β, that satisfies a0 = 1 and ai+1 = 2ai (i < n). g is recursive, as β is recursive,
bounded quantification is recursive (see 1.1.10) and µ-recursion is applicable (i.e.
there is indeed such a natural number). Since

2n = β(g(n), n),

our claim is proved. The same reasoning also shows that the function n 7→ n! is
recursive. Just modify g to

g(n) := µx

(
β(x, 0) = 1 ∧ ∀i < n β(x, i+ 1) = (i+ 1)β(x, i)

)
.

1.2.6. Remark. Observe that the only properties we needed in the examples 2n and
n! above, were properties (1)-(3) in 1.2.4. This will also be the case for the rest of
this course when it comes to the generation of recursive functions (see also 1.3.9).

Another function that has properties (1)-(3) of 1.2.4 is the function V : ω2 −→ ω
defined by

V (a, n) = the largest d ∈ ω such that pdn+1 divides a, where pn is the nth prime .

(In algebraic terms: V (a, n) is the pn+1-adic valuation of a). This function is
somewhat easier to understand than our choice of β, so why did we not choose this
function as β? The reason is that we need to show that V is recursive and this
proof already refers to a β-function. The proof that V is recursive will be done in
question 9 of the example sheet.

Primitive recursion 11

1.3. Primitive recursion.

We will single out a subset of recursive functions now which play an important role
in computability theory, but also in theoretical questions on how to represent recur-
sive functions in the natural numbers; more on that topic will follow in subsequent
sections.

1.3.1. Definition. For n ∈ ω let h : ωn −→ ω and H : ωn × ω × ω −→ ω be
functions. We say that a function F : ωn × ω −→ ω is obtained by primitive
recursion from H with initial value h if the following two conditions hold:

(i) For all a ∈ ωn we have F (a, 0) = h(a).
(ii) For all (a, b) ∈ ωn × ω we have F (a, b+ 1) = H(a, b, F (a, b)).

Hence H(a, b, i) should be considered as the “recursion-rule” for F . It computes
F (a, b+ 1) from assuming F (a, b) is known.

To understand the roles of the parameters a, b in this definition look at the following
examples.

1.3.2. Examples. The function b 7→ b! and exponentiation (a, b) 7→ ab are primitive
recursive. The map b! is obtained by primitive recursion with initial value 1 from
H(b, x) = (b+1) ·x (so here n = 0 in 1.3.1). Exponentiation (for a > 0) is obtained
by primitive recursion with initial value 1 from H(a, b, x) = a · x (here n = 1 in
1.3.1).

1.3.3. Theorem. Let h : ωn −→ ω and H : ωn×ω×ω −→ ω be recursive functions
and let F : ωn × ω −→ ω be obtained by primitive recursion from H with initial
value h. Then also F is recursive.

Proof. To see this, we use the function G : ωn × ω −→ ω defined by

G(a, b) := µx

(
β(x, 0) = h(a) ∧ ∀i < b β(x, i+ 1) = H(a, i, β(x, i))

)
.

Hence G(a, b) is the smallest natural number x that defines a sequence k0, ..., kb ∈
ω via β, that satisfies k0 = h(a) and ki+1 = H(a, i, ki) for all i < b. Clearly,
in this sequence we have F (a, 0) = h(a) = k0 and by induction F (a, i + 1) =
H(a, i, F (a, i)) = H(a, i, ki) = ki+1 = β(x, i+ 1).

The function G is recursive, as β is recursive, bounded quantification is recursive
(see 1.1.10) and µ-recursion is applicable (i.e. there is indeed such a natural number
x as described).

But now we see that F is recursive as well, because F (a, b) = β(G(a, b), b). �

1.3.4. Definition. A function ωm −→ ω is called primitive recursive if it is
obtained by a finite iteration from the rules R1, R2 of 1.1.1 and from the rule

PR If F : ωn×ω −→ ω is obtained by primitive recursion fromH : ωn×ω×ω −→ ω
with initial value h : ωn −→ ω (see1.3.1), and if h and H are primitive
recursive, then also F is primitive recursive.

A set (or a relation) R ⊆ ωn is called primitive recursive, if its characteristic
function 1R : ωn −→ ω is primitive recursive.

12 Recursive functions

1.3.5. Observation.
The statements 1.1.2 – 1.1.6 are also true if we replace recursive by primitive

recursive everywhere. This is by inspection of the proof of these statements: We
have only used R1 and R2 in these proofs.

1.3.6. Lemma. Let F : ωn × ω −→ ω be a function.

(i) We write ΣF and ΠF for the functions ωn × ω −→ ω defined by

(ΣF)(a, b) =
∑
i<b

F (a, i) and

(ΠF)(a, b) =
∏
i<b

F (a, i).

If F is (primitive) recursive, then also ΣF and ΠF are (primitive) recursive.
(ii) We write SupF and InfF for the functions ωn × ω −→ ω defined by

(SupF)(a, b) = sup{F (a, i) | i ≤ b} and

(InfF)(a, b) = inf{F (a, i) | i ≤ b}.

If F is (primitive) recursive, then also SupF and InfF are (primitive) recur-
sive.

Proof.
(i) ΣF is obtained by primitive recursion from H(a, b, x) = F (a, b) + x with initial
value cn0 :

(ΣF)(a, b+ 1) = F (a, b) + (ΣF)(a, b) = H(a, b, (ΣF)(a, b)).

(ΠF) is obtained by primitive recursion from H(a, b, x) = F (a, b) · x with initial
value cn1 :

(ΠF)(a, b+ 1) = F (a, b) · (ΠF)(a, b) = H(a, b, (ΠF)(a, b)).

(ii) SupF is obtained by primitive recursion with initial value F (a, 0) from

H(a, b, x) =

{
F (a, b+ 1) if F (a, b+ 1) ≥ x,
x otherwise.

Note that Definition by Cases 1.1.6 is primitive recursive. Similarly, InfF is ob-
tained by primitive recursion with initial value F (a, 0) from

H(a, b, x) =

{
F (a, b+ 1) if F (a, b+ 1) ≤ x,
x otherwise.

�

1.3.7. Proposition. Bounded quantification (1.1.10), bounded µ-recursion (1.1.9)
and almost subtraction (1.1.8) are also true if we replace recursive by primitive
recursive everywhere.

Proof. Proof of bounded µ-recursion for primitive recursive functions:
Let R ⊆ ωn×ω be primitive recursive. We need to show that FR : ωn×ω −→ ω

defined by

FR(a, b) := µx<b(R(a, x)),

Primitive recursion 13

is primitive recursive. This is so, because ¬R is primitive recursive and

FR(a, b) =
∑
i<b

∏
j≤i

1¬R(a, j) = (ΣG)(a, b),

where G(a, i) = (
∏
1¬R)(a, i+ 1). Hence by 1.3.6(i), also FR is primitive recursive.

Proof of almost subtraction for primitive recursive functions:
We already know that bounded µ-recursion is primitive recursive. Hence

a�b = µx≤a(b+ x = a ∨ a < b)

is primitive recursive.

Proof of bounded quantification for primitive recursive functions:
Take R ⊆ ωn×ω primitive recursive. Recall that the relations ER, AR ⊆ ωn×ω

are defined by

ER(a, b) ⇐⇒ ∃x < b R(a, x) and

AR(a, b) ⇐⇒ ∀x < b R(a, x).

We have

1ER
(a, b) =

{
(Sup1R)(a, b�1) if 0 < b

0 if b = 0.
and

1AR
(a, b) =

{
(Inf1R)(a, b�1) if 0 < b

1 if b = 0.

Hence by 1.3.6(ii), also ER and AR are primitive recursive �

1.3.8. Proposition.

(i) The pairing function, the components L and R of its compositional inverse
and the functions β and β∗ (see 1.2.4 and 1.2.3) are primitive recursive.

(ii) Further, there is a primitive recursive function ρ : ω −→ ω such that for all
N,n ∈ ω and all a0, ..., an−1 ∈ ω with n, a0, ..., an−1 ≤ N , there is some
x ∈ ω with x < ρ(N) such that β(x, 0) = a0, ..., β(x, n− 1) = an−1.

Proof. We only need to assemble what we already know about these functions:

(i) The ternary relation
n ≡ mmod d

is primitive recursive, because it is defined by bounded quantification, see 1.1.11.
Since

β∗(a, b, i) = µx<1+b(i+1)

(
x ≡ amod

(
1 + b(i+ 1)

))
β∗ is primitive recursive. The pairing function is obviously primitive recursive.
Then, the proof of the recursiveness of L and R in 1.2.1 uses a definition of these
functions in terms of the pairing function, bounded quantification and bounded µ-
recursion. Hence L and R are primitive recursive. Since β(x, i) = β∗(L(x), R(x), i),
also β is primitive recursive.

(ii) We define
ρ(N) = Pair((N + 2)!, (N + 2)!N ·NN),

which is primitive recursive. Take N,n, a0, ..., an−1 ∈ ω with n, a0, ..., an−1 ≤ N .
By 1.2.3 we know that there is some x ∈ ω with L(x) = n! · (1 +a0 + ...+an−1) and
R(x) ≤ (1+nn! ·(1+a0 + ...+an−1))n such that β(x, 0) = a0, ..., β(x, n−1) = an−1.

14 Recursive functions

Then

n! · (1 + a0 + ...+ an−1) ≤ (n+ 1)! ·N ≤ (N + 2)! and

(1 + nn! · (1 + a0 + ...+ an−1))n ≤ (n+ 2)!nNn ≤ (N + 2)!N ·NN .

Now
x = Pair(L(x), R(x)) ≤ Pair((N + 2)!, (N + 2)!N ·NN) = ρ(N)

as required. �

1.3.9. Remark. As mentioned in 1.2.6, only properties (1)-(3) in 1.2.4 of β are
needed to manufacture recursive functions in this course. On the other hand, if we
want to check that certain functions are primitive recursive, we use our particular
β-function. For example, 1.3.8(ii) will be used when we want to apply bounded µ-
recursion in connection with the β-function in order to verify that a certain function
is primitive recursive. We shall see an example in the next section (1.4.2(iii)).

Sequence numbers 15

1.4. Sequence numbers.

1.4.1. Definition. For n ∈ ω and (a1, ..., an) ∈ ωn we define the sequence num-
ber of (a1, ..., an) as

≺ a1, ..., an �:= µx

(
β(x, 0) = n ∧ ∀i < n β(x, i+ 1) = ai+1

)
.

By 1.2.4(3) this indeed makes sense. So ≺ a1, ..., an � is the smallest natural
number x such that

(n, a1, ..., an) = (β(x, 0), β(x, 1), ..., β(x, n)).

We extend this definition by setting the sequence number of the empty sequence to
≺�:= 0.

Using 1.3.8(ii) and the primitive recursive function ρ used there we see that in
fact

≺ a1, ..., an �:= µx≤ρ(1+n+a1+...+an)

(
β(x, 0) = n ∧ ∀i ≤ n β(x, i) = ai

)
.

Since bounded µ-recursion and bounded quantification are primitive recursive, the
function ωn −→ ω defined by

(a1, ..., an) 7→≺ a1, ..., an �

is primitive recursive.

1.4.2. Operations with sequence numbers

(i) The length function `.
The function ` : ω −→ ω defined by `(a) = β(a, 0) is primitive recursive and

is called the length function. `(a) is called the length of a. It should be
stressed that the function ` can be applied to all a ∈ ω, but it only expresses
something meaningful when a is a sequence number ≺ a1, ..., an �; in that
case

`(≺ a1, ..., an �) = n.

If a ∈ ω is not a sequence number, `(a) has no meaning for us. However, in
recursive definitions later on, which use the `-function, it is important that ` is
defined for all a ∈ ω. A similar remark also applies to all the other construction
in 1.4.2.

(ii) The coordinate function.
The function ω2 −→ ω that maps (a, i) to β(a, i) is called the i-th coordinate

function. It is obviously primitive recursive and written as

(a)i := β(a, i).

Since β(a, i) ≤ a�1 we have

(≺ a1, ..., an �)i = ai < ≺ a1, ..., an � for 1 ≤ i ≤ n and

(≺ a0, ..., an−1 �)i+1 = ai < ≺ a0, ..., an−1 � for i < n.

Observe that (a)0 = `(a).

16 Recursive functions

(iii) The concatenation function.
The function ω2 −→ ω, defined by

a ̂ b = µx≤ρ(a+b+1)

(
`(x) = `(a) + `(b) ∧

∀1 ≤ i ≤ `(a) (x)i = (a)i ∧

∀1 ≤ j ≤ `(b) (x)`(a)+j = (b)j

)
is called the concatenation function. We make use here of the primitive recur-

sive function ρ : ω −→ ω from 1.3.8(ii): Obviously, there is some x ∈ ω that has
the property in the bounded µ-operator above; since `(a)+`(b), (a)i, (b)i ≤ a+b
for all a, b, i ∈ ω, we can find such an x ≤ ρ(a+ b+ 1) (by 1.3.8(ii)).

Hence a ̂ b is defined by bounded µ-recursion using primitive recursive
functions, and so it is primitive recursive itself. By definition we have:

≺ a1, ..., an � ̂ ≺ b1, ..., bk �=≺ a1,, an, b1, ..., bk �

for all k, n, a1, ..., an, b1, ..., bk ∈ ω.

(iv) The restriction function.
The function ω2 −→ ω that maps (a, i) to ≺ β(a, 1), ..., β(a, i)) � is called

the i-th restriction function and written as

a �i:=≺ β(a, 1), ..., β(a, i)) � .

Hence for i ≤ n we have

≺ a1, ..., an ��i=≺ a1, ..., ai � .

This function is primitive recursive because it is obtained by primitive recur-
sion with initial value h(a) = 0 (which is the sequence number of the empty
tuple) from

H(a, i, x) = x ̂ ≺ β(a, i+ 1) �,
which is primitive recursive by (iii). We have

a �i+1:=≺ β(a, 1), ..., β(a, i+ 1)) �= a �i ̂≺ β(a, i+ 1) �= H(a, i, a �i).

(v) Finally we define

Seq := {x ∈ ω | x is a sequence number}

and verify that Seq is a primitive recursive subset of ω: We have

Seq(a) ⇐⇒ ∀x < a ∃i ≤ `(a) (x)i 6= (a)i.

(Recall that (x)0 is the length of x)

1.4.3. Definition. For every map F : ωn×ω −→ ω let F : ωn×ω −→ ω be defined
by

F (a, b) :=≺ F (a, 0), ..., F (a, b− 1) � .
In particular, F (a, 0) =≺�= 0. So F satisfies

(F (a, b))i+1 = F (a, i) for all i < b.

1.4.4. Proposition. A map F : ωn × ω −→ ω is (primitive) recursive if and only
if F is (primitive) recursive.

Sequence numbers 17

Proof. If F is (primitive) recursive, then F is (primitive) recursive, because

F (a, b) = (F (a, b+ 1))b+1.

and the coordinate functions are primitive recursive.
Conversely, if F is (primitive) recursive, then F is (primitive) recursive, because

F is obtained by primitive recursion from h(a) = 0 and H(a, b, x) = x̂≺ F (a, b) �:

F (a, b+ 1) =≺ F (a, 0), ..., F (a, b) �=

=≺ F (a, 0), ..., F (a, b− 1) �̂≺ F (a, b) �= H(a, b, F (a, b)).

Recall that concatenation x ŷ is a primitive recursive function ω2 −→ ω.
�

Our main tool to produce recursive functions later on is given by the following.

1.4.5. Recursion on previous values
Let G : ωn × ω × ω −→ ω be a function. Then there is a unique function F :
ωn × ω −→ ω with

F (a, b) = G(a, b, F (a, b)) ((a, b) ∈ ωn × ω).

If G is (primitive) recursive then also F is (primitive) recursive.

Proof. Existence and uniqueness of F follow by induction from

F (a, 0) = G(a, 0, 0)

F (a, b+ 1) = G(a, b+ 1,≺ F (a, 0), ..., F (a, b) �).

Now assumeG is (primitive) recursive. Then F is obtained by primitive recursion
with initial value h(a) = 0 from H(a, b, x) = x̂ ≺ G(a, b, x) �, because

F (a, b+ 1) =≺ F (a, 0), ..., F (a, b) �= F (a, b)̂ ≺ F (a, b) �=

= F (a, b)̂ ≺ G(a, b, F (a, b)) �= H(a, b, F (a, b)).

Hence F is (primitive) recursive and so by 1.4.4, also F is (primitive) recursive. �

1.4.6. Example. Let D1 : ωn×ω×ω −→ ω and E,D2 : ωn×ω −→ ω be (primitive)
recursive. Clearly there is a unique function F : ωn × ω −→ ω with

F (a, b) =

{
D1(a, b, F (a,D2(a, b))) if D2(a, b) < b

E(a, b) otherwise.

and F is (primitive) recursive.

Proof. Define

G(a, b, x) =

{
D1(a, b, (x)D2(a,b)+1) if D2(a, b) < b,

E(a, b) otherwise.

By recursion on previous values, there is a (primitive) recursive function F : ωn ×
ω −→ ω with

F (a, b) = G(a, b, F (a, b)) =

{
D1(a, b, (F (a, b))D2(a,b)+1) if D2(a, b) < b,

E(a, b) otherwise.

As (F (a, b))D2(a,b)+1) = F (a,D2(a, b)) we see that this function F is the function
we have defined in this example. �

18 Recursive functions

So it turns out that all constructions we have done so far, except µ-recursion itself,
are primitive recursive, and the question arises whether it is possible to obtain µ-
recursion from primitive recursion. In the final part of this section we will show that
this is not the case, so there is a recursive function that is not primitive recursive.
This function also has other surprising properties and is useful for recursion theory;
however we shall not use this function later on and the rest of section 1.4 below is
not examinable.

1.4.7. The Ackermann function
We define functions An : ω −→ ω by induction on n as follows. Let

A0(y) = y + 1

An+1(0) = An(1) and inductively

An+1(y + 1) = An(An+1(y))

Let A(n, y) := An(y). Then A : ω2 −→ ω is called the Ackermann function.

For example we have

• A(0, y) = y + 1
• A(1, y) = y + 2 = 2 + (y + 3)− 3
• A(2, y) = 2y + 3 = 2(y + 3)− 3
• A(3, y) = 2y+3 − 3

• A(4, y) = 22

...

2

− 3 (y + 3 terms)
• A(5, y) cannot be expressed in everyday notation. Using Donald Knuth’s up-

arrow notation for large numbers we can write A(4, y) = 2 ̂ ̂ (y + 3) − 3,
A(5, y) = 2 ̂̂̂ (y + 3)− 3, A(6, y) = 2 ̂̂̂̂ (y + 3)− 3, etc.

1.4.8. Proposition.

(i) If F : ωn −→ ω is primitive recursive, then there is some N ∈ ω such that

F (x1, ..., xn) ≤ AN (x1 + ...+ xn) for all x1, ..., xn ∈ ω
(ii) The function A(x, x) is eventually larger than any primitive recursive function

F : ω −→ ω, hence there is some n ∈ ω such that A(x, x) > F (x) for all x > n.
In particular, neither A(x, y) nor A(x, x) are primitive recursive.

(iii) The graph of A is primitive recursive, hence A(x, y) and A(x, x) are recursive.

We will prove this after some preparation.

1.4.9. Lemma. The function A is strictly increasing in each variable and for all
n and x, y we have:

(i) An(x+ y) ≥ An(x) + y;
(ii) n ≥ 1⇒ An+1(y) > An(y) + y;

(iii) An+1(y) ≥ An(y + 1);
(iv) 2An(y) < An+2(y);
(v) x < y ⇒ An(x+ y) ≤ An+2(y).

Proof. Assume inductively that A0, ..., An are strictly increasing and that A0(y) <
A1(y) < ... < An(y) for all y. Then

An+1(y + 1) = An(An+1(y)) ≥ A0(An+1(y)) > An+1(y),

Sequence numbers 19

so An+1 is strictly increasing. Next we show that An+1(y) > An(y) for all y:
An+1(0) = An(1), so An+1(0) > An(0) and An+1(0) > 1, so An+1(y) > y + 1 for
all y. Hence An+1(y + 1) = An(An+1(y)) > An(y + 1).

Inequality (i) follows easily by induction on n, and a second induction on y.

For inequality (ii), we proceed again by induction on (n, y): Using A1(y) = y+2
and A2(y) = 2y+3, we obtain A2(y) > A1(y)+y. Let n > 1, and assume inductively
that An(y) > An−1(y) + y. Then An+1(0) = An(1) > An(0) + 0, and

An+1(y + 1) = An(An+1(y)) ≥ An(y + 1 +An(y)) ≥ An(y + 1) +An(y) >

> An(y + 1) + y + 1.

In (iii) we proceed by induction on y. We have equality for y = 0. Assuming
inductively that (iii) holds for a certain y we obtain

An+1(y + 1) = An(An+1(y)) ≥ An(An(y + 1)) ≥ An(y + 2).

Note that (iv) holds for n = 0. For n > 0 we have by (i), (ii) and (iii):

An(y) +An(y) ≤ An(y +An(y)) < An(An+1(y)) = An+1(y + 1).An+2(y).

Note that (v) holds for n = 0. Assume (v) holds for a certain n. Let x < y + 1.
We can assume inductively that if x < y, then An+1(x + y) ≤ An+3(y), and we
want to show that

An+1(x+ y + 1) ≤ An+3(y + 1).

Case 1. x = y. Then

An+1(x+ y + 1) = An+1(2x+ 1) = An(An+1(2x)) ≤ An+2(2x) <

< An+2(An+3(x)) = An+3(y + 1).

Case 2. x < y. Then

An+1(x+ y + 1) = An(An+1(x+ y)) ≤ An+2(An+3(y)) = An+3(y + 1).

�

1.4.10. Proof of 1.4.8(i)
We write |x| instead of x1 + ...+ xn if x = (x1, ..., xn).
1.4.8(i) is clear for the successor function y+ 1, any coordinate function and for

any characteristic function. Addition is obviously obtained with primitive recursion
from the successor function and multiplication is obtained with primitive recursion
from addition. It therefore suffices to see that the claim is preserved when we apply
R2 and primitive recursion PR.

So assume we have N ∈ ω and functions F,G1, ..., Gn with

F (x1, ..., xn) ≤ AN (|x|) and Gi(y1, ..., yk) ≤ AN (|y|)

globally. Then

F (G1(|y|), ..., Gn(|y|)) ≤ AN (G1(|y|) + ...+Gn(|y|)) ≤
≤ AN (2n ·AN (|y|)) ≤ by 1.4.9(iv)

≤ AN (·AN+2n(|y|)) ≤
≤ AN+2n+1(|y|).

20 Recursive functions

Now assume that F is obtained by primitive recursion from H(x, y, z) with initial
value h(x). Suppose N ∈ ω so that h(x) ≤ AN+3(|x|) H(x, y, z) ≤ AN (|x|+ |y|+z).
Then AN+3 also bounds F :

F (x, y + 1) = H(x, y, F (x, y)) ≤ AN (|x|+ y +AN+3(|x|+ y)) ≤ by 1.4.9(v)

≤ AN+2(AN+3(|x|+ y)) = AN+3(|x|+ y + 1).

�
So we know item (i) of 1.4.8. Item (ii) of 1.4.8 then follows easily and A(x, y) is

not primitive recursive. However A(x, y) is recursive, and indeed the graph of A is
primitive recursive. To see this, first note that A is obtained by a double recursion:

A(0, y) = y + 1, A(x+ 1, 0) = A(x, 1)

A(x+ 1, y + 1) = A(x,A(x+ 1, y)).

1.4.11. Proof of 1.4.8(iii)
Let us call a sequence a = (a0, ..., an−1) ∈ (ω×ω×ω)n an Ackermann calculation,

if the following conditions hold true:

(1) If (0, y, z) is an entry of a (witnessing A(0, y) = z), then z = y + 1
(2) If (x+ 1, 0, z) is an entry of a (witnessing A(x+ 1, 0) = z), then also (x, 1, z)

is an entry of a (witnessing A(x, 1) = z).
(3) If (x+ 1, y+ 1, z) is an entry of a (witnessing A(x+ 1, y+ 1) = z), then there

is an entry (x′, y′, z′) of a such that
• x′ = x+ 1 and y′ = y (witnessing A(x+ 1, y) = z′) and
• (x, z′, z) is an entry of a (witnessing A(x, z′) = z and therefore also

witnessing A(x+ 1, y + 1) = z = A(x, z′) = A(x,A(x+ 1, y)))

1.4.12. Lemma. The following are equivalent for every triple (x, y, z) ∈ ω3.

(i) A(x, y) = z
(ii) (x, y, z) is an entry of an Ackermann calculation

(iii) There is an Ackermann calculation (a1, ..., a(z+1)3) such that all entries of all
ai are ≤ z and (x, y, z) is one of the ai.

Proof. Let Γ ⊆ ω3 be the graph of the Ackermann function.

(i)⇒(iii). Let a = (a1, ..., a(z+1)3) be an enumeration (possibly with repetition) of
the set

Γ ∩ {0, ..., z}3.
We show that a is an Ackermann calculation and (x, y, z) is one of the ai. The
latter statement follows from A(x, y) = z and the fact that x, y ≤ A(x, y) = z.
Now we need to check that conditions (1)-(3) for an Ackermann calculation hold
true.

(1) If (0, v, w) is an entry of a, then A(0, v) = w and so w = v + 1 as required.

(2) If (u + 1, 0, w) is an entry of a, then A(u + 1, 0) = w, so by definition of A,
w = A(u, 1). Since (u, 1) ≤ w ≤ z we see that also (u, 1, w) is an entry of a.

(3) If (u + 1, v + 1, w) is an entry of a, then w = A(u,A(u + 1, v)). Since A is
monotone in the second coordinate we see that

w′ := A(u+ 1, v) ≤ A(u+ 1, v + 1) = w ≤ z.

Hence (u + 1, v, w′) is an entry of a and with A(u,w′) = w, also (u,w′, w) is an
entry of A as required.

Sequence numbers 21

(iii)⇒(ii) is trivial.

(ii)⇒(i). We show by induction on x that for every (x, y, z) that appears in an
Ackermann calculation a we have A(x, y) = z.

If x = 0, then by condition (1) of an Ackermann calculation we know that
z = y + 1. Hence z = A(0, y).

x→ x+ 1. So we assume that we know (ii)⇒(i) for all (u, v, w) with u ≤ x and
we show (ii)⇒(i) for (x+ 1, y, z) by induction on y.
y = 0: Assume (x+ 1, y, z) is an entry of a. By condition (2) of an Ackermann

calculation we know that (x, 1, z) is an entry of a. Hence by induction on x we see
that z = A(x, 1) = A(x+ 1, 0) as required.
y → y + 1. Assume (x + 1, y + 1, z) is an entry of a. By condition (3) of an

Ackermann calculation, there is some z′ ∈ ω such that (x + 1, y, w) and (x, z′, z)
are entries of a. By induction on y this means z′ = A(x + 1, y) and by induction
on x we know A(x, z′) = z. Thus z = A(x, z′) = A(x,A(x + 1, y)), which is equal
to A(x+ 1, y + 1) by definition of A. �

We now show that the graph Γ ⊆ ω3 of the Ackermann function is primitive recur-
sive. As an auxiliary relation, let R(u1, u2, u3, k) ⊆ ω4 be the set of all quadruples
such that

(β(u1, i), β(u2, i), β(u3, i))i≤k

is an Ackermann calculation. R is primitive recursive, since R(u1, u2, u3, k) is equiv-
alent to

∀i ≤ k



β(u3, i) = β(u2, i) + 1 if β(u1, i) = 0

∃j ≤ k
(
β(u1, j) = β(u1, i�i)∧ if β(u1, i) > 0 ∧ β(u2, i) = 0

β(u2, j) = 1 ∧ β(u3, j) = β(u3, i)

)
∃j, j′ ≤ k

(
β(u1, j

′) = β(u1, i)∧ if β(u1, i) > 0 ∧ β(u2, i) > 0

β(u2, j
′) = β(u2, i)�1∧

β(u1, j) = β(u1, i)�1∧

β(u2, j) = β(u3, j
′) ∧ β(u3, j) = β(u3, i)

)
Having confirmed that R is primitive recursive we can now define the graph

Γ(x, y, z) of the Ackermann function (using the primitive recursive function ρ from
1.3.8(ii)) by

∃u1, u2, u3, i ≤ ρ((z + 1)3)

(
R(u1, u2, u3, (z + 1)3)∧

x = β(u1, i) ∧ y = β(u2, i) ∧ z = β(u3, i)

)
.

Using 1.4.12(i)⇔(iii), this shows that the graph of the Ackermann function is prim-
itive recursive. This finishes the proof of 1.4.8.

22 Recursive functions

1.5. Recursively enumerable sets.

1.5.1. Definition. A subset R of ωn is called recursively enumerable or com-
putably enumerable if there is a recursive set R′ ⊆ ωn × ω such that R is the
projection of R′ onto the first n coordinates. Hence

R(a) ⇐⇒ ∃n ∈ ω : R′(a, n).

The intuition behind this notion is that a recursively enumerable set is one which
can be listed by a machine, i.e. the machine will output every element of R at some
point, and it will only output elements of R. However, the machine cannot answer
the question on whether a given element is in R: for a given element which is not
yet listed at some point, we don’t know whether the machine simply has not yet
listed that element or whether the machine will never list it (because the element
is not in R).

An algorithm that will do the listing can be thought of checking all tuples (a, n) ∈
ωn × ω against membership in R′ (which is recursive) and then output those a for
which the answer to (a, n) ∈ R′ is ’yes’.

On the other hand if we have two machines, one listing the elements of R, the
other one listing the elements in the complement of R, then R is recursive:

1.5.2. Negation Theorem
R ⊆ ωn is recursive if and only if R and ¬R are recursively enumerable.

Proof. If R is recursive, then R is the projection of R × ω, which is recursive too.
Since complements of recursive sets are again recursive, this shows one implication.

Conversely, suppose R and ¬R are recursively enumerable. Take R′, R′′ ⊆ ωn×ω
such that R is the projection of R′ and ¬R is the projection of R′′ onto the first n
coordinates. Then R is recursive because the function

f(a) = µx(R′(a, x) ∨R′′(a, x))

is recursive and

R(a) ⇐⇒ R′(a, f(a)).

�

1.5.3. Proposition. The following are equivalent for every non-empty subset R ⊆
ωn .

(i) R is recursively enumerable.
(ii) There are recursive functions f1, . . . , fn : ω −→ ω such that R is the image of

the function

(f1, . . . , fn) : ω −→ ωn.

(iii) There are some k ∈ N and recursive functions f1, . . . , fn : ωk −→ ω such that
R is the image of the function

(f1, . . . , fn) : ωk −→ ωn.

Proof. (i)⇒(ii). Suppose R is equal to the projection of a non-empty recursive set
R′ ⊆ ωn × ω to the first n coordinates. Pick a = (a1, . . . , an) ∈ R and define for
i ∈ {1, . . . , n} the function fi : ω −→ ω by

fi(x) =

{
(x)i if R′((x)1, . . . , (x)n, (x)n+1)

ai otherwise.

Recursively enumerable sets 23

The fi are recursive since R′ is recursive and the coordinate functions (x)j are prim-
itive recursive. R is in the image of f = (f1, . . . , fn), because for (b1, . . . , bn, c) ∈ R′
there is some x ∈ ω with

((x)1, . . . , (x)n, (x)n+1) = (b1, . . . , bn, c)

and so f(x) = (b1, . . . , bn).
To see that f(ω) ⊆ R, take x ∈ ω and assume f(x) 6= a. Then for some i we

have fi(x) 6= ai. This is only possible if R′((x)1, . . . , (x)n, (x)n+1). Consequently

f(x) = ((x)1, . . . , (x)n) is in R.

(ii)⇒(iii) is trivial: Take k = 1.

(iii)⇒(i) Take recursive functions f1, . . . , fn : ωk −→ ω such that R is the image of
the function f = (f1, . . . , fn) : ωk −→ ωn. Let

R′ = {(a1, . . . , an, x) ∈ ωn × ω |
n∧
i=1

ai = fi((x)1, . . . , (x)k)}.

Then R′ is recursive and R is the projection of R onto the first n coordinates.
�

24 Recursive functions

2. Formal proofs and the completeness theorem

The first two sections contain the revision of predicate logic again, as posted on
the website from week 0. Proofs are omitted. A full version of the entire chapter
including all proofs may be found at http://personalpages.manchester.ac.uk/
staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf.

2.1. Languages and formulas.
In this section we shall define what is a first order language, usually denoted by L .
L will consist of an alphabet and a set of finite sequences (strings) of elements of
that alphabet, built according to certain rules; these strings will be called formulas.

The alphabet of a language

2.1.1. Definition. (Alphabet)
The alphabet of a language L consists of the following data:

(I) A set of logical symbols, which are present in every language:
• ¬ (’not’), → (’implies’), ∀ (’for all’)
• The equality symbol:

.
=

• Brackets:) (
• Comma: ,
• Symbols to denote variables: v0, v1, v2, ... Notice that each vi is consid-

ered as a single symbol (and not as a concatenation of two symbols).

(II) • Three mutually disjoint sets R (called the set of relation symbols or
predicate symbols), F (called the set of function symbols) and C
(called the set of constant symbols). Further, none of these sets con-
tains a logical symbol.

• Maps
λ : R −→ N called the “arity of relation symbols”

µ : F −→ N called the “arity of function symbols”

For R ∈ R and F ∈ F , the numbers λ(R) and µ(F) are called the arity
of R, F respectively. We say that R, F is n-ary, if λ(R) = n, µ(F) = n,
respectively.

Every logical symbol and every element from R ∪F ∪ C is called an L -symbol
or simply a symbol whenever L is clear from the context. We shall also use the
term (L -)letter instead of (L)-symbol.

We define the set of variables as

Vbl := {vn | n ∈ N0}.

The alphabet of a language L is called finite if R, F and C are finite. Otherwise
the alphabet of L is called infinite

The alphabet of a language L is called countable if R, F and C are countable
or finite. Otherwise the alphabet of L is called uncountable. .

http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf
http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf

Languages and formulas 25

In general, the cardinality of an alphabet of a language L is the cardinality
of R ∪F ∪ C .
Notation. Obviously, the alphabet of a language is uniquely determined by the
data in item II of definition 2.1.1. These data are called the similarity type of
L . Hence the similarity type of L is given by

(λ : R −→ N, µ : F −→ N,C)

Extension of languages. If L is a language of similarity type (λ : R −→
N, µ : F −→ N,C) and L ′ is a language of similarity type (λ′ : R′ −→ N, µ′ :
F ′ −→ N,C ′), then we say that L ′ extends L and denote this by L ⊆ L ′, if
R ⊆ R′, F ⊆ F ′, C ⊆ C ′ and if the arity functions λ′, µ′ restrict to the arity
functions λ, µ respectively.

2.1.2. Examples.

(i) The empty similarity type. Here R = F = C = ∅. In the terminology of
the propositional logic course, this language corresponds to what is called L0

there.
(ii) The similarity type of a composition (or of an operation): (∅, µ : {◦} −→
{2}, ∅). This means: R = C = ∅ and F consist of a single element ◦ of arity
2: µ(◦) = 2.

(iii) The similarity type of groups: (∅, µ : {◦,−1} −→ N, {e}) where µ(◦) = 2
and µ(−1) = 1; hence ◦ is a binary function symbol (i.e. of arity 2), −1 is a
function symbol of arity 1 and e is a constant symbol.

(iv) The similarity type of unital rings: (∅, µ : {+,−, ·} −→ N, {0, 1}), where
µ(+) = µ(·) = 2 and µ(−) = 1. Hence − is a unary (i.e. 1-ary) and +, · are
binary function symbols. 0 and 1 are constants.

(v) The similarity type of set theory: (λ : {∈} −→ {2}, ∅, ∅). Here ∈ is a binary
predicate symbol. Sometimes this similarity type also contains a constant
symbol (denoting the empty set).

(vi) The similarity type of partially ordered sets: (λ : {≤} −→ {2}, ∅, ∅). Here ≤
is a binary predicate symbol.

(vii) The similarity type of ordered groups: (λ : {≤} −→ {2}, µ : {◦,−1} −→
N, {e}). Here ≤ is a binary relation symbol.

Terms

2.1.3. Definition. (L -term)
Given the similarity type (λ : R −→ N, µ : F −→ N,C) of L , we define subsets
tmk(L) of strings (i.e. of finite sequences) of the alphabet of L by induction on
k ∈ N0 as follows:

tm0(L) = Vbl∪C and

tmk+1(L) = tmk(L) ∪
{
F (t1, t2, ..., tn) | n ∈ N, F ∈ F , µ(F) = n,

t1, . . . , tn ∈ tmk(L)
}
.

The set of L -terms is defined as

tm(L) := ⋃
k∈N0

tmk(L).

The elements of tm(L) are called L -terms or simply ’terms’ if L is clear from
the context.

26 Formal proofs and the completeness theorem

The complexity of an L -term t - denoted by c(t) - is the least k ∈ N0 such
that t ∈ tmk(L). Notice that for t ∈ tm(L) and k ∈ N0 we have by definition
c(t) ≤ k ⇐⇒ t ∈ tmk(L).

2.1.4. Explanation of the definition of a term. Each term is built up induc-
tively, starting from variables and constant symbols, by creating expressions of the
form F (t1, . . . , tn), where F is an n-ary function symbol and t1, . . . , tn are previ-
ously constructed terms. Notice that F (t1, . . . , tn) is (at the moment) just a list of
symbols in our language - F is not a function and one cannot plug anything into
it.

We do an example. Suppose L is the language {+, ·, 0, 1}, where + and · are
binary function symbols (hence, they are elements of F and their arity is µ(+) =
µ(·) = 2), and 0, 1 are constant symbols (not the numbers 0,1). Here are a few
terms in that language:

(a) 0, 1, v7. These are three terms of complexity 0.
(b) +(0, v2), ·(1, 1), +(v1, v3). These are three terms of complexity 1. In a human

readable form we would write 0 + v2, 1 · 1, v1 + v2.
(c) +(1, ·(v3, v1)), ·(+(1, v3), ·v1). These are two terms of complexity 2. In a

human readable form we might be tempted to write 1+v3 ·v1 and (1+v3) ·v1;
however, there is - a priori - something fishy with the expression 1 + v3 · v1.
Can you spot it?

(d) ∗(∗(+(1, 1), v2), v2) is a term of complexity 3. In human readable form this
would be 2v2

2 .

We can see that in this language, terms (in human readable form) look like poly-
nomials (with coefficients in N). In fact, if you understand this example well, the
general case is in essence not more complicated, just more general.

2.1.5. Theorem. (Unique readability theorem for terms) If t is an L -term, then
either t is a variable or t is a constant symbol or there are uniquely determined
n ∈ N, F ∈ F of arity n and t1, . . . , tn ∈ tm(L) such that

t = F (t1, t2, ..., tn).

The unique readability theorem is important when we make definition or when
we prove properties of terms by induction, e.g., see 2.2.2(A).

2.1.6. Corollary. For all n ∈ N, all L -terms t1, . . . , tn and each n-ary function
symbol F of L we have

c(F (t1, . . . , tn)) = 1 + max{c(t1), . . . , c(tn)}.

Formulas

2.1.7. Definition. (formulas)
Given a similarity type (λ : R −→ N, µ : F −→ N,C) of a language L , an atomic
L -formula is a string of the alphabet of L of the form

t1
.
= t2,

where t1, t2 are L -terms or

R(t1, ..., tn),

where R is a relation symbol of arity n ∈ N and t1, . . . , tn are L -terms. The set of
atomic L -formulas is denoted by at-Fml(L).

Languages and formulas 27

We define

Fml0(L) = at-Fml(L) and inductively for each k ∈ N0 :

Fmlk+1(L) = Fmlk(L) ∪ {(¬ϕ), (ϕ→ ψ), (∀xϕ) | ϕ,ψ ∈ Fmlk(L), x ∈ Vbl}.

The set of L -formulas is defined as

Fml(L) := ⋃
k∈N0

Fmlk(L).

If the letter ∀ does not occur in the L -formula ϕ, then ϕ is called quantifier free.

Warning. Not every formula that has (obvious) meaning in mathematics is a
formula in our sense. This is in particular important after we have proved significant
theorems involving formulas. Here is an example:

∀n ∈ N ∃r, q ∈ N0 n = q ·m+ r ∧ r < m.

There is no language (according to our definition) such that the above is a formula
in that language.

Notice that the quantifier introduced in the definition of Fmlk+1(L) (cf. 2.1.7)
is always applied in a nonrestricted way, e.g.

∀n∃r, q n .
= q ·m+ r ∧ r < m

will be a formula in the language of rings; we introduce the appropriate abbrevia-
tions (concerning the symbols ∃ and ∧) shortly.

The language or signature L is the triple consisting of the alphabet of L , the
set of L -terms and the set of L -formulas. Obviously, tm(L) and Fml(L) are
uniquely determined by the similarity type of L and we shall simply communicate
languages by their similarity type.

Hence the expression ’let L = (λ : R −→ N, µ : F −→ N,C) be a language’
stands for ’let L be the language with similarity type (λ : R −→ N, µ : F −→
N,C)’.

We say that a language is finite, infinite, countable or uncountable if the al-
phabet of that language has this property. In general, the cardinality of a language
L , denoted by card(L), is the cardinality of the alphabet of that language.

2.1.8. Lemma. The cardinality of Fml(L) is the maximum of ℵ0 and the cardi-
nality of L . If L is countable, then the sets tm(L) and Fml(L) are countable
and infinite.

As for terms we have a unique readability theorem:

2.1.9. Theorem. (Unique readability theorem for formulas)
Let L = (λ : R −→ N, µ : F −→ N,C) be a language and let ϕ be an L -formula.
Then exactly one of the following holds true:

(i) ϕ is atomic and there are uniquely determined t1, t2 ∈ tm(L) such that ϕ is
t1

.
= t2, or

(ii) ϕ is atomic and there are a unique n ∈ N, a unique R ∈ R and uniquely
determined L -terms t1, . . . , tn such that ϕ is R(t1, ..., tn), or

(iii) ϕ is equal to a string of the form (¬ψ) for a uniquely determined ψ ∈ Fml(L),
or

28 Formal proofs and the completeness theorem

(iv) ϕ is equal to a string of the form (ϕ1 → ϕ2) for uniquely determined ϕ1, ϕ2 ∈
Fml(L), or

(v) ϕ is equal to a string of the form (∀xψ) for uniquely determined ψ ∈ Fml(L)
and x ∈ Vbl.

Domestication of the notation

• We will omit brackets if this does not lead to ambiguity.
• We use the following abbreviation for L -formulas ϕ,ψ: ϕ ∨ ψ := (¬ϕ) → ψ,
ϕ ∧ ψ := ¬(ϕ → (¬ψ)), ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ) and ∃xϕ := ¬∀x(¬ϕ)
where x is a variable.
• We write

∀x1, . . . , xn ϕ instead of ∀x1...∀xnϕ and ∃x1, . . . , xn ϕ instead of ∃x1...∃xnϕ
where each xi is a variable.

The strings ∀x and ∃x are called quantifiers. A string of quantifiers is a
string of the form Q1x1...Qnxn, where each Qi is either ∀ or ∃ and each xi is a
variable.
• We write

n∧
i=1

ϕi instead of

n-times︷︸︸︷
(...(ϕ1 ∧ ϕ2) ∧ ϕ3)... ∧ ϕn) and

n∨
i=1

ϕi instead of

n-times︷︸︸︷
(...(ϕ1 ∨ ϕ2) ∨ ϕ3)... ∨ ϕn).

• We write t1 6
.
= t2 instead of (¬t1

.
= t2).

• If R is a binary relation, we write t1Rt2 instead of R(t1, t2).

Complexity and subformulas

The unique readability theorems 2.1.5 and 2.1.9 allow us to define new objects
from formulas, and to prove statements about formulas. This will be done via
induction on the construction depth (or the ’complexity’) of terms and formulas:

2.1.10. Definition. The complexity of an L -formula ϕ - denoted by c(ϕ) - is
the least k ∈ N0 such that ϕ ∈ Fmlk(L).

Notice that this is not in conflict with the definition of the complexity of L -
terms (cf. 2.1.3), since the set of L -terms is disjoint from the set of L -formulas.
Notice also that for any given terms t1, t2, . . . , tn and each n-ary relation symbol R
of L , c(R(t1, . . . , tn)) = 0. Similarly c(t1

.
= t2) = 0.

By definition, for every L -formula ϕ and each k ∈ N0 we have

c(ϕ) ≤ k ⇐⇒ ϕ ∈ Fmlk(L).

2.1.11. Lemma. For all L -formulas ϕ,ψ we have

c(¬ϕ) = 1 + c(ϕ), c(ϕ→ ψ) = 1 + max{c(ϕ), c(ψ)} and c(∀xϕ) = 1 + c(ϕ).

2.1.12. Definition. (subformula)
We define a binary relation between L -formulas ϕ and ψ

- called ”... is a subformula of ...” -

inductively, w.r.t. the complexity of ψ:

Languages and formulas 29

(i) If c(ψ) = 0 (equivalently: ψ is atomic), then ϕ = ψ.
(ii) If c(ψ) = k + 1, then

(a) If ψ = (∀xϑ) or ψ = (¬ϑ), then ϕ is a subformula of ϑ or ϕ = ψ
(b) If ψ = (ψ1 → ψ2), then ϕ is a subformula of ψ1 or ϕ is a subformula of

ψ2 or ϕ = ψ.

Notice that this definition is correct by 2.1.11.

Of course, every subformula of ϕ occurs in ϕ at some position. Also, note that by a
straightforward induction on the complexity, we see that the subformula relation is
transitive and a formula ϕ is a subformula of ψ is an only if ϕ occurs as a substring
of ψ.

Free and bound occurrences of variables

Let L = (λ : R −→ N, µ : F −→ N,C) be a language.

2.1.13. Definition. (scope of a quantifier)
The scope of a quantifier ∀x in an L -formula ϕ is the set of all positions of letters
in ϕ, which are captured in a subformula of the form (∀xψ) of ϕ.

More formally: the scope of ∀x in ϕ is the set of all k ∈ N such that there is a
subformula of the form (∀xψ) of ϕ, of length l ∈ N which occurs at a position p in
ϕ with p ≤ k < p+ l.

2.1.14. Example. For example, look at the formula of the language of ordered
groups (cf. 2.1.2):

ϕ = (∀v2((∀v1 ◦ (e, v1)
.
= v5)→ −1(v1) ≤ e)).

Here the scope of the quantifier ∀v1 in ϕ:

ϕ = (∀v2(

scope of ∀v1︷ ︸︸ ︷
(∀v1 ◦ (e, v1)

.
= v5)→ −1(v1) ≤ e)).

2.1.15. Definition. (free and bound occurrence of variables)
Let ϕ be an L -formula and let x be a variable.

(i) If x occurs in ϕ at position k ∈ N and if k is not in the scope of the quantifier
∀x in ϕ, then we say x occurs free in ϕ at position k.

(ii) If x occurs in ϕ at position k ∈ N and if k is in the scope of the quantifier ∀x
in ϕ, then we say x occurs bound in ϕ at position k.

(iii) x is a free variable of ϕ if there is some k ∈ N such that x occurs free in ϕ
at position k.

The set of free variables of ϕ is denoted by Fr(ϕ). If Fr(ϕ) = ∅, then ϕ is called an
(L -)sentence and the set of all L -sentences is denoted by Sen(L).

It is convenient to extend the notation to terms:

(iv) If t is an L -term, then we define Fr(t) to be the set of all variables occurring
in t and we will also say that x is free in t instead of x ∈ Fr(t). Notice that
there are no variables which are possibly bound in t. If Fr(t) = ∅, then t is
called a closed term or a constant term.

Different occurrences of a given variable in a formula may be free or bound,
depending on where they are. In example 2.1.14 above, v1 occurs bound at two
positions in ϕ and free at one position.

ϕ = (∀v2((∀
bound occurrence︷︸︸︷

v1 ◦(e,
bound occurrence︷︸︸︷

v1)
.
= v5)→ −1(

free occurrence︷︸︸︷
v1) ≤ e))).

30 Formal proofs and the completeness theorem

We have Fr(ϕ) = {v1, v5}.

2.1.16. Lemma. Let ϕ,ψ be L -formulas.

(i) If ϕ is quantifier free then Fr(ϕ) is the set of variables occurring in ϕ.
(ii) Fr(¬ϕ) = Fr(ϕ)

(iii) Fr((ϕ→ ψ)) = Fr(ϕ) ∪ Fr(ψ).
(iv) Fr(∀xϕ) = Fr(ϕ) \ {x} for all x ∈ Vbl.

2.1.17. Notation.

• The expressions ’t(x1, . . . , xn) ∈ tm(L)’ or ’let t(x1, . . . , xn) be an L -term’ are
shorthand for

“t ∈ tm(L), x1, . . . , xn ∈ Vbl with xi 6= xj (i 6= j) and Fr(t) ⊆ {x1, . . . , xn}”.

This is common practice in mathematics, for example a polynomial in two vari-
ables is also considered as a polynomial in three variables.

• The expressions ’ϕ(x1, . . . , xn) ∈ Fml(L)’ or ’let ϕ(x1, . . . , xn) be an L -
formula’ are shorthand for

“ϕ ∈ Fml(L), x1, . . . , xn ∈ Vbl with xi 6= xj (i 6= j) and Fr(ϕ) ⊆ {x1, . . . , xn}”.

2.1.18. Definition. Let ϕ be an L -formula.

(i) Let x, y be variables. We define

x is free in ϕ for y or y is substitutable for x in ϕ

if no position of ϕ at which x occurs free in ϕ, is in the scope of the quantifier
∀y in ϕ.

(ii) Let t be an L -term. We define

x is free in ϕ for t or t is substitutable for x in ϕ

if x is free in ϕ for every variable which occurs in t.

So by definition, each variable x is free for x in ϕ and each variable which does not
occur in ϕ is free in ϕ for every term.

In example 2.1.14, i.e.

ϕ = (∀v2((∀v1 ◦ (e, v1)
.
= v5)→ −1(v1) ≤ e)),

v1 is free for v5 but not free for v2 in ϕ; v5 is not free for the term ◦(v2, v5).

2.1.19. Definition. Let ϕ ∈ Fml(L), t1, . . . , tn, t ∈ tm(L) and let x1, . . . , xn be
n distinct variables.

(i) The expression t(x1/t1, . . . , xn/tn) denotes the string obtained from t by re-
placing every occurrence of xi in t with the string ti (1 ≤ i ≤ n).

(ii) If for each i ∈ {1, . . . , n} the variable xi is free in ϕ for ti then the expression
ϕ(x1/t1, . . . , xn/tn) denotes the string obtained from ϕ by simultaneously
replacing every free occurrence of xi in ϕ with the string ti (1 ≤ i ≤ n). We
call ϕ(x1/t1, . . . , xn/tn) the substitution of x1, . . . , xn by t1, . . . , tn in ϕ.

Warning. Notice that we replace the variables xi by the terms ti simultaneously
and not consecutively: For example if ϕ is (∀x2 x1

.
= x2) → x2

.
= x3, then

ϕ(x1/t1, x2/t2) is (∀x2 t1
.
= x2)→ t2

.
= x3.

However, in general ϕ(x1/t1, x2/t2) is NOT the same as ϕ(x1/t1)(x2/t2). Why?

2.1.20. Lemma. Let ϕ ∈ Fml(L), t1, . . . , tn, t ∈ tm(L) and let x1, . . . , xn be n
distinct variables.

Structures and Tarski’s definition of truth 31

(i) t(x1/t1, . . . , xn/tn) is an L -Term and if Fr(t) ⊆ {x1, . . . , xn}, then

Fr(t(x1/t1, . . . , xn/tn)) ⊆ Fr(t1) ∪ ... ∪ Fr(tn).

(ii) If for each i ∈ {1, . . . , n} the variable xi is free in ϕ for ti then the string
ϕ(x1/t1, . . . , xn/tn) is an L -formula and in the case Fr(ϕ) ⊆ {x1, . . . , xn} we
have

Fr(ϕ) ⊆ Fr(t1) ∪ ... ∪ Fr(tn).

2.2. Structures and Tarski’s definition of truth.

Throughout, L = (λ : R −→ N, µ : F −→ N,C) denotes a formal language.

2.2.1. Definition. An L -structure is a tuple

M =

(
M , (RM | R ∈ R) , (FM | F ∈ F) , (cM , c ∈ C)

)
consisting of

(S1) A nonempty set M , called the universe or the domain or the carrier of
M . We shall also write |M | instead of M .

(S2) A family (RM | R ∈ R) of relations of M such that for R ∈ R, RM ⊆
Mλ(R). Hence RM is a λ(R)-ary relation of M , called the interpretation
of R in M . Observe that for different R1, R2 ∈ R we may have RM

1 = RM
2 .

Formally, (RM | R ∈ R) is a map R −→⋃n∈N P(Mn) such that the image

RM of R ∈ R under this map is a subset of Mλ(R).

(S3) A family (FM | F ∈ F) of functions, where for F ∈ F , FM : Mµ(F) −→M .
Hence FM is a µ(F)-ary function of M , called the interpretation of F in
M . Observe that for different F1, F2 ∈ F we may have FM

1 = FM
2 .

Formally, (FM | F ∈ F) is a map F −→ ⋃n∈N Maps(Mn,M) such that

the image FM of F ∈ F under this map is a function Mµ(F) −→M .

(S4) A family (cM | c ∈ C) of elements of M . Hence cM is an element of M ,
called the interpretation of c in M . Observe that for different c1, c2 ∈ C
we may have cM1 = cM2 .

Formally, (cM | c ∈ C) is simply a map C −→M .

M is called finite/countable/uncountable/infinite if its universe |M | is fi-
nite/countable/uncountable/infinite. More generally, the size of a structure M
is the cardinality card(|M |) of its universe.

2.2.2. Definition. Let M be an L -structure with domain M = |M |.
(A) We define by induction on the complexity of an L -term t(x1, . . . , xn) and

elements a1, . . . , an ∈M , an element tM (a1, . . . , an) ∈M as follows:

(i) If c(t) = 0, then

tM (a1, . . . , an) =

{
cM if t is c ∈ C

ai if t is vi ∈ Vbl .

32 Formal proofs and the completeness theorem

(ii) If t1, . . . , tn are L -terms and F ∈ F with µ(F) = n, then we define

F (t1, . . . , tn)M (a1, . . . , an) := FM (tM1 (a1, . . . , an), . . . , tMn (a1, . . . , an)).

This is a correct definition by 2.1.5.

(B) We define by induction on the complexity of an L -formula ϕ(x1, . . . , xn) and
all a1, . . . , an ∈M the expression ϕ(a1, . . . , an) holds in M , or M satisfies
ϕ(a1, . . . , an), denoted by

M |= ϕ(a1, . . . , an),

as follows:
(i) If ϕ is of the form t1

.
= t2 with L -terms t1, t2 then

M |= ϕ(a1, . . . , an) ⇐⇒ tM1 (a1, . . . , an) = tM2 (a1, . . . , an).

If ϕ is of the form R(t1, . . . , tk) with R ∈ R of arity k and t1, . . . , tk ∈
tm(L) then

M |= ϕ(a1, . . . , an) ⇐⇒ (tM1 (a1, . . . , an), . . . , tMk (a1, . . . , an)) ∈ RM .

(ii) For the induction step we take ϕ,ψ ∈ Fml(L), x ∈ Vbl and define
• M |= (ϕ→ ψ)(a1, . . . , an) ⇐⇒

if M |= ϕ(a1, . . . , an) then M |= ψ(a1, . . . , an),

• M |= (¬ϕ)(a1, . . . , an) ⇐⇒
M 6|= ϕ(a1, . . . , an) i.e. M |= ϕ(a1, . . . , an) does not hold

and
• M |= (∀yϕ)(a1, . . . , an) ⇐⇒

M |= (∀yϕ)(a1, . . . , an), if y is not among the xi

M |= ϕ(a1, . . . , b︸︷︷︸
ith position

, . . . , an) for all b ∈ |M | , if y = xi.

This is a correct definition by 2.1.9.

(C) Let Σ and Ψ be sets of L -formulas in at most n free variables x1, . . . , xn. Let
ā = (a1, . . . , an) ∈M . M is called a model of Σ at ā if

M |= σ(ā) for all σ ∈ Σ.

We denote this by
M |= Σ(ā).

In particular, if Σ is a set of L -sentences, so here n = 0, it makes sense to
write

M |= Σ

and to say that M is a model of Σ.

We say that Σ has a model if it has a model M at some n-tuple with entries
in |M |. In this case, Σ is called satisfiable.

We say that Σ logically implies Φ and write Σ |= Φ if for every L structure
M and all a1, . . . , an ∈ |M | we have

M |= Σ(ā) =⇒M |= Φ(ā).

Logical axioms and the definition of a formal proof 33

2.3. Logical axioms and the definition of a formal proof. Throughout, L =
(λ : R −→ N, µ : F −→ N,C) denotes a formal language.

2.3.1. Definition. Each of the following L -formulas are called logical Axioms
(of L), where ϕ,ψ and γ are L -formulas:

(AxProp):
(a) ϕ→ (ψ → ϕ)
(b) (ϕ→ (ψ → γ))→ ((ϕ→ ψ)→ (ϕ→ γ))
(c) ((¬ψ)→ (¬ϕ))→ (((¬ψ)→ ϕ)→ ψ)

(Ax∀ →): ∀x(ϕ→ ψ) → (∀xϕ → ∀xψ)

(AxSubst): (∀xϕ) → ϕ(x/t), where x is free in ϕ for t ∈ tm(L).

(AxGen): ϕ→ ∀xϕ, where x is not free in ϕ.

(AxEq): For every L -term t, every n-ary relation symbol R and all variables
x1, ..., xn, x, y, z the axioms

(a) x
.
= x

(b) x
.
= y ∧ y .

= z → z
.
= x

(c) x
.
= y → t(z/y)

.
= t(z/x)

(d) x
.
= y →

(
R(x1, ..., xn)(z/x)↔ (R(x1, ..., xn)(z/y))

)
(Ax∀): Any formula of the form

∀x1...xn ϕ,

where ϕ is one of the formulas introduced by the other logical axiom
schemes above and x1, ..., xn ∈ Vbl.

Notice: The axioms above are not examinable. However the next definition is
examinable.

2.3.2. Definition. Let Σ ⊆ Fml(L). A formal proof or a deduction from Σ (in
L) is a finite sequence (ϕ1, ..., ϕn) of L -formulas such that for each k ∈ {1, ..., n}
one of the following conditions hold:

(PR1): ϕk is a logical axiom (of L) or

(PR2): ϕk ∈ Σ or

(PR3): (Modus Ponens) There are i, j < k such that

ϕj is the formula ϕi → ϕk.

If Φ ⊆ Fml(L), then we say Σ proves Φ and write

Σ `L Φ (or simply Σ ` Φ when L is clear from the context),

if every ϕ ∈ Φ is an entry of a proof from Σ. If Φ = {ϕ} we just write Σ ` ϕ. If
Σ = ∅ we just write ` Φ.

34 Formal proofs and the completeness theorem

We say that a set of L -formulas Σ is consistent if there is a formula that is not
provable from Σ. By elementary propositional logic this is equivalent to saying that
Σ 0 ϕ ∧ ¬ϕ for every L -formula ϕ. Equivalently: Σ is consistent if and only if
Σ 0 ϕ ∧ ¬ϕ for some L -formula ϕ.

A set Σ of L -formulas that is not consistent is called inconsistent.

2.3.3. Remark. The following are immediate consequences of definition 2.3.2:

(i) If (ϕ1, ..., ϕn) is a proof from Σ, then also (ϕ1, ..., ϕm) is a proof from Σ for
every m ≤ n. Moreover ϕ1 ∈ Σ or ϕ1 is a logical axiom.

(ii) If (ϕ1, ..., ϕn) and (ψ1, ..., ψm) are proofs from Σ, then also
(ϕ1, ..., ϕn, ψ1, ..., ψm) is a proof from Σ.

(iii) Σ ` Φ ⇐⇒ Σ ` ϕ for all ϕ ∈ Φ.

(iv) Σ ` Φ for all Φ ⊆ Σ.

(v) If Σ ` ϕ→ ψ and Σ ` ϕ then Σ ` ψ.

Proof. The proof here is the same as the corresponding argument in propositional
logic and is direct from definition 2.3.2. To get up to speed with these type of
arguments, please carry this out. �

We say (ϕ1, ..., ϕn) is a proof of ϕ from Σ if (ϕ1, ..., ϕn) is a proof from Σ and
ϕ = ϕn.

The following theorem follows again immediately from definition 2.3.2 of a formal
proof. It is of central importance to Predicate Logic and used in many places later
on.

2.3.4. Theorem. “proofs are finite”
For every ϕ ∈ Fml(L) and all subsets Σ ⊆ Fml(L) the following are equivalent:

(i) Σ ` ϕ
(ii) there is a finite subset Σ0 ⊆ Σ with Σ0 ` ϕ

(iii) there is a proof (ϕ1, ..., ϕn) of ϕ from Σ.

Proof. Please carry this out and use it to for practicing definition 2.3.2. �

Soundness and the Completeness Theorem 35

2.4. Soundness and the Completeness Theorem.

2.4.1. Soundness Theorem
For any language L and all Σ,Φ ⊆ Fml(L), if Σ ` Φ, then Σ |= Φ.

Proof. It is enough to show by induction on n the following: If (ϕ1, ..., ϕn) is a
proof from Σ then M |= ϕn[h] for every assignment h of every L -structure M
satisfying M |= Σ[h].

If ϕn ∈ Σ or ϕn is a logical axiom, then this is checked by inspection. You are
invited to carry this out. In particular the claim holds for n = 1. Moreover for the
induction step “n−1⇒ n” it is clear that we only need to show the claim in the case
where ϕn is the result of applying Modus Ponens to two entries of (ϕ1, ..., ϕn−1).
Hence there are k, j < n such that ϕk = ϕj → ϕn.

If h is an assignment of M with M |= Σ[h], then by induction we know M |=
ϕj [h] and M |= ϕj → ϕn [h]. By 2.2.2(B)(ii) we get M |= ϕn[h] as desired. �

2.4.2. Completeness Theorem (Gödel 1929)
For any language L and all Σ,Φ ⊆ Fml(L), if Σ |= Φ, then Σ ` Φ.

Proof. [not examinable] This is done in every book on Mathematical Logic
and is much harder than the implication in 2.4.1. A full proof that fits pre-
cisely to our set up may be found in http://personalpages.manchester.ac.

uk/staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf. A good ex-
planation (with different notations and an alternative proof system) may be found
at https://plato.stanford.edu/entries/logic-classical/. �

2.4.3. The terminology “Completeness Theorem” here has to be understood as
follows: By the soundness theorem, our proof system from section 1 is sound. In
particular, all L -axioms and all formulas obtained by writing down proofs (from ∅)
according to the rules in 2.3.2 are true in all L -structures (which means they are
true at all assignments of all L -structures). However, why are we not writing down
more axioms and proof rules, in order to strengthen what can be formally proved?
As long as we can show that these new axioms and rules produce consequences
that are true in all L -structures, we might enhance our proof system. However,
the problem does not go away if we do that: We can then just ask the same question
for the new system.

Here is where the Completeness Theorem enters the scene. A particular instance
of 2.4.2, namely the case Σ = ∅, says that every L -formula that is true in all L -
structures can indeed be proved with our proof system. Therefore, we do not need
to add any axioms or rules. In this sense our proof system is complete, explaining
the terminology “Completeness Theorem”.

A particularly important instance of the Completeness Theorem is

2.4.4. Corollary. Every consistent set Σ of L -formulas is satisfiable (i.e. has a
model at some assignment).

Proof. Apply 2.4.2, using any inconsistent set Φ. �

Also observe that every satisfiable set of L -formulas is consistent, which simply
says that our proof system is sound. The strength of the completeness theorem lies
in the claim that a model of Σ ⊆ Fml(L) exists as soon as we know that the proof
system cannot derive a contradiction from Σ. This in fact is the main task in the

http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf
http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf
https://plato.stanford.edu/entries/logic-classical/

36 Formal proofs and the completeness theorem

proof of the Completeness Theorem: The Corollary easily implies 2.4.2 - this is a
routine reasoning just using arguments from propositional logic.

To appreciate the power of the completeness theorem, look at the following proof
of the

2.4.5. Compactness Theorem (of first order predicate logic)
If Σ ⊆ Fml(L) and every finite subset of Σ has a model at some assignment, then
also Σ has a model at some assignment.

Proof. By 2.4.4 it is enough to show that Σ is consistent. Since proofs are finite,
this can be checked by looking at finite subsets of Σ. Now, our assumption and the
Soundness Theorem imply that every finite subset of Σ is consistent. �

2.5. Propositional Tautologies and the Prenex Normal Form.

The material here is not explicitly examinable, but the statements are needed to
understand arguments later on. For example it is sometimes very useful to know
that we may assume that all formulas are in prenex normal form (up to logical
equivalence), see 2.5.6. So if one does not know that theorem it may be difficult to
answer some questions on the example sheets.

2.5.1. Proposition. (Propositional Tautologies)
Let α be a formula of propositional logic and let n ∈ N be such that every atomic
formula of the propositional calculus that occurs in α is among A0, ..., An.

Let ϕ0, ..., ϕn be L -formulas and let ψ be the L -string obtained from α by re-
placing for each i ∈ {0, ..., n} the letter Ai in α with the string ϕi.

Then ψ is again an L -formula and if α is a tautology of propositional logic, then

`L ψ.

Sketch of the proof. That ψ ∈ Fml(L) follows by induction on the construction of
ψ using the definition of formulas in propositional logic and in predicate logic.

If α is a tautology, then by the completeness theorem for propositional logic
we know that there is a formal proof of α in propositional logic from ∅. Now by
inspection we see that each formal proof from ∅ in propositional logic translates into
a formal proof from ∅ from predicate logic when we replace propositional variables
by L -formulas. �

2.5.2. Example. If Σ ⊆ Fml(L) and ϕ1, ..., ϕn ∈ Fml(L), then

Σ ` ϕ1 ∧ ... ∧ ϕn ⇐⇒ Σ ` ϕ1 and ... and Σ ` ϕn.

The implication “⇒” is obtained from 2.5.1 and the fact that A1 ∧ ...∧An → Ai
is a propositional tautology. The implication “⇐” is an application of 2.5.1 using
the corresponding statement in propositional logic.

2.5.3. Definition. An L -formula ϕ is said to be in prenex normal form if there
are n ∈ N0, x1, ..., xn ∈ Vbl, Q1, ..., Qn ∈ {∀,∃} and a quantifier free formula χ
such that ϕ is the formula Q1x1...Qnxn χ.

We will show that every L -formula is provably equivalent to a formula in prenex
normal form.

Propositional Tautologies and the Prenex Normal Form 37

2.5.4. Lemma. If ϕ,ψ are L -formulas and x 6∈ Frψ, y 6∈ Frϕ then

(i) ` ((∀xϕ) ∧ (∀yψ))↔ ∀xy(ϕ ∧ ψ).
(ii) ` ((∀xϕ) ∨ (∀yψ))↔ ∀xy(ϕ ∨ ψ).

(iii) ` ((∃xϕ) ∨ (∃yψ))↔ ∃xy(ϕ ∨ ψ).
(iv) ` ((∃xϕ) ∧ (∃yψ))↔ ∃xy(ϕ ∧ ψ).

Proof. In all statements we may assume that x 6= y. Otherwise, our assumption
x 6∈ Frψ and y 6∈ Frϕ implies that neither x nor y occurs freely in any of the
formulas under consideration; now observe that ` ϕ↔ ∀xϕ for each formula ϕ and
every variable x 6∈ Fr(ϕ).

(i) By the Completeness Theorem 2.4.2 it suffices to show |= ((∀xϕ) ∧ (∀yψ)) ↔
∀xy(ϕ ∧ ψ). Hence we have to take an L -structure M and an assignment h of M
and we have to show that M |= ((∀xϕ)∧ (∀yψ))[h] ⇐⇒ M |= ∀xy(ϕ∧ψ)[h]. The
implication “⇐” is clear. For the implication “⇒” we use our assumption x 6∈ Frψ
and y 6∈ Frϕ.

(ii). By the Completeness Theorem 2.4.2 it suffices to show |= ((∀xϕ) ∨ (∀yψ))↔
∀xy(ϕ ∨ ψ). Hence we have to take an L -structure M and an assignment h of M
and we have to show that

M |= (∀xϕ) ∨ (∀yψ)[h] ⇐⇒ M |= ∀xy(ϕ ∨ ψ)[h].

“⇒”: We may assume that M |= (∀xϕ)[h]. Since y does not occur free in ϕ we get
M |= (∀xyϕ)[h]. But then M |= ∀xy(ϕ ∨ ψ)[h] as well.

“⇐”: Suppose M 2 (∀xϕ) ∨ (∀yψ)[h]. Hence there are a, b ∈ |M | with M 2
ϕ[h(xa)] and M 2 ψ[h(yb)]. Since x 6∈ Frψ, y 6∈ Frϕ and x 6= y we obtain M 2
ϕ ∨ ψ[h(xa)(yb)]. Hence M 2 ∀xy(ϕ ∨ ψ)[h].

(iii) and (iv) follow from (i) and (ii) by contraposition. �

2.5.5. Lemma. If ϕ is an L -formula, x, y ∈ Vbl and x is free in ϕ for y then

` (∀xϕ)↔ (∀yϕ(x/y)) and ` (∃xϕ)↔ (∃yϕ(x/y)).

Proof. From the Completeness Theorem 2.4.2. �

2.5.6. Prenex Normal Form Theorem
Every L -formula is provably equivalent to a formula in prenex normal form.

Proof. By induction on the complexity of ϕ, where ϕ is already in prenex normal
form if ϕ is quantifier free.

If ϕ = ¬ψ or ϕ = ∀yψ and ψ is provably equivalent to a formula in prenex normal
form then clearly ϕ also is provably equivalent to a formula in prenex normal form.

It remains to show that ϕ ∧ ψ is provably equivalent to a formula in prenex
normal form provided ϕ and ψ have this property.

So assume ` ϕ ↔ Q1x1...Qnxn χ and ` ψ ↔ P1y1...Pkyk δ with quantifier free
formulas χ, δ and Qi, Pj ∈ {∀,∃}.

Using 2.5.5 n-times we may substitute all variables xi in the stringQ1x1...Qnxn χ
by variables which do not occur in P1y1...Pkyk δ. Hence we may assume that no
xi occurs in P1y1...Pkyk δ. Applying this again to P1y1...Pkyk δ we may also
assume that no yj occurs in Q1x1...Qnxn χ. Moreover we may assume that k = n,
otherwise fix this by placing quantifiers in front of one of the formulas containing
a new variable. Now we can apply 2.5.4(i) and (iv) to obtain

` Q1x1...Qnxn χ ∧ P1y1...Pkyn δ ↔ Q1x1P1y1...QnxnPnxn(χ ∧ δ).

38 Formal proofs and the completeness theorem

Hence also ϕ ∧ ψ is provably equivalent to Q1x1P1y1...QnxnPnxn(χ ∧ δ), which
is in prenex normal form. �

2.5.7. Example. Let ϕ = Q1x1...Qnxn χ and ϕ′ = Q′1y1...Q
′
kyk χ

′ be formulas in
prenex normal form. We want to find a formula ϑ in prenex normal form such that
` (ϕ→ ϕ′)↔ ϑ.

Let u1, ..., un be variables neither occurring in ϕ nor in ϕ′ such that ui = uj
for all i, j ∈ {1, ..., n} with xi = xj . Applying n-times 2.5.5 we see that ` ϕ ↔
Q1u1...Qnun χ(x1/u1)...(xn/un). Hence we may replace χ by χ(x1/u1)...(xn/un)
and xi by ui if necessary and so we may assume that no xi occurs in ϕ′. By applying
the same argument to ϕ′ instead of ϕ we may also assume that no yj occurs in ϕ.

For i ∈ {1, ..., n}, let Q∗i :=

{
∀ if Qi is ∃,
∃ if Qi is ∀.

Let
ϑ := Q∗1x1...Q

∗
nxnQ

′
1y1...Q

′
kyk(χ→ χ′).

By completeness, ` ¬ϕ ↔ Q∗1x1...Q
∗
nxn ¬χ. Since ` (ϕ → ϕ′) ↔ (¬ϕ ∨ ϕ′) we

obtain ` (ϕ→ ϕ′)↔ ϑ from the completeness theorem (keeping in mind that none
of the xi occurs in ϕ′ and none of the yj occurs in ϕ).

Representation of recursive functions in arithmetic 39

3. Representation of recursive functions in arithmetic

3.1. Definition.

(i) A first order language (of predicate logic) is called numerical, if it contains
the constant symbol 0 and the unary function symbol S. For a numerical
language L and n ∈ ω we write Sn(x) for the n-fold substitution of x by S(x)
(so S0(x) = x and Sn+1(x) = S(Sn(x))). Further, we write

n := Sn(0).

So n is a constant term of L (i.e. a term without variables).

Let us fix a numerical language L and a set Σ ⊆ Sen(L) of L -sentences.

(ii) A set R ⊆ ωn is said to be represented in Σ, or Σ-represented, if there is
some ϕ(x1, ..., xn) ∈ Fml(L) such that for all a1, ..., an ∈ ω we have:

R(a1, ..., an)⇒ Σ ` ϕ(a1, ..., an) and

¬R(a1, ..., an)⇒ Σ ` ¬ϕ(a1, ..., an).

In this case we say ϕ represents R in Σ, or R is represented by ϕ in Σ.
Observe that for consistent Σ,
• both implications become equivalences,
• we can in general not replace the second implication by

R(a1, ..., an)⇐ Σ ` ϕ(a1, ..., an).
Also see question 20.

(iii) A function F : ωn −→ ω is called represented in Σ or Σ-representable,
if there is some ϕ(x1, ..., xn, y) ∈ Fml(L) such that for all a1, ..., an ∈ ω we
have:

Σ ` ∀y
(
ϕ(a1, ..., an, y)↔ y

.
= F (a1, ..., an)

)
.

In this case we say ϕ represents F in Σ.

(iv) We say that an L -Term t(x1, ..., xn) represents a function F : ωn −→ ω
in Σ if for all a1, ..., an ∈ ω we have:

Σ ` t(a1, ..., an)
.
= F (a1, ..., an).

Observe that in this case F is represented by t(x1, ..., xn)
.
= y in Σ.

Remark: The intuition here is the following. If Σ and L are finite and R ⊆ ωn

is represented by Σ, then there is an algorithm that decides whether R(a1, ..., an)
holds or not: The algorithm lists all proofs of Σ and responds ’yes’ (and stops)
when a proof of ϕ(a1, ..., an) appears, and responds ’no’ (and stops) when a proof
of ¬ϕ(a1, ..., an) appears. By the Church-Turing thesis, R should be recursive. We
shall prove this in 5.2.10 and in fact this is the strongest argument supporting the
Church-Turing thesis.

The goal in this section is to find a particular finite Σ in a particular finite
language so that all recursive functions and relations are indeed representable by
Σ.

40 Representation of recursive functions in arithmetic

3.2. Lemma. Let L be a numerical language and let Σ ⊆ Sen(L) with Σ ` 1 6= 0.
Then a set R ⊆ ωn is Σ-representable if and only if its characteristic function
1R : ωn −→ ω is Σ-representable.

Proof. First assume that 1R is represented by ϕ(x1, ..., xn, y) in Σ. Then R is
represented by ϕ(x1, ..., xn, 1) in Σ because for a1, ..., an ∈ ω we know that

Σ ` ∀y
(
ϕ(a1, ..., an, y)↔ y

.
= 1R(a1, ..., an)

)
and so

(∗) Σ ` 1
.
= 1R(a1, ..., an)→ ϕ(a1, ..., an, 1) and

(+) Σ ` ¬1
.
= 1R(a1, ..., an)→ ¬ϕ(a1, ..., an, 1).

Hence

R(a1, ..., an)⇒ 1 = 1R(a1, ..., an)⇒ ` 1
.
= 1R(a1, ..., an)

by (∗)⇒ Σ ` ϕ(a1, ..., an, 1)

and

¬R(a1, ..., an)⇒ 0 = 1R(a1, ..., an)⇒ (because Σ ` 1 6= 0)

⇒ Σ ` ¬1
.
= 1R(a1, ..., an)

by (+)⇒ Σ ` ¬ϕ(a1, ..., an, 1).

Conversely, suppose R is represented by ϕ(x1, ..., xn) in Σ. Then 1R is represented
in Σ by

ψ(x1, ..., xn, y) := (ϕ(x1, ..., xn) ∧ y .
= 1) ∨ (¬ϕ(x1, ..., xn) ∧ y .

= 0).

To see this, take a1, ..., an ∈ ω. Using the generalisation theorem (see question 19),
it suffices to show

Σ ` ψ(a1, ..., an, y)↔ y
.
= 1R(a1, ..., an).

Case 1. We have R(a1, ..., an).
As R is represented by ϕ in Σ we know Σ ` ϕ(a1, ..., an). Using Σ ` 1 6= 0 this

implies

Σ ` ψ(a1, ..., an, y)↔ y
.
= 1 and so

Σ ` ψ(a1, ..., an, y)↔ y
.
= 1R(a1, ..., an)

Case 2. We have ¬R(a1, ..., an).
As R is represented by ϕ in Σ we know Σ ` ¬ϕ(a1, ..., an). Using Σ ` 1 6= 0 this

implies

Σ ` ψ(a1, ..., an, y)↔ y
.
= 0 and so

Σ ` ψ(a1, ..., an, y)↔ y
.
= 1R(a1, ..., an)

�

Representation of recursive functions in arithmetic 41

As announced already, we shall now define a set of sentences that represents all
recursive functions. Let Lω be the language

Lω := {+, ·, S,<, 0},
where + and · are binary function symbols, S is a unary function symbol, < is a
binary relation symbol and 0 is a constant symbol.

Further, let ω be the structure (ω,+, ·, S,<, 0) with the natural interpretation
of the non-logical Lω-symbols; where S(n) = n + 1 is the successor function. ω is
called the standard model.

Formally, we should make a notational difference between the operations in ω
and the symbols of Lω denoting them. However, for better readability and in order
to avoid cumbersome formulas we won’t do that.

Let Ω denote the following set of nine Lω-sentences (where we also write Sx
instead of S(x)):

Ω1. ∀x Sx 6= 0 0 is not a successor

Ω2. ∀x∀y Sx .
= Sy → x

.
= y The successor function is injective

Ω3. ∀x x+ 0
.
= x 0 is a right identity w.r.t. +

Ω4. ∀x∀y x+ Sy
.
= S(x+ y) recursive definition of +

from the successor function

Ω5. ∀x x · 0 .
= 0

Ω6. ∀x∀y x · Sy .
= x · y + x recursive definition of · from +

Ω7. ∀x ¬x < 0

Ω8. ∀x∀y x < Sy ↔ x < y ∨ x .
= y recursive definition of the

successor function using <

Ω9. ∀x∀y x < y ∨ x .
= y ∨ y < x Totality of <

The set Ω is called Robinson Arithmetic. Obviously the standard model ω is a
model of Ω. On examples sheet 5 we will see some ’non-standard’ models of Ω.

In order to verify whether a given Lω-formula ϕ logically follows from Ω we need
to check that every model of Ω is a model of ϕ. Since there are bizarre models of
Ω it is hopeless to obtain a good understanding of these models. However, we will
now see that it is correct to think of each model as having the standard model as
a kind of initial building block (see 3.3 below).

First recall that a homomorphism M −→ N between L -structures for an
arbitrary language L is a map f : |M | −→ |N | between the universes of the
structures that respects all non-logical symbols, thus

(i) For every relation symbol R of L of arity n and all a1, ..., an ∈ |M | we have

M |= R[a1, ..., an]⇒ N |= R[f(a1), ..., f(an)]

(ii) For every function symbol F of L of arity n and all a1, ..., an ∈ |M | we have

f(FM (a1, ..., an)) = FN (f(a1), ..., f(an))

(iii) For every constant symbol c of L we have

f(cM) = cN .

42 Representation of recursive functions in arithmetic

A compact way to say the same thing is: f preserves all atomic L -formulas, i.e. If
ϕ(x1, ..., xn) is an atomic L -formula and a1, ..., an ∈ |M | then

M |= ϕ[a1, ..., an]⇒ N |= ϕ[f(a1), ..., f(an)].

Also, recall that an embedding M −→ N between L -structures is a map
f : |M | −→ |N | which respect all quantifier free formulas. Explicitly, this is equiv-
alent to saying that f is an injective homomorphism M −→ N (where injective
just means injective as a map) such that in condition (i) of the definition of a
homomorphism above, we have equivalence.

3.3. Proposition. If M is a model of Ω then there is a unique Lω-homomorphism
ε : ω −→M , given by

ε(n) = nM .

ε is an embedding and has the following properties:

(i) If a ∈ |M | and n ∈ ω with a <M ε(n), then there is some m ∈ ω, m < n with
ε(m) = a.

(ii) If a ∈ |M | is not in the image of ε, then ε(n) <M a for all n ∈ ω.

Proof. Since n is the interpretation of Sn(0) in ω and ε is supposed to respect S,
we must define ε via ε(n) := (Sn(0))M = nM (which implies uniqueness). We first
show that ε is an embedding.

• ε respects S because

ε(Sωn) = ε(n+ 1) = (Sn+10)M = SM ε(n).

• ε is injective:
Otherwise there are n < m in ω with (Sn0)M = (Sm0)M . Then, by induction,

using Ω2 we see that 0M = (Sm−n0)M and this contradicts m− n > 0 and Ω1.

• ε(n+m) = ε(n) +M ε(m) :
If m = 0, this holds true by Ω3. Inductively we see that

ε(n+m+ 1) = ε(S(n+m))

= SM (ε(n+m)) (since ε respects S)

= SM (ε(n) +M ε(m)) (by induction)

= ε(n) +M SM (ε(m)) = ε(n) +M ε(m+ 1). (by Ω4)

• ε(n ·m) = ε(n) ·M ε(m) :
If m = 0, this holds true by Ω5. Inductively we see that

ε(n · (m+ 1)) = ε(n ·m+ n)

= ε(n ·m) +M ε(n) (since ε respects +)

= ε(n) ·M ε(m) +M ε(n) (by induction)

= ε(n) ·M SM ε(m) (by Ω6)

= ε(n) ·M ε(m+ 1).

• n < m ⇐⇒ ε(n) <M ε(m):

Representation of recursive functions in arithmetic 43

If m = 0, this holds true by Ω7. By induction on m we get

n < m+ 1 ⇐⇒ n < m or n = m

⇐⇒ ε(n) <M ε(m) or ε(n) = ε(m) (by induction

and as ε is injective)

⇐⇒ ε(n) <M SM ε(m) (by Ω8)

⇐⇒ ε(n) <M ε(m+ 1).

So we have shown that ε is an embedding ω ↪→M .

(i). For a ∈ |M | and n ∈ ω with a <M ε(n) we need to find some m ∈ ω, m < n
with ε(m) = a.

By induction on n: If n = 0, so then ε(n) = 0M and by Ω7 there is no a ∈ |M |
with a <M ε(n).

Now assume a ∈ |M | with a <M ε(n + 1) = SM ε(n). From the implication →
in Ω8 we know a <M ε(n) or a = ε(n). In the first case we may find m < n + 1
with ε(m) = a using induction; in the second case we take m = n.

(ii) Take a ∈ |M | not in the image of ε and let n ∈ ω. We need to show ε(n) <M a.
Otherwise, using Ω9 we know ε(n) = a, which is not possible by choice of a, or,
a <M ε(n), which contradicts (i) and the choice of a. �

Here is a first application of 3.3:

3.4. Corollary. For every n ∈ ω we have

Ω `
(
x < n+ 1↔ (x

.
= 0 ∨ ... ∨ x .

= n)

)
.

Proof. For every model M of Ω and all a ∈ |M | we know

a < n+ 1M ⇐⇒ (a = 0M or ... or a = nM)

by 3.3. Hence the result follows. �

Of course 3.4 can also be deduced directly from Ω8 und Ω7 by induction on n.

3.5. Representability Theorem
For every language L extending the language Lω, every recursive function ωn −→
ω and every recursive relation ⊆ ωn (n ∈ ω) is represented in all sets of L -formulas
Σ which prove Ω (so Σ ` Ω).

(In 5.2.10 we will prove the converse of the Representability Theorem.)

Proof. The theorem follows from the case Σ = Ω and L = Lω using standard
arguments from predicate logic (make sure you can do this).

By 3.2 it suffices to show that every recursive function is represented in Ω. In
order to do so, we show that the elementary functions from R1 of definition 1.1.1
are represented in Ω and that the rules R2 and R3 of 1.1.1, when fed with functions
that are represented in Ω, return functions that are again represented in Ω.

For later use we shall also keep track of the quantifiers used in the representing
formulas. Note (by observation of the proof of 3.2) that the translations of the
representation of a relation into the representation of the graph of its characteristic
function and vice versa, do not introduce any quantifiers.

44 Representation of recursive functions in arithmetic

3.5.1. Every elementary function from R1 of definition 1.1.1 is represented in Ω
by a quantifier free Lω-formula.

Proof of 3.5.1.

(a) The formula x1
.
= x2 represents the diagonal of ω2 in Ω because for a = b we

obviously have ` a .
= b; further, if a 6= b, then Ω ` ¬ a .

= b because ¬ a .
= b

holds in every model of Ω by 3.3.

(b) The term x1 + x2 represents addition of ω in Ω, because a+ b
.
= a+ b holds

in every model of Ω (cf. 3.3) and so Ω ` a+ b
.
= a+ b.

(c) The term x1 ·x2 represents multiplication of ω in Ω, because a ·b .= a · b holds
in every model of Ω (cf. 3.3) and so Ω ` a · b .= a · b.

(d) The formula x1 < x2 represents the relation {(a, b) ∈ ω2 | a < b} in Ω: If
a < b, then a < b holds in every model of Ω by 3.3, thus Ω ` a < b. Further,
if ¬ a < b, then by 3.3, ¬a < b holds in every model of Ω (here we use that the
map ε in 3.3 is not only an injective homomorphism, but also an embedding),
thus Ω ` ¬a < b.

(e) The function 1≤ is represented in Ω by a quantifier free formula: By (a) and
(d) the relation ≤ of ω is represented in Ω by the formula x1 < x2 ∨ x1

.
= x2

(now we may use 3.2 again, which does not introduce quantifiers).

(f) Obviously, the term xi represents the coordinate function Ini in Ω.

�

3.5.2. Let F : ωn −→ ω and G1, ..., Gn : ωk −→ ω be represented in Ω by the
formulas

ϕ(x1, ..., xn, y), ψi(x1, ..., xk, y) (1 ≤ i ≤ n),

respectively. Then the composition F (G1, ..., Gn) : ωk −→ ω is represented in Ω by

∀y1...yn

(n∧
i=1

ψi(x1, ..., xk, yi) → ϕ(y1, ..., yn, z)

)
and by

∃y1...yn

(n∧
i=1

ψi(x1, ..., xk, yi) ∧ ϕ(y1, ..., yn, z)

)
Proof of 3.5.2. Let us write

γ(x1, ..., xk, z) := ∀y1...yn

(n∧
i=1

ψi(x1, ..., xk, yi) → ϕ(y1, ..., yn, z)

)
and

δ(x1, ..., xk, z) := ∃y1...yn

(n∧
i=1

ψi(x1, ..., xk, yi) ∧ ϕ(y1, ..., yn, z)

)
Pick a1, ..., ak ∈ ω and write a = (a1, ..., ak). We have to show

Ω ` γ(a1, ..., ak, z)↔ z
.
= F (G1(a), ..., Gn(a)) and

Ω ` δ(a1, ..., ak, z)↔ z
.
= F (G1(a), ..., Gn(a)).

It suffices to show that for every model M of Ω and each element τ of the universe
of M the following are equivalent:

(a) M |= γ(a1, ..., ak, z)[τ],

Representation of recursive functions in arithmetic 45

(b) M |= δ(a1, ..., ak, z)[τ] and

(c) τ = F (G1(a), ..., Gn(a))
M

.

We write bi = Gi(a) (1 ≤ i ≤ n). By assumption we have

(∗) Ω ` ψi(a1, ..., ak, yi)↔ yi
.
= Gi(a),

and

(†) Ω ` ϕ(b1, ..., bn, z)↔ z
.
= F (b1, ..., bn).

(a)⇒(b).

We interpret yi as bi
M (1 ≤ i ≤ n) and show that

• M |= ψi(a1, ..., ak, bi) for each i ∈ {1, ..., n} and
• M |= ϕ(b1, ..., bn, z)[τ].

The first item holds, because of M |= Ω and because of the implication ← in (∗).
By assumption (a) and the choice of γ we therefore see M |= ϕ(b1, ..., bn, z)[τ], as
required.

(b)⇒(c).
By (b) there are τ1, .., τn ∈ |M | with

M |=
n∧
i=1

ψi[a1
M , ..., ak

M , τi] and M |= ϕ[τ1, ..., τn, τ].

From the implication → in (∗) and M |= Ω we get τi = Gi(a)
M

= bi
M and so

M |= ϕ(b1, ..., bn, z)[τ]. From the implication→ in (†) we get τ = F (b1, ..., bn)
M

=

F (G1(a), ..., Gn(a))
M

, as required.

(c)⇒(a).
Take any τ1, .., τn ∈ |M | with

M |=
n∧
i=1

ψi[a1
M , ..., ak

M , τi]

From the implication → in (∗) and M |= Ω we get τi = Gi(a)
M

= bi
M again.

As τ = F (G1(a), ..., Gn(a))
M

= F (b1, ..., bn)
M

by assumption (c), the implication

← in (†) together with M |= Ω give M |= ϕ(b1, ..., bn, z)[τ]. This means M |=
ϕ[τ1, ..., τn, τ] as required.

This finishes the proof of 3.5.2. �

3.5.3. Let F : ωn × ω −→ ω be represented by ϕ(x1, ..., xn, u, y) in Ω such that for
each a ∈ ωn there is some b ∈ ω with F (a, b) = 0.

Let G : ωn −→ ω be defined by

G(a) := µx (F (a, x) = 0).

Then G is represented in Ω by the formula

ϕ(x1, ..., xn, z, 0) ∧ ∀u
(
u < z → ¬ϕ(x1, ..., xn, u, 0)

)
.

46 Representation of recursive functions in arithmetic

Proof of 3.5.3. Let us write

ψ(x1, ..., xn, z) := ϕ(x1, ..., xn, z, 0) ∧ ∀u u < z → ¬ϕ(x1, ..., xn, u, 0)

For a1, ..., an ∈ ω we have to show

Ω ` ψ(a1, ..., an, z)↔ z
.
= G(a1, ..., an).

It suffices to show for every model M of Ω and all τ ∈ |M | that

(∗) M |= ψ(a1, ..., an, z)[τ] ⇐⇒ τ = G(a1, ..., an)
M
.

By assumption, we know for all d ∈ ω:

(+) Ω ` ϕ(a1, ..., an, d, y)↔ y
.
= F (a1, ..., an, d)

Let b = G(a1, ..., an). By definition of G, b is the smallest zero of F (a, x) and from
the implication ← in (+) we know

(†) M |= ϕ(a1, ..., an, b, 0).

Now we prove the equivalence (∗).
⇐: So here τ = bM and by (†) we have M |= ϕ(a1, ..., an, z, 0)[τ]. It remains to

show that for every ρ ∈ |M | with ρ <M τ we have M |= ¬ϕ(a1, ..., an, u, 0)[ρ].

As τ = bM and M |= Ω, we may apply 3.4 and get some c ∈ ω, c < b with
ρ = cM . By choice of b, we know F (a, c) 6= 0. From the implication → in (+) (by
setting y = 0 and choosing d = c) we then get Ω ` ¬ϕ(a1, ..., an, c, 0).

Consequently, M |= ¬ϕ(a1, ..., an, u, 0)[ρ] as required.

⇒: Now suppose M |= ψ(a1, ..., an, z)[τ]. Then M |= ϕ(a1, ..., an, z, 0)[τ] and by

(†) we cannot have bM <M τ .

So in order to confirm τ = G(a1, ..., an)
M

= bM we may use Ω9 and show that

τ <M bM does not hold either:
Suppose we have τ <M bM . Then by 3.4, there is some c ∈ ω, c < b with τ = cM .

From the implication → in (+) (with c = d and y = 0) and M |= ϕ(a1, ..., an, c, 0)
we then obtain F (a, c) = 0, which contradicts the minimality of b.

This finishes the proof of 3.5.3. �

Using 3.5.1, 3.5.2 and 3.5.3, it is now clear that every recursive function is rep-
resented in Ω, which finishes the proof of 3.5. �

Arithmetisation of Logic: Gödelisation 47

4. Arithmetisation of Logic: Gödelisation

In this section we fix a finite or countable language

L = (λ : R −→ N, µ : F −→ N,C).

Recall that the cardinality of a language is the cardinality of the union R∪F ∪C of
its non-logical symbols. Also, recall that the alphabet of L is the set of all logical
and non-logical symbols.

Further, we assume that L is given recursively. This means the following: We are
given an injective map

[.] : Alphabet of L −→ ω

such that:

(0) [vi] = 2i for i ∈ ω, in particular [Vbl] = {2i | i ∈ ω}.
(1) The sets [F] = {[F] | F ∈ F}, [R] = {[R] | R ∈ R} and [C] = {[c] | c ∈ C }

are recursive.

(2) The maps [λ] : [R] −→ ω, [µ] : [F] −→ ω defined by [λ]([R]) = λ(R) and
[µ]([F]) = µ(F) are recursive (i.e., have recursive graphs) and have recursive
image.

If l is a letter of the alphabet of L , then [l] is called the symbol number of l.

Intuitively one should think of R, F and C as being equal to [R], [F] and [C]. If
L is finite (which is a major case later on), then conditions (1) and (2) are always
satisfied, because all finite sets are in fact primitive recursive. Also, there is nothing
special about the symbol numbers assigned to the variables, as long as they form a
recursive subset of ω.

4.1. Definition. The Gödel number ptq (or just code) of an L -term t is defined
by induction as the following sequence number:

ptq :=

{
≺ [t] � if t is a variable or a constant symbol

≺ [F], pt1q, ..., ptnq � if t = F (t1, ..., tn) (and so µ(F) = n).

Notice that this indeed is well defined by the unique readability theorem for terms,
see 2.1.5.
Hence we have

(pF (t1, ..., tn)q)i+1 = ptiq (1 ≤ i ≤ n).

The Gödel number pϕq (or just code) of an L -formula ϕ is defined inductively
as the following sequence number:

pϕq :=



≺ [
.
=], pt1q, pt2q � if ϕ is of the form t1

.
= t2

≺ [R], pt1q, ..., ptnq � if ϕ is of the form R(t1, ..., tn)

≺ [¬], pψq � if ϕ is of the form ¬ψ
≺ [→], pϕ1q, pϕ2q � if ϕ is of the form ϕ1 → ϕ2

≺ [∀], pxq, pψq � if ϕ is of the form ∀x ψ

48 Arithmetisation of Logic: Gödelisation

Again, this is well defined by the unique readability theorem for formulas, see 2.1.9.

For any set S of L -terms and L -formulas we write

pSq := {psq | s ∈ S}.

It should be noted that brackets and commas (which are present in our version of
predicate logic) are not coded above: We don’t need to do that, because we can
uniquely reconstruct terms and formulas from their Gödel number: By a trivial
induction on the complexity of terms and formulas we can see directly from the
definition of ptq and pϕq that the map s 7→ psq (defined where p q is defined) is
injective. Less trivial is the fact that the image is recursive. This is tackled next.

In what follows, remember the following properties of sequence numbers:

(i) (See 1.4.2(ii)) For each n ∈ ω and all a0, ..., an ∈ ω we have

(≺ a1, ..., an �)i = ai < ≺ a1, ..., an � for 1 ≤ i ≤ n and

(≺ a0, ..., an−1 �)i+1 = ai < ≺ a0, ..., an−1 � for i < n.

(ii) The function ≺ x1, ..., xn �: ωn −→ ω is recursive (see 1.4.1).
(iii) If R ⊆ ωn is recursive, then also the set

≺ R �:= {≺ a1, ..., an � | R(a1, ..., an)}
is recursive, because x ∈≺ R � ⇐⇒ Seq(x)∧ `(x) = n∧R((x)1, ..., (x)n) and
Seq(x) is recursive by 1.4.2(v).

For example, by (iii) we know that pC q =≺ [C] � and pVblq =≺ 2ω � are
recursive.

4.2. Lemma. The following subsets of ω are recursive: ptm(L)q, pat-Fml(L)q
(recall that at-Fml(L) is the set of atomic L -formulas) and pFml(L)q.

Proof. We already know that pVblq and pC q are recursive.

ptm(L)q is recursive:

To see this we first formalize the inductive definition of ptq, for L -terms t into

x ∈ ptm(L)q ⇐⇒ x ∈ pVblq ∨ x ∈ pC q ∨
(

Seq(x) ∧ (x)1 ∈ [F]∧

there is some n < x with [µ]((x)1) = n ∧ `(x) = n+ 1,

such that for all 1 ≤ i ≤ n we have (x)i+1 ∈ ptm(L)q

)
The formulation ”there is some n < x with ...” is chosen to make the statement
more readable and keep it closer to the definition of terms and their Gödel numbers.
We could have also said

x ∈ ptm(L)q ⇐⇒ x ∈ pVblq ∨ x ∈ pC q ∨
(

Seq(x) ∧ (x)1 ∈ [F]∧

[µ]((x)1) = `(x)�1∧

for all 1 ≤ i ≤ `(x)�1 we have (x)i+1 ∈ ptm(L)q

)
We stick with the first equivalence and may now use 1.4.5 to show that ptm(L)q

Arithmetisation of Logic: Gödelisation 49

is recursive, by applying it with F (x) = 1ptm(L)q(x) and

G(x, v) =



1 if x ∈ pVblq ∨ x ∈ pC q ∨
(

Seq(x) ∧ (x)1 ∈ [F]∧

∃n < x : ([µ]((x)1) = n ∧ `(x) = n+ 1∧

∀1 ≤ i ≤ n : (v)(x)i+1+1 = 1)

)
0 otherwise.

From the results in section 1 we know that G is indeed recursive and by 1.4.5 it
remains to show that

(∗) 1ptm(L)q(x) = G(x,1ptm(L)q(x)) = G(x,≺ 1ptm(L)q(0), ...,1ptm(L)q(x−1) �).

Take a term t = F (t1, ..., tn) and let x = ptq =≺ [F], pt1q, ..., ptnq �. Then n < x
and ptiq = (x)i+1 < x for all 1 ≤ i ≤ n. Thus

1ptm(L)q((x)i+1) = 1 and (x)i+1 < x.

Now we set v = 1ptm(L)q(x) =≺ 1ptm(L)q(0), ...,1ptm(L)q(x− 1) �.

Since 1ptm(L)q((x)i+1) occurs at the (x)i+1 + 1th position in

(1ptm(L)q(0), ...,1ptm(L)q(x− 1)),

we see that

(v)(x)i+1+1 = 1ptm(L)q((x)i+1) = 1.

This shows G(x,1ptm(L)q(x)) = G(x, v) = 1. Conversely, if x is not the Gödel

number of a term, the considerations above show that G(x,1ptm(L)q(x)) = 0.

pat-Fml(L)q is recursive:

The set

A := {pR(t1, ..., tn)q | n ∈ N, t1, ..., tn ∈ tm(L), R ∈ R, λ(R) = n}

is recursive, because

x ∈ A ⇐⇒ Seq(x) ∧ (x)1 ∈ [R] ∧

∃n < x :

(
[λ]((x)1) = n, `(x) = n+ 1 ∧

∀1 ≤ i ≤ n : (x)i+1 ∈ ptm(L)q

)
.

and the conditions on the right hand side of this equivalence are all recursive.
The set

B = {pt1
.
= t2q | t1, t2 ∈ tm(L)}

is recursive, because

x ∈ B ⇐⇒ Seq(x) ∧ `(x) = 3 ∧ (x)1 = [
.
=] ∧ (x)2, (x)3 ∈ ptm(L)q.

Consequently, also pat-Fml(L)q = A ∪B is recursive.

50 Arithmetisation of Logic: Gödelisation

pFml(L)q is recursive:

We apply the same strategy as in the proof of the recursiveness of ptm(L)q.
First let us formalize the recursive definition of pFml(L)q:

x ∈ pFml(L)q⇔


(x)2 ∈ pFml(L)q if x =≺ [¬], (x)2 �
(x)2, (x)3 ∈ pFml(L)q if x =≺ [→], (x)2, (x)3 �
(x)2 ∈ pVblq ∧ (x)3 ∈ pFml(L)q if x =≺ [∀], (x)2, (x)3 �
x ∈ pat-Fml(L)q otherwise.

Again we aim at applying 1.4.5 with F (x) = 1pFml(L)q(x) and

G(x, v) =



1 if x =≺ [¬], (x)2 � and (v)(x)2+1 = 1

1 if x =≺ [→], (x)2, (x)3 � and (v)(x)2+1 = (v)(x)3+1 = 1

1 if x =≺ [∀], (x)2, (x)3 � and (x)2 ∈ pVblq and (v)(x)3+1 = 1

1 if x ∈ pat-Fml(L)q

0 otherwise.

Similar to the proof of (∗) above, we see that

1pFml(L)q(x) = G(x,1pFml(L)q(x))

and 1.4.5 gives the assertion. �

4.3. Lemma. The function Sub : ω3 −→ ω, defined by induction on a via

Sub(a, b, c) :=

=



c if a ∈ pVblq and a = b

≺ (a)1,Sub((a)2, b, c), ...,Sub((a)n, b, c) � if a =≺ (a)1, ..., (a)n � with

n = `(a) > 1 and (a)1 6= [∀]
≺ [∀], (a)2,Sub((a)3, b, c) � if a =≺ (a)1, (a)2, (a)3 �,

(a)1 = [∀] and (a)2 6= b

a otherwise

is recursive and codes the substitution of free variables in terms and formulas by
other terms. This means, Sub satisfies

(†) Sub(pt′q, pxq, ptq) = pt′(x/t)q and Sub(pϕq, pxq, ptq) = pϕ(x/t)q

for all ϕ ∈ Fml(L), t, t′ ∈ tm(L) and x ∈ Vbl. Recall that ϕ(x/t) is a formula,
even if x is free in ϕ and not free for t in ϕ (i.e. if x occurs free at a position in
ϕ that is in the scope of a variable that occurs in t).

Remark: The second case in the definition of Sub covers all steps in the construc-
tions of terms and formulas of the form F (t1, ..., tn), t1

.
= t2, R(t1, ..., tn), ¬ϕ and

ϕ→ ψ. The case of quantifiers ∀x ϕ is covered in the third and fourth case of the
definition of Sub.

Proof. By induction on the complexity of terms and formulas we see directly from
the definitions that Sub satisfies the identities in (†). To see that Sub is recursive

Arithmetisation of Logic: Gödelisation 51

we use 1.4.5 with F = Sub and G(a, b, c, v) :=

c if a ∈ pVblq and a = b

≺ (a)1, (v)(a)2+1, ..., (v)(a)n+1 � if a =≺ (a)1, ..., (a)n � with n = `(a) > 1

and (a)1 6= [∀]
≺ [∀], (a)2, (v)(a)3+1 � if a =≺ (a)1, (a)2, (a)3 �,

(a)1 = [∀] and (a)2 6= b

a otherwise

Here, ≺ (a)1, (v)(a)2+1, ..., (v)(a)n+1 � stands for

µx

(
Seq(x) ∧ `(x) > 1 ∧ (x)1 = (a)1 ∧ ∀ 2 ≤ i ≤ `(x) : (x)i = (v)(a)i+1

)
.

Also, note that the condition

a =≺ (a)1, ..., (a)n � with n = `(a) > 1 and (a)1 6= [∀]
is just another way of saying

Seq(a) ∧ `(a) > 1 ∧ (a)1 6= [∀].
It is straightforward to see that for a, b, c ∈ ω with v =≺ Sub(0, b, c), ...,Sub(a −
1, b, c) � we have

Sub(a, b, c) = G(a, b, c, v).

�

4.4. Lemma. The following relations of ω are recursive:

(i) FR := {(pϕq, pxq) | ϕ ∈ Fml(L) and x ∈ Frϕ}.
(ii) FRSUB := {(pϕq, pxq, ptq) | ϕ ∈ Fml(L), t ∈ tm(L), x free for t in ϕ}.

(iii) AX := {pϕq | ϕ ∈ Fml(L) is an axiom of L }, see definition 2.3.1.

(iv) MP := {(pϕ1q, pϕ1 → ϕ2q, pϕ2q) | ϕ1, ϕ2 ∈ Fml(L)}.
(v) pSen(L)q.

Proof. Exercise. This is proved with the same strategy as the claims in 4.2 and 4.3
are proved:

First write out in detail the ordinary definition of the ”uncoded” objects (e.g. in
(i), write out what it means that x is free in ϕ) using an inductive definition. Then
translate this inductive definition into a recursive definition of Gödel numbers. �

52 Arithmetisation of Logic: Gödelisation

5. Undecidability and incompleteness

Unless stated otherwise, we continue to work with a recursive language L as ex-
plained at the beginning of section 4.

5.1. Recursively axiomatizable and decidable theories.

The results of section 4 put us in a position to formalize various questions on
theories and structures from the beginning of our course. For example the question
whether a given L -structure M has a computable theory: This is grounded as the
question on whether the set of all pϕq with M |= ϕ is a recursive subset of ω. Or,
we can ask whether a computer program can list all sentences that are true in all
groups (which is intuitively true).

5.1.1. Definition. Let Σ ⊆ Fml(L). We call Σ recursive, if pΣq is a recursive
subset of ω. We call Σ recursively enumerable, if pΣq is a recursively enumerable
subset of ω.

It should be noticed that for ϕ ∈ Fml(L) we have

ϕ ∈ Σ ⇐⇒ pϕq ∈ pΣq,

since the coding process is injective on the set of formulas; also see the remark after
4.1.

5.1.2. Definition. Let Σ ⊆ Fml(L). We define

ProofΣ := {≺ pϕ1q, ..., pϕnq � | n ∈ N and (ϕ1, ..., ϕn) is a proof from Σ}.

(cf. 2.3.2). The sequence number ≺ pϕ1q, ..., pϕnq � is called the proof number
of the proof (ϕ1, ..., ϕn).

Hence for a ∈ ω we have

ProofΣ(a) ⇐⇒ a is the proof number of a proof from Σ.

5.1.3. Proposition. If Σ ⊆ Fml(L) is recursive, then also ProofΣ is recursive.

Proof. For every a ∈ ω we have

ProofΣ(a) ⇐⇒ Seq(a) ∧ `(a) 6= 0 ∧ ∀ 1 ≤ k ≤ `(a)

(
((a)k ∈ pΣq ∪AX) ∨ ∃1 ≤ i, j < k : MP((a)i, (a)j , (a)k)

)
By 4.4 we get the assertion �

Recursively axiomatizable and decidable theories 53

5.1.4. Definition. The deductive closure Ded(Σ) of a set Σ of L -sentences is
defined as

Ded(Σ) = {ϕ ∈ Sen(L) | Σ ` ϕ}.
Σ is called deductively closed if Σ = Ded(Σ). Further, an L -theory T in
this course is defined to be a consistent and deductively closed set of L -sentences
(so T ` ϕ ⇒ ϕ ∈ T for all ϕ ∈ Sen(L)). 3 A complete theory is a maximally
consistent set of L -sentences. Convince yourself (the argument is actually identical
to the one in propositional logic) that every complete theory is deductively closed,
hence is also a theory in our sense. By the completeness theorem, complete theories
are exactly the theories of L -structures, i.e., those subsets of L -sentences of the
form Th(M) = {ϕ ∈ Sen(L) | M |= ϕ}, for some L -structure M ; so here Th(M)
is called the theory of M .

5.1.5. Definition. Let T be an L -theory. Every subset Σ of T with T = Ded(Σ)
is called an axiom system of T . T is called recursively axiomatizable if it has
a recursive axiom system.

A consistent set Σ of L -sentences is called decidable if Ded(Σ) is recursive, oth-
erwise Σ is called undecidable. Hence the theory T is decidable, if T is recursive,
otherwise T is undecidable.

The next two theorems give main tools to detect decidable (and complete) theories.

5.1.6. Theorem. The following are equivalent for every L -theory T :

(i) T is recursively axiomatizable.

(ii) T is recursively enumerable.

(iii) T has a recursively enumerable axiom system.

Proof.

(i)⇒(ii). Take Σ ⊆ T recursive such that T = Ded(Σ). Then for a ∈ ω we have

a ∈ pDed(Σ)q ⇐⇒ ∃x
(

ProofΣ(x) ∧ a = (x)`(x) ∧ a ∈ pSen(L)q

)
.

By 5.1.3, ProofΣ(x) is recursive and by 4.4, pSen(L)q is recursive. Since also
(x)`(x) is recursive, we see that pTq = pDed(Σ)q is the projection of a recursive set
and so it is recursively enumerable.

(ii)⇒(iii) is trivial.

(iii)⇒(i). Let Σ ⊆ T be recursively enumerable such that T = Ded(Σ).
By 1.5.3 there is a recursive function f : ω −→ ω with image pΣq. For n ∈ ω let

σn ∈ Σ be the sentence with

f(n) = pσnq.

Let

γn = σ0 ∧ σ1 ∧ ... ∧ σn
We define a new function F : ω −→ ω by

F (n) = pγnq.

3Notice that the definition of what is a theory varies in the logic literature. We take the
definition that is most suitable for our purposes.

54 Undecidability and incompleteness

and check that F is recursive: obviously, there is a recursive function c : ω2 −→ ω
such that for all ϕ,ψ ∈ Fml(L) we have

c(pϕq, pψq) = pϕ ∧ ψq.
Since F (0) = f(0) and

F (n+ 1) = c(f(n+ 1), F (n)),

we see that F is recursive.

Define a function h : ω −→ ω by

h(n) = F (µx

(
∀i < n : h(i) < F (x)

)
).

Then h is recursive (from recursion on previous values) and strictly increasing whose
image is contained in F (ω). Hence by question 13, the image X of h is an infinite
recursive subset of F (ω).

We define
Γ := {γn | n ∈ X}.

Then pΓq = X and so Γ is recursive. Since X is infinite and contained in F (ω),
the choice of the γn obviously implies T = Ded Σ = Ded Γ. Hence Γ is a recursive
axiom system of T , which proves (i). �

5.1.7. Theorem. Every complete and recursively axiomatisable theory is decidable.

Proof. Let T be our theory and let Σ ⊆ T be recursive with T = Ded(Σ). By 5.1.6,
pTq is recursively enumerable and by the Negation Theorem 1.5.2 from Recursion
theory it suffices to show that also ω \ pTq is recursively enumerable.

For a ∈ ω we have

(∗) a 6∈ pTq ⇐⇒ a 6∈ pSen(L)q∨ ≺ [¬], a �∈ pTq,
because T is complete and for ϕ ∈ Sen(L) with a = pϕq we have p¬ϕq =≺
[¬], pϕq �.

Since T is recursively enumerable it is straightforward to see that also the set
X = {a ∈ ω | ≺ [¬], a �∈ pTq} is recursively enumerable.

Consequently ω\pTq is the union of two recursive enumerable sets ω\pSen(L)q
and X. However, the union of two recursively enumerable set is readily seen to be
recursively enumerable itself. �

5.1.8. Examples. To see how 5.1.6 and 5.1.7 work together we do two examples.
This is not needed later on and we refer to some easy facts from model theory.

(1) If L is the language {<} of orders and T is the theory of dense linear orders
without endpoints, then T is decidable. T is defined as the deductive closure
of the set Σ consisting of the following L -sentences:
• ∀x ¬x < x
• ∀xyz (x < y < z → x < z)
• ∀xy (x < y ∨ x = y ∨ y < x)
• ∀x∃yz y < x < z
• ∀xy x < y → ∃z x < z < y.

So T is recursively axiomatised, since Σ is finite. Using basic model theory it
is not difficult to show that T is indeed complete. So by 5.1.7, T is decidable.

Recursively axiomatizable and decidable theories 55

(2) The theory T of infinite sets in the empty language is decidable. This theory
has a recursively enumerable axiom system: Take all the sentences

∃x1...xn
∧

1≤i 6=j≤n

xi 6= xj .

(This set is indeed recursive, but by 5.1.6 we only need to check that it is
recursively enumerable).

Again, basic model theory shows that this theory is complete. So by 5.1.7,
T is decidable.

56 Undecidability and incompleteness

5.2. The first incompleteness theorem.

In this subsection we continue to work with a countable recursive language L , but
now we are assuming that L extends Lω.

5.2.1. Lemma. The function

Num : ω −→ ω defined by Num(a) = paq

(recall that a = Sa0) is recursive.

Proof. We have Num(0) = p0q and Num(a+ 1) =≺ [S],Num(a) �.
Now apply 1.3.3 with H(b) =≺ [S], b � and initial value p0q. �

5.2.2. Definition. Let Σ ⊆ Sen(L). We fix a variable w and define PΣ ⊆ ω2 by

PΣ(a, b) ⇐⇒ Sub(a, pwq,Num b) ∈ pDed Σq.

Hence for each L -formula ϕ(w) we have:

PΣ(pϕq, b) ⇐⇒ Σ ` ϕ(w/b),

because from 4.3 we know Sub(pϕq, pwq,Num b) = pϕ(w/b)q and
pϕ(w/b)q ∈ pDed Σq means Σ ` ϕ(b).

So PΣ(a, b) is intended to say that Σ proves the formula that is coded by a when
tested at b.

5.2.3. Proposition. If Σ ⊆ Sen(L) such that Σ ∪ Ω is consistent, then every
recursive subset of ω is of the form

PΣ(a) := {b ∈ ω | PΣ(a, b)}

for some a ∈ ω.

Proof. Let X ⊆ ω be recursive. From the representability theorem 3.5 we know
that X is represented in Σ ∪ Ω by some formula ϕ(w). Hence for each b ∈ ω we
have

X(b)⇒ Σ ∪Ω ` ϕ(b) and

¬X(b)⇒ Σ ∪Ω ` ¬ϕ(b).

Let
∧

Ω be the conjunction of the nine sentences from Ω. Since Σ∪Ω is consistent,
we get for all b ∈ ω that

X(b) ⇐⇒ Σ ∪ {
∧

Ω} ` ϕ(b).

Now this is the same as saying that for all b ∈ ω

X(b) ⇐⇒ Σ `
∧

Ω→ ϕ(b).

So if we take a = p
∧

Ω→ ϕq, then we have for each b ∈ ω:

X(b) ⇐⇒ Σ `
∧

Ω→ ϕ(b) ⇐⇒ PΣ(a, b),

i.e. X = PΣ(a). �

The first incompleteness theorem 57

We will now apply the Cantor anti-diagonal argument to PΣ. Let us first isolate

5.2.4. Cantor’s Anti-diagonal lemma
Let M be any set and let P ⊆M ×M . For a ∈M let P (a) ⊆M be defined by

P (a) := {b ∈M | P (a, b)}.
Thus, P (a) can be thought of the “the fibre of P above a” and we have

P (a)(b) ⇐⇒ P (a, b).

Let Q ⊆M be the anti-diagonal of P , i.e.

Q(b) ⇐⇒ ¬P (b, b) (b ∈M).

Then Q is not of the form P (a) for any a ∈M .

Proof. Suppose Q is P (a) for some a ∈M . Then for each b ∈M we have

P (a, b) ⇐⇒ P (a)(b) ⇐⇒ Q(b) ⇐⇒ ¬P (b, b).

But this is not possible for b = a. �

Remark: This is essentially the argument of the proof that no function f : M −→
P(M) (the powerset of M) is surjective: define P (a, b) ⇐⇒ b ∈ f(a) for a, b ∈M ;
then P (a) is the set f(a), and so by 5.2.4, the subset Q of M of all b ∈ M with
b 6∈ f(b) is not of the form f(a) for any a ∈M .

5.2.5. Church’s Theorem (Alonso Church, 1936)
If T is an L -theory such that T ∪Ω is consistent, then T is undecidable.

Proof. Suppose T is decidable. Then pTq = pDedTq is recursive and by definition
of PT , also PT is recursive.

Let Q ⊆ ω be the anti-diagonal of PT . Q is recursive since for b ∈ ω we have

Q(b) ⇐⇒ ¬PT (b, b).

By 5.2.3, there is some a ∈ ω with Q = PT (a). But this contradicts Cantor’s
anti-diagonal lemma 5.2.4. �

If b = pϕ(w)q for some L -formula ϕ(w), then the predicate Q(b) in the proof
above, says that ϕ(b) cannot be proved in T .

5.2.6. Gödel’s First Incompleteness Theorem (1931, see [Goedel31])
No recursively axiomatizable L -theory containing Ω is complete.

Proof. Otherwise, by 5.1.7 the theory would also be decidable, in contradiction to
5.2.5. �

Let us have a look at a prominent example.

5.2.7. Definition. (First order Peano arithmetic)
Let PA be the set Ω together with all the induction statements of Lω-formulas
in one variable, i.e. all sentences of the form

∀x
((

ϕ(x, 0) ∧ ∀y (ϕ(x, y)→ ϕ(x, Sy))

)
→ ∀y ϕ(x, y)

)
,

where ϕ(x, y) is an Lω-formula with Frϕ ⊆ {x1, ..., xn, y}, x := (x1, ..., xn).

PA is called Peano Arithmetic and is the widely accepted axiom system of
number theory.

58 Undecidability and incompleteness

Obviously ω is a model of PA. The axiom system PA is incredibly strong (in par-
ticular compared to Ω), and before Gödel there was hope that all number theoretic
statements were derivable from PA.

The set PA is recursive, because an integer n ∈ ω is a code of an induction statement
if and only if there is some k ≤ n such that k is the code of a formula ϕ(x, y) as in
5.2.7 and n is the code of the induction statement built from ϕ.

5.2.8. Corollary. The set of Lω-sentences, provable in PA is not complete.

Proof. Since PA is recursive, Gödel’s First Incompleteness Theorem 5.2.6 applies.
�

Here is another direct consequence of Church’s theorem

5.2.9. Corollary. No Lω-theory that is satisfied by ω is decidable. In particular
Ded(∅), the set of all absolutely true Lω-sentences is undecidable.

Proof. By 5.2.5, as all these theories are consistent with Ω. �

We now also have a first example of a recursively enumerable set that is not recur-
sive. Corollary 5.2.9 says that the subset pDed(∅)q of ω has this property. A more
explicit version of such a set will be constructed in 7.3.3.

The Church-Turing thesis revisited

After the statements above one might be tempted to go back to the very begin-
ning and question whether our incarnation of ”computable” as recursive should be
reconsidered. However, a strong argument supporting the Church-Turing thesis is
the converse of the representability theorem 3.5:

5.2.10. Converse of the representability theorem
Let T be a recursively axiomatised L -theory containing Robinson Arithmetic. Then
every function and every relation represented in T is recursive.

Proof. Let Σ be a recursive axiom system of T . By 3.2 it suffices to do the case of
functions. So let F : ωn −→ ω and let ϕ(x1, ..., xn, y) be an L -formula such that
for all a1, ..., an ∈ ω we have:

Σ ` ∀y
(
ϕ(a1, ..., an, y)↔ y

.
= F (a1, ..., an)

)
.

Then

(∗) F (a1, ..., an) is the unique b ∈ ω with Σ ` ϕ(a1, ..., an, b).

We first need to code replacement of variables by several constant terms in a
recursive way. This is just an iteration of the function Sub from 4.3. That
is: there is a recursive function Subk : ω × ωk × ωk −→ ω such that for all
ψ(z, x1, ..., xk, y1, ..., yk) ∈ Fml(L) and all constant terms t1, ..., tk we have

Subk(pψq, px1q, ..., pxkq, pt1q, ..., ptkq) = pϕ(x1/t1, ..., xk/tk)q.

In particular, the function ωn+1 −→ ω that maps (a1, ..., an, b) to

pϕ(a1, ..., an, b)q

is recursive.

The first incompleteness theorem 59

We define a function H : ωn −→ ω by

H(a1, ..., an) = µz

(
Seq(z) ∧ `(z) = 2 ∧ ProofΣ((z)2)∧

((z)2)`((z)2) = pϕ(a1, ..., an, (z)1)q

)
.

So H(a1, ..., an) is the smallest sequence number of a sequence (z1, z2) such that
z2 is the proof number of a proof from Σ that ends with ϕ(a1, ..., an, z1); observe
that by (∗) there is actually such a sequence number. Further, by (∗), the number
z1 then has to be F (a1, ..., an) and so

F (a1, ..., an) = (H(a1, ..., an))1.

The function H is recursive, since (a1, ..., an, b) 7→ pϕ(a1, ..., an, b)q is recursive,
and so F is recursive, too. �

60 Undecidability and incompleteness

5.3. Undecidable sentences.

5.3.1. Definition. Let L be an arbitrary language and let M be an L -structure.
A subset X of |M |n is called definable in M , if there is an L -formula ϕ(x1, ..., xn)
such that

X = {(a1, ..., an) ∈ |M |n | M |= ϕ[a1, ..., an]}.
We also write ϕ[M n] for the set on the right hand side and ϕ[M], if n is clear from
the context.

A function F : X −→ |M |k is called definable in M , if the graph of F (a subset
of |M |n × |M |k) is definable in M ; observe that in this case also X is definable in
M , because X is the projection of the graph of F to |M |n

The subsets of ωn that are definable in ω (so here the language is Lω) are
sometimes called arithmetic sets.

5.3.2. Proposition.

(i) If X ⊆ ωn is represented by the formula ϕ in Ω, then X is defined by ϕ in ω.
(ii) Every recursively enumerable subset X of ωn is definable in ω.

Proof. (i) By definition we have for all a1, ..., an ∈ ω:

X(a1, ..., an)⇒ Ω ` ϕ(a1, ..., an) and

¬X(a1, ..., an)⇒ Ω ` ¬ϕ(a1, ..., an).

Since ω |= Ω we obtain

X(a1, ..., an)⇒ ω |= ϕ(a1, ..., an) and

¬X(a1, ..., an)⇒ ω |= ¬ϕ(a1, ..., an).

Thus X is defined in ω by ϕ.

(ii) By definition, every recursively enumerable subset X of ωn is the projection
of a recursive subset X ′ of ωn+1. Since recursive sets are representable in Ω, we
know from (i) that X ′ is definable in ω by some formula ϕ(x1, ..., xn, y). Then X
is definable in ω by

∃y ϕ.
�

In 7.2.3 we shall prove a significant strengthening of 5.3.2(ii).

We return to our general assumption and work with a recursive
language L extending Lω.

5.3.3. Fixed Point Lemma
Let ϕ(w) be an L -formula. Then there is some L -sentence ψ such that

Ω ` ψ ↔ ϕ(w/ pψq).

So, the truth of ψ in a model of Ω can be tested in that model by evaluating ϕ(w)
at the (numeral of the) Gödel number of ψ.

Proof. Let F : ω −→ ω be defined by

F (x) = Sub(x, pwq,Num(x)).

Recall that
Sub(pδq, pwq,Num(a)) = pδ(a)q

Undecidable sentences 61

for all δ(w) ∈ Fml(L) and all a ∈ ω. Hence for a = pδq we get

(∗) F (pδq) = Sub(pδq, pwq,Num(pδq)) = pδ(pδq)q

The intuition now is to think of F as a function symbol in the language L . Then
ϕ(F (w)) is an L -formula, call it δ(w). Then with

k = pδq = pϕ(F (w))q and ψ = ϕ(F (k)) = δ(pδq),

condition (∗) says

F (k) = F (pδq) = pδ(pδq)q = pϕ(F (k))q = pψq.

Now observe that

ψ = ϕ(F (k)) = ϕ(pψq) (ignoring that we don’t know F (k) = F (k))

which gives the assertion.

Let us work this out in detail. The function F : ω −→ ω is indeed close to being
a function symbol (at least for our purposes), because F is recursive: Hence F is
represented in Ω by a formula γ(w, y), i.e. for all a ∈ ω we have

(†) Ω ` γ(a, y)↔ y
.
= F (a).

Now the idea of considering ϕ(F (w)) is rigorously implemented by taking the for-
mula ϕF (w) defined as

∃y (γ(w, y) ∧ ϕ(y))

Following the idea we define

k = pϕF (w)q and ψ = ϕF (k).

Again, (∗) says F (k) = pψq. By (†) for a = k we know that

Ω ` γ(k, y)←→ y
.
= F (k).

Consequently

Ω ` ∃y (γ(k, y) ∧ ϕ(y))︸ ︷︷ ︸
=ψ

←→ ∃y (y
.
= F (k) ∧ ϕ(y)).

On the other hand we obviously have

Ω ` ∃y (y
.
= F (k) ∧ ϕ(y))←→

=ϕ(pψq)︷ ︸︸ ︷
ϕ(F (k)) ,

proving the assertion. �

The name Fixed Point Lemma comes from the following consideration. Given an
L -formula ϕ(w) we have a map

Φ : Sen(L) −→ Sen(L); ψ 7→ ϕ(pψq).

If we identify sentences that are provably equivalent w.r.t. Ω, then the Fixed Point
Lemma says that this map has a fixed point (although, note that Φ does not induce
a map from the equivalence classes to the equivalence classes).

Also observe from the proof of the Fixed Point Lemma that ψ can be explicitly
constructed from ϕ.

The Fixed Point Lemma 5.3.3 is also called Lemma of self-reference in the
literature.

62 Undecidability and incompleteness

We have two beautiful applications of the Fixed Point Lemma right away. More
will be seen later.

5.3.4. Tarski’s Undefinability of Truth

The set of Gödel numbers of Lω-sentences that are true in ω is not definable in ω.

Proof. Let X = {pγq | ω |= γ} be the set in question and suppose X were definable
in ω. Then also ω \X is definable in ω by some formula ϕ (in one free variable).

By the Fixed Point Lemma, there is a sentence ψ with

(∗) Ω ` ψ ↔ ϕ(pψq).

Now take n = pψq. Since ω |= Ω we know from (∗) that ω |= ψ ⇐⇒ ω |= ϕ[n].
By choice of ϕ, ω |= ϕ[n] is equivalent to ω |= ¬ψ. So

ω |= ψ ⇐⇒ ω |= ϕ[n] ⇐⇒ ω |= ¬ψ,

a contradiction. �

For a given recursive (and consistent) subset of Th(ω) we shall now explicitly con-
struct a sentence that is independent of Σ (i.e. neither the sentence nor its negation
is provable in Σ). For Σ ⊆ Fml(L) let

IsProofOfΣ

be the set of all (a, b) ∈ ω2 such that ProofΣ∪Ω(a) and (a)`(a) = b. We also write
a IsProofOfΣ b instead of IsProofOfΣ(a, b). Then

a IsProofOfΣ b ⇐⇒ b is the Gödel number of a formula and

a is the proof number of a proof of that formula from Σ ∪Ω

If Σ is recursive, then IsProofOfΣ is also recursive and so IsProofOfΣ is repre-
sented by an Lω-formula in Ω. We write IsProofOfΣ(x, y) for such a formula.

Obviously IsProofOfΣ = IsProofOfΣ∪Ω and so IsProofOfΣ = IsProofOfΣ∪Ω.

5.3.5. Choice of βΣ

For recursive Σ ⊆ Fml(L) we choose βΣ to be a sentence of L that satisfies

Ω ` βΣ ↔ ∀x ¬ (IsProofOfΣ(x, pβΣq)),

according to the Fixed Point Lemma 5.3.3. We will later say more about the
possible shape of βΣ, for now we work with an arbitrary but fixed sentence βΣ with
the property above. Note that by the proof of the Fixed Point Lemma 5.3.3, it is
possible to explicitly construct a concrete sentence that serves as βΣ.

So if Σ ` Ω, then it is provable in Ω that βΣ asserts its own unprovability in Σ.

An explicit version of Gödel’s first incompleteness theorem 5.2.6 for subsets of
Th(ω) is the following

5.3.6. Theorem. (Explicit Incompleteness Theorem, Gödel 1931)
If Σ ⊆ Sen(L) is recursive and has a model that expands ω (i.e. a model with
universe ω that interprets the Lω-symbols in the standard way), then βΣ is inde-
pendent of Σ (we also say undecidable in Σ), i.e. Σ 0 βΣ and Σ 0 ¬βΣ.

(In 7.2.4 we will say more about the shape of βΣ).

Undecidable sentences 63

Proof. We may of course replace Σ by Σ ∪Ω, hence we may assume that Ω ⊆ Σ.
Then

Σ ` βΣ ⇒ Σ ` ∀x ¬ (IsProofOfΣ(x, pβΣq)), by definition of βΣ and as Ω ⊆ Σ

⇒ Σ ` ¬ (IsProofOfΣ(a, pβΣq)) for all a ∈ ω
⇒ ¬ (a IsProofOfΣ pβΣq) for all a ∈ ω, because IsProofOfΣ

represents IsProofOfΣ in Ω ⊆ Σ and Σ is consistent

⇒ Σ 0 βΣ by definition of IsProofOfΣ .

However we also have

Σ ` ¬βΣ ⇒ Σ ` ∃x IsProofOfΣ(x, pβΣq), by definition of βΣ and as Ω ⊆ Σ

⇒M |= IsProofOfΣ(a, pβΣq) for some a ∈ ω, where M is a model

of Σ that expands ω

(such an M exists by assumption)

⇒ ω |= IsProofOfΣ(a, pβΣq), because M expands ω and

IsProofOfΣ is an Lω-formula

⇒ a IsProofOfΣ pβΣq , because IsProofOfΣ represents

IsProofOfΣ in Ω ⊆ Σ

⇒ Σ ` βΣ by definition of IsProofOfΣ .

So in either case, we get a contradiction, i.e. βΣ is undecidable in Σ �

5.3.7. Corollary. The sentence βPA is independent of Peano Arithmetic.

Proof. By 5.3.6, since PA is easily seen to be recursive. �

64 Undecidability and incompleteness

6. Applications to decision problems

So far, our results are mainly about the structure ω in the language Lω and about
Lω-theories satisfied by ω. In this section we want to see how we can generalize
our results to other structures of other (recursive) languages. An obvious question
in this direction is the following: In the structure ω, the successor function and the
order are already definable in the structure (ω,+, 1, 0) by

S(x) = x+ 1 and x < y ⇐⇒ ∃z : z 6= 0 ∧ x+ z = y.

So S and < seem to be redundant and one can ask: Does the structure (ω,+, ·, 1, 0)
also have an undecidable theory in the language {+, ·, 1, 0}?

How about the structures (Z,+, ·), (Q,+, ·), (R,+, ·) and (C,+, ·)? Do they
have an undecidable theory in the language {+, ·, 1, 0}? What about the theory of
all fields? Is it decidable?

We can also ask this question about theories and structures, which, on the face
of it, have no arithmetic built in, e.g.: Is the theory of partially ordered sets in
the language with a single binary relation symbol ≤ decidable? Is there a partially
order set (X,≤) which has an undecidable theory?

Finally we can ask: do models of Zermelo-Fraenkel set theory (in some preferred
language) have an undecidable theory?

In order to address these questions we need an adequate method to compare struc-
tures of different languages with different universes. Such a method is provided by
so-called interpretations.

Interpretations 65

6.1. Interpretations.

In this section we will work with arbitrary languages.

6.1.1. Definition. Let L and L + be languages. An interpretation of L + in L
consists of a natural number d ≥ 1, called the dimension of the interpretation
as well as the following data:

I0. An L -formula U(v1, ..., vd), called the universe of the interpretation.

I1. An L -formula E(x̄, ȳ), where x̄ and ȳ are d-tuples of distinct variables (E will
be used to interpret the identity of L +).

I2. For each relation symbol R+ of L +, an L -formula ϕR+(x̄1, ..., x̄n), where n
is the arity of R+ and x̄1, ..., x̄n are d-tuples of distinct variables.

So if we’d regard the identity symbol of L + as a binary relation symbol,
the formula E from the previous item could be subsumed here, too.

I3. For each function symbol F+ of L + an L -formula ϕF+(x̄1, ..., x̄n, ȳ), where
n is the arity of F+ and x̄1, ..., x̄n, ȳ are d-tuples of distinct variables.

I4. For each constant symbol c+ of L + an L -formula ϕc+(x̄), where x̄ is a d-tuple
of distinct variables.

If E is just equality in L , (so E(x̄, ȳ) is
∧d
i=1 xi

.
= yi), then we say definition of

L + in L instead of interpretation of L + in L .

If M is an L -structure and M + is an L +-structure, then M + is called inter-
pretable in M , if for some interpretation of L + in L , there is a surjective map

π : U[M d]� |M +|
(recall that U[M d] denotes the set defined by U), such that the following hold true:

M1. For ā, b̄ ∈ U[M d] we have

M |= E[ā, b̄] ⇐⇒ π(ā) = π(b̄).

In particular E defines (in M) an equivalence relation on U[M d] and the
universe of M + can be thought of the set of equivalence classes of E.

M2. For each relation symbol R+ of L + of arity n and all ā1, ..., ān ∈ U[M d] we
have

M |= ϕR+ [ā1, ..., ān] ⇐⇒ M + |= R+[π(ā1), ..., π(ān)]

M3. For each function symbol F+ of L + of arity n and all ā1, ..., ān, b̄ ∈ U[M d]
we have

M |= ϕF+ [ā1, ..., ān, b̄] ⇐⇒ M + |= π(b̄) = F+(π(ā1), ..., π(ān)).

M4. For each constant symbol c+ of L + and all ā ∈ U[M d] we have

M |= ϕc+ [ā] ⇐⇒ M + |= π(ā) = c+.

In other words, the equivalence class of ā w.r.t. E[M d] is the preimage of

(c+)M+

under π.

If M + is interpretable in M and we have chosen an interpretation, then we shall
also refer to it as the interpretation of M + in M .

If the interpretation can be chosen such that E is just equality, (so E(x̄, ȳ) is∧d
i=1 xi

.
= yi), then we say M + is definable in M instead of M + is interpretable

in M .

66 Applications to decision problems

In order to understand this definition one needs to see what is supposed to be
achieved with it. We will therefore do some examples. Before we do this we state
the goal of the next section, which is supposed to give sufficient reason to analyse
interpretability of structures in other structures:

If M is a structure of a recursive language L that interprets ω
(so here L + = Lω and M + = ω), then every L -theory that is
satisfied by M , is undecidable.

6.1.2. Examples.

(1) The structure (ω,+, ·) in the language L = {+, ·} defines ω (so here L + =
Lω).

(2) The field R defines the field C (so here L = L + = {+, · } and M , M + are
the natural structures of the real and the complex field in that language).

(3) Let L be the language {+, F}, where F is a unary function symbol and +
is a binary function symbol (as usual). Then the structure (ω, f,+) where
f(x) := x2, defines ω (so here again L + = Lω).

(4) By Lagrange’s 4-squares theorem, every natural number is a sum of 4 squares
of natural numbers. Using this we can see that the ring (Z,+, ·) defines ω.

(5) The projective linear group PGL(2,R) is interpretable in the field R.
Here we take L = {+, · , 0, 1} and let L + = { · , −1, 1}, where −1 stands

for a unary function symbol. Recall that PGL(2,R) is the quotient of the
group GL(2,R) of invertible 2 × 2-matrices, modulo its center (consisting of
all λ · I2 with λ ∈ R \ {0}).

There is nothing special here about R and the number 2: For every field
K, the projective linear group PGL(n,K) is interpretable in the field K.

(6) Here are two examples from algebra (for those who are acquainted with this
material):

Every commutative domain (R,+, ·) interprets its field of fractions.
Generalising (2): every field (K,+, ·) defines all its finite extension fields.

(7) Every model of Zermelo-Fraenkel set theory in the language L = {ε} (where
ε is a binary relation symbol), defines ω.

Proof. The details here are left as an exercise. �

Interpretations 67

6.1.3. Definition. If L + is interpreted in L , then we define a map
∗ : Fml(L +) −→ Fml(L)

as follows. For every L +-formula ϕ which has exactly n free variables, ϕ∗ will be an
L -formula in exactly n ·d variables, where d is the dimension of the interpretation.
We will indicate ϕ by ϕ(x1, ..., xn) and ϕ∗ by ϕ∗(x̄1, ..., x̄n), i.e. the bar indicates
a d-tuple of mutually distinct variables and of course none of the variables in x̄i
should be equal to any of the variables in x̄j for i 6= j. Now for the definition.

(x
.
= y)∗ is E(x̄, ȳ)

(x
.
= c+)∗ and (c+

.
= x)∗ are ϕc+(x̄)

R+(x1, ..., xn)∗ is ϕR+(x̄1, ..., x̄n)

(F+(x1, ..., xn)
.
= y)∗ is ϕF+(x̄1, ..., x̄n, ȳ),

where x, y are variables, c+ is a constant symbol of L + and R+, F+ are relation,
function symbols of L respectively of arity n.

Further, by induction on the complexity of formulas we define L -formulas
ϕ∗(x̄1, ..., x̄n) for every L +-formula ϕ(x1, ..., xn) as follows:

(ϕ→ ψ)∗ is ϕ∗ → ψ∗

(ϕ ∧ ψ)∗ is ϕ∗ ∧ ψ∗

(¬ϕ)∗ is ¬(ϕ∗)

(∃uϕ(x1, ..., xn, u))∗ is ∃ū
(
U(ū) ∧ ϕ∗(x̄1, ..., x̄n, ū)

)
(∀uϕ(x1, ..., xn, u))∗ is ∀ū

(
U(ū)→ ϕ∗(x̄1, ..., x̄n, ū)

)
(x

.
= t)∗ and (t

.
= x)∗ are

(
∃y1...yn

∧
i

yi
.
= ti ∧ x = F+(y1, ..., yn)

)∗
where t = F+(t1, ..., tn)

(s
.
= t)∗ is

(
∃x(x = s ∧ x = t)

)∗
(R+(t1, ..., tn))∗ is

(
∃y1...yn

∧
i

yi
.
= ti ∧R+(y1, ..., yn)

)∗

6.1.4. Proposition. If M + is interpreted in M and ϕ(x1, ..., xn) is an L +-
formula, then for all ā1, ..., ān ∈ U[M] we have

M |= ϕ∗[ā1, ..., ān] ⇐⇒ M + |= ϕ[π(ā1), ..., π(ān)].

Proof. This is a straightforward induction on the complexity of ϕ and is left as an
exercise. �

68 Applications to decision problems

6.2. Strongly undecidable structures.

6.2.1. Definition. A structure M of a recursive language L is called undecid-
able, decidable respectively, if its theory Th(M) has this property. If all theories
contained in Th(M) are undecidable, then M is called strongly undecidable. In
other words, a structure is strongly undecidable if it does not satisfy any decidable
L -theory.4

By Church’s theorem 5.2.5, ω is a strongly undecidable Lω-structure. In this
section we’ll show that every structure in a recursive language that interprets ω is
also strongly undecidable. First some preparations.

6.2.2. Lemma. Let L and L + be recursive languages and let T ⊆ Sen(L),
T+ ⊆ Sen(L +) be theories.

Suppose there is a recursive function F : ω −→ ω such that for every ϕ ∈
Sen(L +), there is a sentence ϕ∗ ∈ Sen(L) with F (pϕq) = pϕ∗q such that

T+ ` ϕ ⇐⇒ T ` ϕ∗.
Then

T+ is undecidable⇒ T is undecidable.

Proof. For every n ∈ ω we have

n ∈ pT+q ⇐⇒ n ∈ pSen(L +)q ∧ F (n) ∈ pTq.
Hence if pTq is recursive, then also pT+q is recursive. �

6.2.3. Lemma and Definition. Let L and L + be recursive languages. An
interpretation of L + in L is recursive if there is a recursive function f : ω −→ ω
such that for every non-logical symbol s of L + (hence s is a constant, a relation
or a function symbol of L +) we have

f([s]) = pϕsq

(see 6.1.1 for the definition of ϕs). Observe that this is always the case if L + is
finite.

Now suppose we are given a recursive interpretation of L + in L and we have
chosen L -formulas ϕ∗ as in 6.1.3 for every L +-formula ϕ. Then there is a recur-
sive function F : ω −→ ω such that for every ϕ ∈ Sen(L +) we have F (pϕq) = pϕ∗q.

Proof. The existence of F is straightforward: Just write out the recursive definition
of the ϕ∗ in 6.1.3, in terms of Gödel numbers and apply recursion on previous
values. �

6.2.4. Proposition. If T is a decidable theory in a language L and Σ ⊆ Sen(L)
is finite, then also Ded(T ∪ Σ) is decidable.

Proof. Let T1 := Ded(T∪Σ) and let σ ∈ Sen(L) be the conjunction of the sentences
in Σ.

For ϕ ∈ Sen(L) we have (by the deduction theorem)

T ∪ Σ ` ϕ ⇐⇒ T ` σ → ϕ.

4An example of an undecidable structure that is not strongly undecidable is the field M of

real numbers together with a named non-recursive real number r in the language {+, ·, c}, where
c is interpreted as r. The deductive closure of the {+, ·}-theory of (R,+, ·) in L is decidable, but

M is not decidable. Proofs are omitted here.

Strongly undecidable structures 69

Hence
pϕq ∈ pT1q ⇐⇒ pσ → ϕq ∈ pTq.

Consequently, for arbitrary a ∈ ω we have

a ∈ pT1q ⇐⇒ a ∈ pSen(L)q ∧
(
≺ [→], pσq, a � ∈ pTq

)
.

Since pTq is decidable, we see that pT1q is decidable as well. �

6.2.5. Tarski’s theorem on strongly undecidable structures
Let L and L + be recursive languages and suppose we are given a recursive inter-
pretation of L + in L . Let M + be an L +-structure and let M be an L -structure
that interprets M + according to this interpretation. Then

(i) If M + is undecidable, then also M is undecidable.
(ii) If M + is strongly undecidable and L + is finite, then also M is strongly

undecidable.

Proof. (i) We know this already from 6.2.2 applied to Th(M) and Th(M +). The
required assumptions are satisfied by 6.2.3 and 6.1.4.

(ii) Let T be an L -theory with M |= T . We need to show that T is undecidable.
The key point is that we can express the interpretation of M + in M by a finite set
INT of L -sentences that are true in M . Then, for every model N of T ∪ INT, the
truth of INT in N allows us to interpret an L +-structure N +, just in the same
way as M + is interpreted in M . We then look at the L +-theory T+, axiomatised
by all L +-sentences for which T ∪ INT ` ϕ∗ and verify that M + is a model of
it. So by assumption, T+ is undecidable. We will then use 6.2.2 to show that also
Ded(T ∪INT) is undecidable. Since INT is finite, we may finally use 6.2.4 to deduce
that also T is undecidable.

Now let us carry this out in detail. INT consist of the following L -sentences
(written in a human readable way):

(1) ∃x̄ U(x̄).
(2) The L -sentence saying that ”E(x̄, ȳ) defines an equivalence relation of d-tuples

realizing U(x̄)”.
(3) For every n-ary relation symbol R+ of L +, the L -sentence that expresses

“ϕR+(x̄1, ..., x̄n) defines on the set of n-tuples of d-tuples from U, a
set of equivalence classes w.r.t. E.”

This means we take the universal closure of

ϕR+(x̄1, ..., x̄n) ∧
n∧
i=1

U(x̄i) ∧ U(ȳi)→
(
ϕR+(ȳ1, ..., ȳn)↔

n∧
i=1

E(x̄i, ȳi)

)
(4) For every n-ary function symbol F+ of L + the L -sentence that expresses

“ϕF+(x̄1, ..., x̄n, ȳ) defines the (preimage of the) graph of a function
from n-tuples of equivalence classes defined by E on U, to these
equivalence classes.”

(5) For every constant symbol c+ of L + the L -sentence saying that ϕc+(x̄) is
an equivalence class of E on U.

Observe that INT is finite by assumption on L +. Since M + is interpretable in M
we certainly know M |= INT.

Now let us take a model N of INT and define an L -structure N + as follows:

• The universe of N + is the set of equivalence classes of U[N d] modulo E[N 2d].

70 Applications to decision problems

• The non-logical symbols of L + are interpreted in N + following the conditions

(1)-(5) above, e.g. (F+)N +

maps the equivalence class of (ā1, ..., ān) to the
equivalence class of any element b̄ ∈ U[N d] satisfying

N |= ϕF+(ā1, ..., ān, b̄).

Since N |=(4), this indeed defines the graph of a function |N +|n −→ |N +|.
By choice of INT, we then know that N interprets N +, with the same interpre-
tation used to interpret M + in M . Note that there is no conflict in the notation
here because the original structure M + is isomorphic to the structure just defined
for M (the isomorphism maps π(ā) to the equivalence class of ā).

In particular we may apply 6.1.4 and get for every L +-sentence ϕ and every
model N of INT:

(†) N |= ϕ∗ ⇐⇒ N + |= ϕ.

Now let

Σ+ = {ϕ ∈ Sen(L +) | T ∪ INT ` ϕ∗}.

Claim. For every model N of T ∪ INT we have N + |= Σ+.
To see this, take ϕ ∈ Σ+. By definition of Σ+ we know T ∪ INT ` ϕ∗. Since

N |= T ∪ INT we get N |= ϕ∗ and by the implication ⇒ in (†) we see N + |= ϕ.

Having proved the claim we now show

(+) Σ+ ` ϕ ⇐⇒ T ∪ INT ` ϕ∗

for all L +-sentences ϕ.
The implication⇐ is trivial by definition of Σ+. The implication⇒ follows from

(†) and the claim (using the completeness theorem): Assume Σ+ ` ϕ and take a
model N of T ∪ INT. Then N + |= Σ+ by the claim, and so N + |= ϕ. Now from
the implication ⇐ in (†) we get N |= ϕ∗ as required.

Having proved (+) we may finally apply 6.2.2:

• By the claim, we know that M + |= Ded(Σ+) and so by assumption, Ded(Σ+)
is undecidable.
• By 6.2.3, there is a recursive function F : ω −→ ω such that for every ϕ ∈

Sen(L +) we have F (pϕq) = pϕ∗q (we knew this all along, note that the
existence of this function only depends on the recursive interpretation of L +

in L).
• By (+) we have Σ+ ` ϕ ⇐⇒ T ∪ INT ` ϕ∗ for all ϕ ∈ Sen(L +).

So by 6.2.2, Ded(T ∪ INT) is undecidable. Since INT is finite we know from 6.2.4
that T is undecidable, too. �

6.2.6. Corollary. The following structures (in their corresponding languages) are
strongly undecidable:

(i) The structure (ω,+, ·) in the language {+, ·}.
(ii) The structure (Z,+, ·) in the language {+, ·}. Consequently, the theories of

rings, of commutative rings and of integral domains are all undecidable. Also
the theory of ordered rings in the language {+, ·,≤} is undecidable (it has
(Z,+, ·,≤) as a model).

(iii) The structure (ω, f,+) in the language {F,+}, where F is a unary function
symbol and f(x) := x2.

Strongly undecidable structures 71

(iv) Every model of ZF in the language with a binary relation symbol. Conse-
quently, ZF is undecidable.

Proof. By 6.1.2, successively we see that each of these structures actually define a
strongly undecidable structure. Hence 6.2.5 applies. �

6.2.7. Corollary. Let L be a language containing a binary relation symbol. The
set of all sentences ϕ with ` ϕ is undecidable.

Proof. Our language possess a strongly undecidable structure: every model of ZF .
�

We’ll now record other celebrated undecidability results, they all use serious
methods from algebra and geometry to interpret the standard model.

6.2.8. Theorem. (Julia Robinson, see [Robinson])
The field (Q,+, ·) defines the set Z.

6.2.9. Corollary. The field (Q,+, ·) is strongly undecidable and consequently also
the theory of fields (of characteristic 0) in the language {+, ·} is undecidable.

Proof. By 6.2.6(ii) we know that (Z,+, ·) is strongly undecidable. By J. Robin-
son’s theorem, (Q,+, ·) defines (Z,+, ·). Hence by 6.2.5, also (Q,+, ·) is strongly
undecidable. �

In fact J. Robinson also showed that all number fields (i.e. finite extensions of
Q) define the set Z and are therefore all undecidable.

Finally a strongly undecidable structure that is a priori remote from the standard
model:

6.2.10. Theorem. (A. Grzegorczyk, see [Grzegorczyk])
The partially ordered set (A,≤) of all closed subsets of R2 (so the universe is the
set of closed subsets of R2 and ≤ is to be understood as inclusion) interprets the
standard model ω. In particular the following theories of partially ordered sets are
all undecidable: Heyting algebras, (distributive) lattices, partially ordered sets itself.

On the other hand the following fields are all decidable (in the language {+, ·}):
• The field of complex numbers (A. Robinson and in its algebraic geometric

form earlier by Chevalley)
• The field of real numbers (A. Tarski)
• The field of p-adic numbers (A. Macintyre)

Further, in contrast to Grzegorczyk’s theorem, Tarski has shown that the theory of
boolean algebras is decidable.

72 Applications to decision problems

7. The Arithmetic Hierarchy

In this section, L always denotes the language Lω = {<,+, ·, S, 0} of arithmetic.

7.1. The structure of arithmetic formulas.

7.1.1. Definition. A ∆0-formula is an L -formula whose only quantifiers are
bounded by terms of L . This means: ∆0 is the smallest set of L -formulas contain-
ing the atomic L -formulas that is closed under boolean connectives and bounded
universal quantification; explicitly:

ϕ,ψ ∈ ∆0 =⇒ ¬ϕ,ϕ→ ψ ∈ ∆0 and

ϕ ∈ ∆0, t ∈ tm(L), x 6∈ Fr(t) =⇒ ∀x < t ϕ ∈ ∆0.

A Σ1-formula is a formula of the form

∃x1...∃xk δ,
where δ is a ∆0-formula and k ≥ 0.

A Π1-formula is a formula of the form

∀x1...∀xk δ,
where δ is a ∆0-formula and k ≥ 0.

So by definition ∆0 ⊆ Σ1 ∩Π1.

More generally we define for m ≥ 1, sets Σm, Πm of L -formulas as follows:

Σm is the set of all L -formulas of the form

∃x̄m∀x̄m−1 ... δ

where δ is a ∆0-formula x̄1, ..., x̄m are finite (and possibly empty) tuples of variables;
here, ∀x̄ is shorthand for ∀x1....∀xk, if x̄ = (x1, ..., xk); also, the clause ”and possibly
empty” means that the corresponding block of quantifiers possibly does not occur.

Πm is the set of all L -formulas of the form

∀x̄m∃x̄m−1 ... δ

where δ is a ∆0-formula x̄1, ..., x̄m are finite (and possibly empty) tuples of variables.

It follows that Σm,Πm ⊆ Σm+1,Πm+1. In a diagram:

Σ1 Σ2 Σ3

∆0

Π1 Π2 Π3

For notational issues we also define Σ0 = Π0 = ∆0.

The structure of arithmetic formulas 73

7.1.2. Definition. If T is a set of L -formulas, then we write

∆0(T) = {ϕ ∈ Fml(L) | there is some δ ∈ ∆0 with T ` ϕ↔ δ}.

Similarly, Σm(T), Πm(T) denote the set of all L -formulas for which there exists
some ψ ∈ Σm, Πm respectively with T ` ϕ↔ ψ.

7.1.3. Remarks.

(i) ∆0(T) is obviously closed under boolean connectives and bounded quantifica-
tion (i.e. bounded universal and bounded existential quantification).

(ii) If ϕ is an L -formula, then clearly

ϕ ∈ Σm(T) ⇐⇒ ¬ϕ ∈ Πm(T)

(iii) Σm(T) and Πm(T) are closed under finite conjunctions and disjunctions: Just
move all the quantifiers in front and possibly change variables to avoid clash
of variables.

(iv) It is a routine exercise to see that all sets Σm,Πm are recursive. However, the
sets Σm(T) and Πm(T) are in general not recursive if T is recursive (e.g. if
T = ∅).

7.1.4. Definition. We define

∆ω
0 = {δ[ω] ⊆ ωn | n ∈ N, δ(x1, ..., xn) ∈ ∆0},

Σωm = {ϕ[ω] ⊆ ωn | n ∈ N, ϕ(x1, ..., xn) ∈ Σm} and

Πω
m = {ϕ[ω] ⊆ ωn | n ∈ N, ϕ(x1, ..., xn) ∈ Πm}.

Recall that ϕ[ω] = {a ∈ ωn | ω |= ϕ[a1, ..., an]}, where ϕ(x1, ..., xn) is an L -
formula. We say that a set X ⊆ ωn is Σm (resp. Πm), if X ∈ Σωm (resp. X ∈ Πω

m).

The intersection of Σωm and Πω
m is denoted by ∆ω

m. A subset X of ωn is called
Σm, Πm or ∆m if X is in Σωm, in Πω

m or in ∆ω
m. We have the following diagram of

inclusions:

Σω0 Σω1 Σω2 Σω3

∆ω
0 ∆ω

1 ∆ω
2 ∆ω

3

Πω
0 Πω

1 Πω
2 Πω

3

7.1.5. Remark. Every set in ∆ω
0 is primitive recursive.

Proof. Clearly every atomic formula defines a primitive recursive set. Hence every
set in ∆ω

0 is obtained from primitive recursive sets by boolean combinations and
bounded quantification and so all sets in ∆ω

0 are primitive recursive. �

Our goal in this subsection is to show that the sets Σm(T), Πm(T) are closed under
bounded quantification (cf. 7.1.8). In order to see this we have to swap a bounded
universal quantifier with an existential quantifier (modulo T). This cannot be done
in T = Ω. What is needed is the following axiom schema.

74 The Arithmetic Hierarchy

7.1.6. Definition. The collection schema is the following set of L -sentences.
For any L -formula ϕ(x, z, ū) the sentence

∀ū∀y
(

(∀x < y∃z ϕ(x, z, ū)) → ∃w∀x < y∃z < w ϕ(x, z, ū)

)
To explain the collection schema, first note that the variables ū here act as place

holder for parameters. If ϕ is just ϕ(x, z), then the sentence in the collection schema
defined for ϕ says the following in a model: Given a bound y, if ϕ(n, z) is solvable
for all n < y, then there is a bound w where we can find solutions. So obviously,
the collection schema holds true in ω. We need to do better and show:

7.1.7. Proposition. The collection schema is provable in Peano Arithmetic.

Proof. Take an L -formula ϕ(x, z, ū). We apply PA (cf. 5.2.7) to the formula
ψ(ū, y) defined as

(∀x < y∃z ϕ(x, z, ū)) → ∃w∀x < y∃z < w ϕ(x, z, ū).

So we show that in every model M of PA, and every choice of a ū-tuple ā from
|M | and all b ∈ |M | we have M |= ψ[ā, 0] and M |= ψ[ā, b] → ψ[ā, SM (b)]. Once
this is confirmed, PA tells us that M |= ∀yψ[ā]. Since ā was arbitrary, this means
M |= ∀ū∀y ψ, as required.

The first condition, M |= ψ[ā, 0] is trivially true, since PA contains Ω and Ω
contains @x x < 0.

To see the second condition we assume that M |= ψ[ā, b] and show that M |=
ψ[ā, SM (b)]. So assume M |= ∀x < SM (b)∃z ϕ(x, z, ā)). Then also M |= ∀x <
b∃z ϕ(x, z, ā)) and from M |= ψ[ā, b] we get some c ∈ |M | such that

M |= ∀x < b∃z < c ϕ(x, z, ā).

Further, there is some c′ ∈ |M | with M |= ϕ(b, c′, ā). Now by Ω9 we have c <
c′, c = c′ or c′ < c. We take d = SM (c′) if c < c′ and d = SM (c) otherwise. Then
c′ < d and for each e ∈ |M | with e < c we also know e < d (note that PA implies
that < is a total order in all models). Therefore

M |= ∀x < SM (b)∃z < d ϕ(x, z, ā),

as required. �

7.1.8. Proposition. If T is a consistent set of L -sentences containing PA, then
Σm(T) and Πm(T) are closed under bounded quantifications.

Proof. Since ϕ ∈ Σm(T) ⇐⇒ ¬ϕ ∈ Πm(T) for all L -formulas ϕ, it suffices
to show that Σm(T) is closed under bounded universal quantification (for bounded
existential quantification note that ∃x < t ϕ is equivalent to ∃x (x < t∧ϕ) ∈ Σm(T),
cf. 7.1.3).

Take an L -term t not containing the variable x and let ϕ ∈ Σm(T). We must
find some ψ ∈ Σm(T) with T ` ψ ↔ ∀x < t ϕ. We do an induction on m, where
m = 0 is obvious, because ∆0(T) is closed under taking bounded quantification.

We may assume that ϕ is of the form

∃x1...xk ϕ0 with ϕ0 ∈ Πm−1

Recursion revisited 75

and do an induction by k. The case k = 0 is clear. By 7.1.7, PA proves the
collection schema. As T contains PA we know that

T ` ∀x < y∃xk ∃x1...xk−1ϕ0 ↔ ∃w∀x < y∃xk < w ∃x1...xk−1ϕ0.

Further we have

T ` ∃xk < w ∃x1...xk−1ϕ0 ↔ ∃x1...xk−1(∃xk < w ϕ0)

By induction on m we know that ∃xk < w ϕ0 ∈ Πm−1(T). Hence by induction on
k we know ∀x < y∃xk < w ∃x1...xk−1ϕ0 ∈ Σm(T), as required. �

7.2. Recursion revisited.

7.2.1. Theorem. Let ϕ be an L -sentence.

(i) If ϕ ∈ ∆0 then Ω ` ϕ or Ω ` ¬ϕ, i.e. Ω is complete for ∆0-sentences.

(ii) If ϕ ∈ Σ1, then Ω ` ϕ ⇐⇒ ω |= ϕ.

Proof. (i) Recall from 3.3 that for every model M of Ω, there is a unique embedding
ω −→M . Hence if ϕ is a quantifier free sentence and ω |= ϕ, then Ω ` ϕ.

Further, it is clear that the asserted property holds true for ¬ϕ and for ϕ ∧ ψ
if it holds for ϕ and ψ (if Ω ` ¬ϕ, then clearly Ω ` ¬(ϕ ∧ ψ)). So by induction
on the number of quantifiers it remains to assume that ϕ is of the form ∀x < t ψ
for some L -formula ψ(x) and that we know our assertion for sentences with fewer
quantifiers than ϕ (we cannot assume the assertion for ψ(x), because ψ(x) is in
general not a sentence).

Since t is a closed term (observe that ϕ is assumed to be a sentence), we infer
from 3.3 that Ω ` t .= n for some n ∈ ω.

Hence we may assume that ϕ is ∀x < n ψ. Now by 3.4 we know that

Ω ` x < n↔ (x
.
= 0 ∨ ... ∨ x .

= n).

Consequently,

Ω ` (∀x < n ψ) ↔ ψ(0) ∧ ... ∧ ψ(n− 1).

But the sentence on the right hand side has fewer quantifiers than ϕ and so we get
the assertion for ϕ as required.

(ii) The implication ⇒ is clear because ω |= Ω. For the converse, write ϕ as

∃x1...xk δ with δ ∈ ∆0

As ω |= ϕ, there are n1, ..., nk ∈ ω with ω |= δ[n1, ..., nk]. But this means
ω |= δ(n1, ..., nk). Now δ(n1, ..., nk) ∈ ∆0 and ω |= Ω. So by (i) we know
Ω ` δ(n1, ..., nk) and thus Ω ` ϕ. �

Next we have a closer look at the representability theorem 3.5 for PA.

7.2.2. Theorem. Let T be a set of L -sentences with T ` PA. Then every recursive
function and every recursive predicate is represented in T by a Σ1-formula and by
a Π1-formula.

76 The Arithmetic Hierarchy

Proof. We first deal with functions.
From claim 3.5.1 in the proof of 3.5 we know that all elementary functions from

R1 of definition 1.1.1 are represented in Ω by a quantifier free L -formula. In
particular, these functions are represented in T by a Σ1-formula and by a Π1-
formula.

By claim 3.5.2 in the proof of 3.5, the composition of functions that are rep-
resented in T by Σ1-formulas and by Π1-formulas is again represented in T by a
Σ1-formula and by a Π1-formula.

Finally, a function F obtained by µ-recursion from a function G that is repre-
sented in T by a Σ1-formula and by a Π1-formula, is itself represented in T by a
Σ1-formula and by a Π1-formula: Here we use claim 3.5.3 in the proof of 3.5, which
says that F is represented in T by a formula ψ that is obtained from a formula
representing G using a bounded universal quantifier.

Now as T proves PA we know from 7.1.8, that Σ1(T) and Π1(T) are closed under
bounded universal quantification. Thus, ψ ∈ Σ1(T) and ψ ∈ Π1(T).

This shows the theorem for functions. For relations P we may use the result on
functions and notice that P is represented in T by ϕ(x̄, 1) if 1P is represented in T
by ϕ(x̄, y). �

In 5.3.2(ii) we have already seen that recursively enumerable sets are definable
in the standard model. This will now be detailed further:

7.2.3. Theorem. Let P ⊆ ωn. Then

(i) P is recursive if and only if P is ∆ω
1 .

(ii) P is recursively enumerable if and only if P is Σω1 .

Proof. Let T be the theory of ω.

(i)⇒: If P is recursive, then by 7.2.2, P is represented in T by a Σ1-formula and
by a Π1-formula. Since T ` Ω, this implies that P is defined by a Σ1-formula and
by a Π1-formula in ω (cf. 5.3.2(i)). Thus P is in ∆ω

1 .

(ii)⇒: If P is recursively enumerable, then P is the projection of a recursive set
P ′. We have just seen that P ′ is defined by a Σ1-formula. But then P is defined
by a Σ1-formula, too.

(ii)⇐: By 7.1.5 every set in ∆ω
0 is recursive (even primitive recursive). Since P is

in Σω1 , P is the projection of a recursive set. Hence P is recursively enumerable (cf.
1.5.3).

(i)⇐: If P is in ∆ω
1 , then P and its complement are in Σω1 . We have just seen that

in this case P and its complement are recursively enumerable. Thus by 1.5.2, P is
recursive. �

7.2.4. Theorem. If T is a recursive set of L -sentences and T ∪PA is consistent,
then there is a Π1-sentence that is independent of T . Explicitly, the sentence βT∪PA

defined in 5.3.5 is independent of T (it is even independent of T ∪ PA) and is
provably equivalent modulo T ∪PA to a Π1-sentence.

Proof. Question 34 of the example sheets. �

Kleene’s Enumeration theorem 77

7.3. Kleene’s Enumeration theorem.

In 7.2.3 we have seen that every recursively enumerable set is defined by a Σ1-
formula in the standard model. Surprisingly, all these sets occur as the fibres of a
single Σ1-formula:

7.3.1. Kleene’s Enumeration theorem (S. C. Kleene, pronounced ’KLAY-nee’)
There is a Σ1-formula κ(x, y) (of Lω) in two free variables such that every recur-

sively enumerable subset of ω is of the form

{n ∈ ω | ω |= κ[k, n]}
for some k ∈ ω.

Proof. Define P ⊆ ω3 by

P (k, n, l) ⇐⇒ k is the Gödel number of a Σ1-formula σ(u)

and l is the proof number of a proof of σ(n) in Ω.

P is recursive since all predicates in its definition are recursive by earlier results
(like 4.3 and 5.1.3). By 7.2.3(ii), there is a Σ1-formula ϕ(x, y, z) that defines P in
ω. We take

κ(x, y) = ∃z ϕ(x, y, z)

and show that κ has the required property:

Let U ⊆ ω be recursively enumerable. By 7.2.3(ii), U is defined in ω by a
Σ1-formula σ(u). Let k = pσq. Then for n ∈ ω we have

n ∈ U ⇐⇒ ω |= σ[n] ⇐⇒ ω |= σ(n)

⇐⇒ Ω ` σ(n), by 7.2.1(ii)

⇐⇒ there is l ∈ ω with P (k, n, l)

⇐⇒ there is l ∈ ω with ω |= ϕ[k, n, l]

⇐⇒ ω |= κ[k, n].

Hence U is of the desired form. �

7.3.2. Remarks.

(i) By 7.2.3(ii) we of course also know that each fibre of κ(x, y) in 7.3.1 is recur-
sively enumerable.

(ii) A corresponding result for recursively enumerable subsets of ωn follows easily
from 7.3.1: Let f = (f1, ..., fn) : ω −→ ωn be a recursive isomorphisms (so f
is bijective, all fi and f−1 are recursive) and let ψ(x, y1, ..., yn) be the formula

∃z
(
κ(x, z) ∧ ”y1 = f1(z)” ∧ ... ∧ ”yn = fn(z)”

)
.

Here, ”yi = fi(z)” stands for a Σ1-formula that defines the graph of fi. Then if
Y ⊆ ωn is recursively enumerable, also f−1(Y) ⊆ ω is recursively enumerable,
and there is some k ∈ ω with X = κ[k, ω]. Clearly then Y = f(f−1(Y)) =
ψ[k, ωn].

7.3.3. Corollary. The set

X = {n ∈ ω | ω |= κ[n, n]}
is recursively enumerable, but not recursive.

78 The Arithmetic Hierarchy

Proof. The set X is recursively enumerable, as it is Σ1. By Cantor’s Anti-diagonal
lemma 5.2.4, the anti-diagonal ω \X of the relation defined by κ is not a fibre of
that relation. Hence by 7.3.1, ω\X cannot be recursively enumerable, either. Thus
X is not recursive. �

7.4. Hilbert’s 10th problem.

The tenth problem in Hilbert’s celebrated list of unsolved problems in mathemat-
ics from 1900 asks to find a decision procedure for the solvability of polynomial
equations over the integers.

In 1970, Yuri Matijasevič, based on the work of many others, mainly M. Davis,
H. Putnam and J. Robinson (and certainly starting with Gödel), showed that there
is in fact no such decision procedure. In this section we will explain the framework
of Hilbert’s 10th problem without giving a full proof of its surprising answer.

A diophantine equation is an equation of the form

P (T1, ..., Tn) = Q(T1, ..., Tn),

where P,Q are polynomials over Z with non-negative coefficients. One can also
talk about diophantine equations over other (semi)-rings and this is studied in the
literature. In particular we want to be able to link this question to natural numbers.

7.4.1. Definition. Let R be a commutative unital ring. We say that Hilbert’s
10th problem for R holds if there is a decision procedure that decides whether
diophantine equations have solutions in R. More precisely (and taking the Church-
Turing thesis for granted):

The set of Gödel numbers of diophantine equations that have a solution in R is
recursive.

In the case R = Z we want to translate the problem into a question about the
standard model ω. First some terminology.

7.4.2. Definition. An ∃1-formula is a formula of Lω of the form

∃x̄ t .= s,

where t and s are Lω-terms.

An ∃ω1 -formula is a formula of Lω that is equivalent in ω to a ∃1-formula.

A subset of ωn is called ∃ω1 if it is defined by a ∃ω1 -formula (equivalently: by a
∃1-formula).

Obviously, ∃ω1 ⊆ Σω1 . Further, the only feature of Σω1 that is a priori lacking in
∃ω1 is bounded universal quantification:

7.4.3. Remarks. The following Lω formulas are universally true in ω:

(i) x < y ←→ ∃z(x+ S(z) = y)

(ii) x = y ∧ u = v ←→ x2 + y2 + u2 + v2 = 2xy + 2uv,
because x = y∧u = v ⇐⇒ (y−x)2 +(v−u)2 = 0 ⇐⇒ x2 +y2 +u2 +v2 =

2xy + 2uv for all x, y, u, v ∈ ω.

(iii) x = y ∨ u = v ←→ yv + xu = xv + yu,
because x = y ∨ u = v ⇐⇒ (y − x) · (v − u) = 0 ⇐⇒ yv + xu = xv + yu

for all x, y, u, v ∈ ω.

Hilbert’s 10th problem 79

(iv) x 6= y ←→ x < y ∨ y < x

(v) x ≮ y ←→ y < x ∨ y = x.

Consequently, these equivalences also hold true universally in ω if we replace vari-
ables by terms. Thus every quantifier free Lω-formula is an ∃ω1 -formula. From
(ii) and (iii) (for terms) it also follows that ∃ω1 is closed under conjunction and
disjunction.

Conclusion: The set of ∃ω1 -formulas contains all quantifier free Lω-formulas and
it is closed under conjunction, disjunction and bounded existential quantification.

7.4.4. Lemma. The following are equivalent.

(i) Hilbert’s 10th problem holds for Z.
(ii) The set of Gödel numbers of diophantine equations that have a solution in ω

is recursive.

Proof. (i)⇒(ii). P (x1, ..., xn) = Q(x1, ..., xn) has a solution in ω if and only if

P (u2
1+v2

1 +w2
1 +z2

1 , ..., u
2
n+v2

n+w2
n+z2

n) = Q(u2
1+v2

1 +w2
1 +z2

1 , ..., u
2
n+v2

n+w2
n+z2

n)

has as solution in Z by Lagrange’s 4 square theorem.

(ii)⇒(i) P (x1, ..., xn) = Q(x1, ..., xn) has a solution in Z if and only if there is
some ε ∈ {−1, 1}n such that P (ε1x1, ..., εnxn) = Q(ε1x1, ..., εnxn) has a solution in
ω. For each ε ∈ {−1, 1}n take P+

ε , P
−
ε , Q

+
ε , Q

−
ε ∈ Z[x1, ..., xn] with non-negative

coefficients such that

P (ε1x1, ..., εnxn) = P+
ε (x1, ..., xn)− P−ε (x1, ..., xn) and

Q(ε1x1, ..., εnxn) = Q+
ε (x1, ..., xn)−Q−ε (x1, ..., xn).

Then P (x1, ..., xn) = Q(x1, ..., xn) has a solution in Z if and only if

(∗) ω |= ∃x̄
(∨
ε∈{−1,1}n

P+
ε (x̄) +Q−ε (x̄) = Q+

ε (x̄) + P−ε (x̄)

)
.

By 7.4.3 the disjunctions of the term equalities in (∗) can be replaced by a single
diophantine equation. �

7.4.5. Remarks.

(i) As mentioned at the beginning, Matijasevič has shown that Hilbert’s 10th

problem fails for Z, we will discuss this below.
(ii) It is a wide open problem whether Hilbert’s 10th problem holds for Q.
(iii) Hilbert’s 10th problem holds for R, C and Qp as follows easily from the de-

cidability of these rings.

7.4.6. MRDP-theorem (Matijasevič, Robinson, Davis, Putnam)

∃ω1 = Σω1 .

Proof. By 7.4.3, the only thing that remains to show is that ∃ω1 is closed under
bounded quantification. This is non-trivial and can be found in [Matija], [DaPuRo].

�

As a consequence we obtain

80 The Arithmetic Hierarchy

7.4.7. Theorem. Hilbert’s 10th problem fails for Z.

Proof. By 7.4.4 it suffices to show that the set of Gödel numbers of diophantine
equations that have a solution in ω is not recursive. By the MRDP theorem 7.4.6,
Kleene’s formula κ(x, y) (see 7.3.1) is equivalent in ω to a formula

∃z̄ P (x, y, z̄) = Q(x, y, z̄),

where P,Q are polynomials over Z with non-negative coefficients. By 7.3.3, the set
defined by κ(x, x) in ω is not recursive, thus

S := {n ∈ ω | ω |= ∃z̄ P (n, n, z̄) = Q(n, n, z̄)}

is not recursive. It follows that the set

G = {pP (n, n, z̄) = Q(n, n, z̄)q | n ∈ ω and P (n, n, z̄) = Q(n, n, z̄) is solvable in ω}

is not recursive either: To see this, note that

n ∈ S ⇐⇒ ω |= ∃z̄ P (n, n, z̄) = Q(n, n, z̄) ⇐⇒ pP (n, n, z̄) = Q(n, n, z̄)q ∈ G;

Since the function that maps n to pP (n, n, z̄) = Q(n, n, z̄)q is recursive (see section
4), G cannot be recursive.
But then the set of Gödel numbers of diophantine equations that have a solution
in ω is not recursive either (notice that the set {pP (n, n, z̄) = Q(n, n, z̄)q | n ∈ ω})
is recursive). �

As a matter of fact there are polynomials over Z encoding the solvability of all
the other polynomials in any number of variables:

7.4.8. Theorem. There is a polynomial U(x̄, y) ∈ Z[x̄, y] (in some number of
variables) with the following property:

For every number of indeterminates T1, ..., Tn and all polynomials F ∈ Z[T1, ..., Tn]
one can explicitly construct a number kF ∈ ω such that

F (T1, ..., Tn) = 0 is solvable in ω ⇐⇒ U(x̄, kF) = 0 is solvable in ω.

Each such polynomial U is called a universal polynomial.

Proof. We know that the set G of all Gödel numbers of Lω-sentences that are
provable from Ω is recursively enumerable. By 7.2.3(ii), this set is Σω1 and by the
MRDP theorem 7.4.6, there are polynomials P (x̄, y), Q(x̄, y) such that

(∗) G = {k ∈ ω | ω |= ∃x̄ P (x̄, k) = Q(x̄, k)}.

We take

U(x̄, y) = P (x̄, y)−Q(x̄, y).

Now pick any polynomial F (T1, ..., Tn) ∈ Z[T1, ..., Tn] and write it as

F+(T1, ..., Tn)− F−(T1, ..., Tn)

with polynomials F+, F− having only non-negative coefficients. We define

kF = p∃t1..., tn F+(t1, ..., tn) = F−(t1, ..., tn)q.

Hilbert’s 10th problem 81

Then F (T1, ..., Tn) = 0 is solvable in ω ⇐⇒
⇐⇒ ω |= ∃t1..., tn F+(t1, ..., tn) = F−(t1, ..., tn)

⇐⇒ Ω ` ∃t1..., tn F+(t1, ..., tn) = F−(t1, ..., tn) by 7.2.1(ii)

⇐⇒ p∃t1..., tn F+(t1, ..., tn) = F−(t1, ..., tn)q ∈ G by definition of G

⇐⇒ kF ∈ G by choice of kF

⇐⇒ ω |= ∃x̄ P (x̄, kF) = Q(x̄, kF) by (∗).
�

The existence of universal polynomials has remarkable consequences. First recall
from 7.2.4 that for any consistent and recursive strengthening T of Peano arith-
metic, the sentence βT that is independent of T is in Π1(T). Further it is possible
to construct βT explicitly.

Suppose now that ω |= T . Then ω |= βT (we have ¬(n IsProofOfT pβT q),
hence T ` ¬IsProofOfT (n, pβT q) for all n ∈ ω, implying ω |= βT).

Then the meaning of βT in ω is the following: By Matijasiewič, βT says that
a certain explicitly constructible diophantine equation has no solution in ω. Now
7.4.8 says we can explicitly compute a natural number kT such that the truth of
βT in ω is equivalent to the unsolvability of U(x̄, kT) = 0 in ω.

In this sense, a single polynomial U(x̄, y) captures the incompleteness of all
recursive subsets of Th(ω).

We’ll come back to another consequence of 7.4.8 shortly, when we have Gödel’s
second incompleteness theorem.

82 The Arithmetic Hierarchy

8. Gödel’s second incompleteness theorem

This section is not examinable.

Throughout this section, L denotes the language Lω of arithmetic and T denotes
a consistent and recursive set of L -sentences with T ` PA. Then the binary pred-
icate IsProofOfT is recursive and by 7.2.2 there is a Σ1-formula IsProofOfT (u, x)
representing IsProofOfT in T . We define �T (x) to be the Σ1-formula

∃u IsProofOfT (u, x).

As long as T is fixed we drop the index T and just write �(x).

So, �(x) is a Σ1-formula such that for every Lω-sentence ϕ we have

ω |= �(pϕq) ⇐⇒ T ` ϕ

Now choose a Σ1-formula that represents the predicate z =≺ x, y � in T and write
this formula as z =≺ x, y �.

Let ∇(x) be the formula

∃y
(
y =≺ [¬], x � ∧�(y)

)
So, ∇(x) is a Σ1-formula such that for every Lω-sentence ϕ we have

T ` ∇(pϕq)←→ �(p¬ϕq)

and

ω |= ∇(pϕq) ⇐⇒ T ` ¬ϕ.

Finally we define an Lω-sentence ConT as

¬∃x
(
�(x) ∧∇(x)

)
.

Thus ConT is a Π1-sentence and

ω |= ConT ⇐⇒ T is consistent

8.1. Gödel’s second incompleteness theorem

If T is a recursive set of Lω-sentences with T ` PA (as always in this section),
then

T is consistent =⇒ T 0 ConT .

Before proving this, let us go back and consider the impact of the existence of
universal polynomials again. Let U(x̄, y) be a universal polynomial as constructed
in 7.4.8.

Given any recursive strengthening T of PA, we can explicitly construct a Π1-
sentence ConT , which asserts the consistency of T and which is not provable in T ,
unless T is inconsistent. By Matijasevič and 7.4.8, we can explicitly construct a
natural number kT such that the truth of ConT in ω is equivalent to the unsolvability
of U(x̄, kT) = 0 in ω.

Gödel’s second incompleteness theorem 83

Hence if we believe that T is consistent, then we must also believe that
U(x̄, kT) = 0 is unsolvable in ω. In this sense, a single polynomial U(x̄, y) captures
the consistency assertions of every recursive strengthening of Peano Arithmetic.

For the proof of 8.1 we need some preparations.

8.2. Lemma. Let ϕ be an L -sentence.

(i) If T ` ϕ, then T ` �(pϕq)

(ii) If T is ω-consistent (e.g. if ω |= T , see question 26), then

T ` ϕ ⇐⇒ T ` �(pϕq)

Proof. (i) As T ` ϕ, there is some n ∈ ω with n IsProofOfT pϕq (take n to be the
proof number of a proof of ϕ in T). Since IsProofOfT represents IsProofOfT in
T we know T ` IsProofOfT (n, pϕq). In particular T ` ∃x IsProofOfT (x, pϕq).

(ii) Now suppose T 0 ϕ. Then for each n ∈ ω we have

¬
(
n IsProofOfT pϕq

)
.

Since IsProofOfT represents IsProofOfT in T we know

T ` ¬IsProofOfT (n, pϕq) for all n ∈ ω.

As T is ω-consistent, we get T 0 ∃x IsProofOfT (x, pϕq), as required. �

It should be mentioned that the implication in (i) of 8.2 cannot be reversed
(unless T is ω-consistent). See question 26 of the example sheets for the notion of
ω-consistency and a discussion of it.

8.3. Theorem. (Internalization)
If ϕ is a Σ1-sentence and

T ` ϕ↔ �(pψq)

for some Lω-sentence ψ, then

T ` ϕ→ �(pϕq).

Proof. By 7.2.1(ii) we know that

ω |= ϕ⇒ T ` ϕ
and so by definition of �(x), also

(∗) ω |= ϕ→ �(pϕq)

Now, using the assumption that T ` ϕ ↔ �(pψq) one can internalise the proof
of (∗) and show that (∗) actually follows with the aid of the induction principle
formulated in PA. Internalization here essentially means that the coding process
can actually be proved in Peano arithmetic; e.g. we know that the coding process
from section 4 can be done entirely with primitive recursive functions. Then one
shows that every primitive recursive function F : ωn −→ ω is provably recursive
meaning that there is a Σ1-formula γ(x1, ..., xn, y) such that

PA ` ∀x̄∃!y γ(x̄, y) and PA ` γ(ā, F (ā)) for all ā ∈ ωn.
This is a tedious process which is skipped here. Instead we refer to [Rautenberg,

section 7.1]. �

84 Gödel’s second incompleteness theorem

8.4. Proof of 8.1
From the proof of 7.2.4 we know that we may choose ¬βT as a Σ1-sentence. Now
recall that

Ω ` βT ←→ ∀u ¬ (IsProofOfT (u, pβT q)),

so
Ω ` ¬βT ←→ ∃u IsProofOfT (u, pβT q),

i.e.

(∗) Ω ` ¬βT ←→ �(pβT q)

and so

(∗∗) Ω ` ¬βT ←→ ∇(p¬βT q)

By (∗) and 8.3 we know that

(+) T ` ¬βT −→ �(p¬βT q).

Now (+) and (∗∗) imply

(†) T ` ¬βT −→ �(p¬βT q) ∧∇(p¬βT q).

in particular
T ` ¬βT −→ ¬ConT .

(Recall that ConT is ¬∃x
(
�(x) ∧∇(x)

)
). Thus

T ` ConT −→ βT

and as βT is independent of T , we cannot have T ` ConT . �

As was outlined by Gödel, the statement of the second incompleteness theorem
can itself be proved inside T . This is also achieved via internalization, i.e. one can
show

T ` ConT −→ ¬�T (pConT q).

Note that this does not contradict 8.3, since ConT is not Σ1; again, for reference see
[Rautenberg, section 7], which in addition gives several variants and generalizations
of Gödel’s second incompleteness theorem (e.g. ZFC is addressed, which in fact is
easier to handle then PA, because the internalization process is easier)

Gödel’s second incompleteness theorem 85

References

[BCSS] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real
computation. Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp.

[Cutland] Nigel Cutland. Computability. Cambridge University Press, Cambridge, 1980. An in-

troduction to recursive function theory.
[DaPuRo] Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for exponen-

tial diophantine equations. Ann. of Math. (2), 74:425–436, 1961. 79

[Goedel63] Kurt Gödel. On formally undecidable propositions of Principia Mathematica and
related systems. Translated by B. Meltzer, with an introduction by R. B. Braithwaite.

Basic Books Inc. Publishers, New York, 1963.
[Goedel31] Kurt Gödel. Über formal unentscheidbare Sätze der principia mathematica und ver-

wandter Systeme. I. Monatsh. Math., 149(1):1–30, 2006. Reprinted from Monatsh.

Math. Phys. 38 (1931), 173–198 [MR1549910], With an introduction by Sy-David Fried-
man. 57

[Grzegorczyk] Andrzej Grzegorczyk. Undecidability of some topological theories. Fund. Math.,

38:137–152, 1951. 71
[Matija] Ju. V. Matijasevič. The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR,

191:279–282, 1970. 79

[Muraws1999] Roman Murawski. Recursive functions and metamathematics, volume 286 of
Synthese Library. Kluwer Academic Publishers Group, Dordrecht, 1999. Problems of

completeness and decidability, Gödel’s theorems.
[Odifreddi] Piergiorgio Odifreddi. Classical recursion theory, volume 125 of Studies in Logic and

the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1989. The

theory of functions and sets of natural numbers, With a foreword by G. E. Sacks.
[Putnam] Hilary Putnam. Decidability and essential undecidability. J. Symb. Logic, 22:39–54,

1957.

[Rautenberg] Wolfgang Rautenberg. A concise introduction to mathematical logic. Universitext.
Springer, New York, second edition, 2006. With a foreword by Lev Beklemishev. 83, 84

[Robinson] Julia Robinson. The undecidability of algebraic rings and fields. Proc. Amer. Math.

Soc., 10:950–957, 1959. 71
[Smullyan] Raymond M. Smullyan. Gödel’s incompleteness theorems, volume 19 of Oxford Logic

Guides. The Clarendon Press Oxford University Press, New York, 1992.

[Tarski] Alfred Tarski. Undecidable theories. Studies in Logic and the Foundations of Mathe-
matics. North-Holland Publishing Company, Amsterdam, 1953. In collaboration with

Andrzej Mostowski and Raphael M. Robinson.
[PrLog] Marcus Tressl. Predicate logic, 2016. Lecture Notes http://personalpages.

manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf.

[Ziegler] Martin Ziegler. Mathematische Logik. Mathematik Kompakt. [Compact Mathematics].
Birkhäuser Verlag, Basel, 2010.

http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf
http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/teaching/Goedel/PredicateLogic.pdf

Index

N = {1, 2, 3, ...},
N0 = {0, 1, 2, 3, ...},
P(X) = power set of X,

Maps(X,Y) = set of all maps X → Y ,

(L,R), 7

(a)i, 15

AR, 6

ER, 6

FM , 31

Ini , 1

PΣ, 56

RM , 31

R is represented by ϕ in Σ, 39

[l] for a letter l, 47

�T (x), 82

∆0-formula, 72

∆0(T), 73

∆ω
0 , 73

∆ω
m, 73

ΠF , 12

Π1-formula, 72

Πm, 72

Πm(T), 73

Πω
m, 73

Σ-representable, 39

Σ-represented, 39

ΣF , 12

Σ1-formula, 72

Σm, 72

Σm(T), 73

Σω
m, 73

β-function, 9

`, 15

∃1-formula, 78

∃ω1 -formula, 78

∨ni=1ϕi, 28

∧ni=1ϕi, 28

Seq, 16

Ω, 41

1R, 1

N = {1, 2, 3, ...}, 1

Fml(L) or Fml(L), 27

Fmlk(L), 27

Fr(ϕ), 29

Fr(t), 29

Num, 56

ProofΣ, 52

Sen(L), 29

Th(M), 53

card(L), 27

tm(L) or tm(L), 25

tmk(L), 25

IsProofOfΣ, 62

InfF , 12

Pair(x, y), 7

SupF , 12

L -formula, 27

L -terms, 25

L ⊆ L ′, 25

Lω , 41

M satisfies ϕ(a1, . . . , an), 32

|=, 32

Σ |= Φ, 32

M |= Σ(ā), 32

M |= ϕ(a1, . . . , an), 32

µx, 1

∇(x), 82

ω = {0, 1, 2, 3, ...}, 1

ϕ represents F in Σ, 39

ϕ represents R in Σ, 39

ϕ(a1, . . . , an) holds in M , 32

ϕ(x1, . . . , xn) ∈ Fml(L), 30

ϕ(x1/t1, . . . , xn/tn), 30

ϕ[Mn], 60

≺ a1, ..., an �, 15

pΣq, pTq, etc., 48

pϕq, 47

ptq, 47

a, 39

n, 39

IsProofOfΣ(x, y), 62

`, 33

`L , 33

a �i, 16

a �i, 16

c(ϕ), 28

c(t), 26

cM , 31

n-ary, 24

t(x1, . . . , xn) ∈ tm(L), 30

t(x1/t1, . . . , xn/tn), 30

tM (a1, . . . , an), 31

x is free in ϕ for y, 30

y is substitutable for x in ϕ, 30

at-Fml(L), 26

|M |, 31

F , 16

a ̂ b, 16

PA, 57

Ackermann function, 18

almost subtraction, 5

alphabet, 24

countable, 24

finite, 24

infinite, 24

uncountable, 24

anti-diagonal, 57

arithmetic sets, 60

arity, 24

of a function symbol, 24

of a predicate symbol, 24

86

Gödel’s second incompleteness theorem 87

of a relation symbol, 24

atomic L -formula, 26

Axiom

logical, 33

axiom system of T , 53

bound occurrence, 29

bounded µ-recursion, 6

bounded quantification, 6

Cantor’s Anti-diagonal lemma, 57

cardinality of an alphabet of a language, 25

carrier of a structure, 31

Church’s theorem, 57

closed term, 29

code

of a formula, 47

of a term, 47

cofinite, 4

collection schema, 74

Compactness Theorem, 36

complete theory, 53

Completeness Theorem, 35

complexity

of an L -formula, 28

of an L -term, 26

computable

function, 2

computably enumerable

set, 22

concatenation function, 16

consistent, 34

constant symbol, 24

constant term, 29

Converse of the representability theorem,

58

coordinate function, 1, 15

countable

alphabet, 24

language, 27

structure, 31

decidable

set of sentences, 53

structure, 68

theory, 53

deduction, 33

deductive closure, 53

deductively closed, 53

definable

sets definable in M , 60

structures definable in M , 65

definition of L + in L , 65

diophantine equation, 78

domain of a structure, 31

embedding, 42

equality symbol, 24

extension of languages, 25

finite

alphabet, 24

language, 27

structure, 31

Fixed Point Lemma, 60

formal proof, 33

of ϕ, 34

formula, 27

atomic, 26

free

x is free in ϕ for t, 30

occurrence, 29

variable, 29

function symbol, 24

Gödel number, 47

Gödel’s β-function, 9

Gödel’s First Incompleteness Theorem, 57

Gödel’s second incompleteness theorem, 82

Hilbert’s 10th problem for R holds, 78

homomorphism, 41

inconsistent, 34

independent of Σ, 62

induction statements, 57

infinite

alphabet, 24

language, 27

structure, 31

interpretable in M , 65

interpretation

definition of a structure in another

structure, 65

dimension of an interpretation, 65

of a language in another language, 65

of a structure in another structure, 65

of constant symbols, 31

of function symbols, 31

of relation symbols, 31

universe of an interpretation, 65

Kleene’s Enumeration theorem, 77

language, 27

countable, 27

finite, 27

infinite, 27

uncountable, 27

language extension, 25

Lemma of self-reference, 61

length function, 15

letter, 24

logical Axioms, 33

logical symbols, 24

logically implies, 32

Matijasevič,MRDP theorem, 79

model

at (a1, . . . , an), 32

88 Gödel’s second incompleteness theorem

Modus Ponens, 33

MRDP-theorem, 79

numerical language, 39

Pairing Function, 7

Peano Arithmetic, 57

predicate symbol, 24

prenex normal form, 36

Prenex Normal Form Theorem, 37

primitive recursion from H with initial

value h, 11

primitive recursive

function, 11

relation, 11

set, 11

proof, 33

of ϕ, 34

proof number, 52

proves, 33

quantifier free, 27

quantifiers, 28

Recursion on previous values, 17

recursive

function, 2

interpretation, 68

relation, 2

set, 2

set of formulas, 52

recursively axiomatizable, 53

recursively enumerable

set, 22

set of formulas, 52

relation symbol, 24

Representability Theorem, 43

represented in Σ, 39

restriction function, 16

Robinson Arithmetic, 41

satisfiable, 32

scope, 29

sentence, 29

sequence number, 15

set of variables, 24

signature, 27

similarity type, 25

Soundness Theorem, 35

standard model, 41

strongly undecidable, 68

structure, 31

carrier of, 31

countable, 31

domain of, 31

finite, 31

infinite, 31

size of, 31

uncountable, 31

universe of, 31

subformula, 28

substitutable, 30
substitution, 30

symbol, 24
symbol number, 47

Tarski’s theorem on strongly undecidable

structures, 69
Tarski’s Undefinability of Truth, 62

term, 25

closed, 29
constant, 29

term representing a function, 39
Theorems

Unique Readability Theorem

for formulas, 27
for terms, 26

theorems

Cantor’s Anti-diagonal lemma, 57
Church’s theorem, 57

Compactness Theorem, 36

Completeness Theorem, 35
Converse of the representability theorem,

58

Fixed Point Lemma, 60
Gödel’s First Incompleteness Theorem,

57
Gödel’s second incompleteness theorem,

82

Kleene’s Enumeration theorem, 77
MRDP-theorem, 79

Negation Theorem, 22

Prenex Normal Form Theorem, 37
Recursion on previous values, 17

Representability Theorem, 43

Soundness Theorem, 35
Tarski’s theorem on strongly undecidable

structures, 69

Tarski’s Undefinability of Truth, 62
theory, 53

complete, 53
of a structure, 53

uncountable
alphabet, 24
language, 27

structure, 31

undecidable
set of sentences, 53

strongly, 68
structure, 68
theory, 53

undecidable in Σ, 62
Unique Readability Theorem

for formulas, 27

for terms, 26
universal polynomial, 80

universe of a structure, 31

Gödel’s second incompleteness theorem 89

variable, 24

bound occurrence, 29

free, 29
free occurrence, 29

90 Gödel’s second incompleteness theorem

The University of Manchester, School of Mathematics, Oxford Road, Manchester

M13 9PL, UK

Homepage: http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/index.php

Email address: marcus.tressl@manchester.ac.uk

http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/index.php

	1. Recursive functions
	1.1. Definition and the Church-Turing thesis
	1.2. The pairing function and Gödel's -function
	1.3. Primitive recursion
	1.4. Sequence numbers
	1.5. Recursively enumerable sets

	2. Formal proofs and the completeness theorem
	2.1. Languages and formulas
	2.2. Structures and Tarski's definition of truth
	2.3. Logical axioms and the definition of a formal proof
	2.4. Soundness and the Completeness Theorem
	2.5. Propositional Tautologies and the Prenex Normal Form

	3. Representation of recursive functions in arithmetic
	4. Arithmetisation of Logic: Gödelisation
	5. Undecidability and incompleteness
	5.1. Recursively axiomatizable and decidable theories
	5.2. The first incompleteness theorem
	5.3. Undecidable sentences

	6. Applications to decision problems
	6.1. Interpretations
	6.2. Strongly undecidable structures

	7. The Arithmetic Hierarchy
	7.1. The structure of arithmetic formulas
	7.2. Recursion revisited
	7.3. Kleene's Enumeration theorem
	7.4. Hilbert's 10th problem

	8. Gödel's second incompleteness theorem
	References
	Index

