
DIFFERENTIALLY LARGE FIELDS

OMAR LEÓN SÁNCHEZ AND MARCUS TRESSL

Abstract. We introduce the notion of differential largeness for fields
equipped with several commuting derivations (as an analogue to largeness
of fields). We lay out the foundations of this new class of “tame” differential
fields. We state several characterizations and exhibit plenty of examples and
applications. Our results strongly indicate that differentially large fields will
play a key role in differential field arithmetic. For instance, we characterise
differential largeness in terms of being existentially closed in their power se-
ries field (furnished with natural derivations), we give explicit constructions of
differentially large fields in terms of iterated powers series, we prove that the
class of differentially large fields is elementary, and we show that differential
largeness is preserved under algebraic extensions, therefore showing that their
algebraic closure is differentially closed.
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1. Introduction

Recall that a field K is called large (or ample) if every irreducible variety defined
over K with a smooth K-rational point has a Zariski-dense set of K-rational points.
Equivalently, every variety defined over K that has a K((t))-rational point, also has
a K-rational point. Large fields constitute one of the widest classes of tame fields;
namely, every class of fields that serves as a locality, in the sense that universal
local-global principles hold, consists entirely of large fields, cf. [BSF13, Pop13]. For
example, all local fields are large and so are pseudo-classically closed fields (like PAC
or PRC fields), the field of totally real numbers, as well as the quotient field of any
local Henselian domain [Pop10]. On the other hand, number fields and algebraic
function fields are not large by Faltings’ theorem and its function field version.
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One of the most remarkable Galois-theoretic applications of large fields, due to Pop
[Pop96], states every finite split embedding problem over large fields has proper
regular solutions. In particular, the regular inverse Galois problem is solvable over
all large fields. Pop’s work (and the work of many others) demonstrates that “over
large fields one can do a lot of interesting mathematics”. For instance, large fields
have been widely used to tackle long-standing problems in field arithmetic: inverse
Galois theory, torsors of finite groups, elementary theory of function fields, extremal
valued fields, to name a few. We refer the reader to Pop’s survey [Pop13] for earlier
and current developments on the subject, and to [BSF13] for a list of open problems.

In this paper we introduce the notion of differential largeness in the class of
differential fields of characteristic 0 in several commuting derivations. We lay out
the foundations of this new and exciting class of “tame” differential fields, prove
several characterisations (cf. 4.3, 4.7), and exhibit many examples (cf. 4.7, 4.8(ii),
5.2, 5.12, 5.17) and applications (cf. 4.8(iii), 5.7, 5.8, 5.12, 5.13, 5.14, 5.16, 5.18).
An outline of these is given in the rest of the introduction.

In order to give the definition of a differentially large field we need one piece of
terminology. We say that a field K is existentially closed (e.c.) in L if every variety
defined over K that has an L-rational point, also has a K-rational point. Hence
a field is large just if it is e.c. in its Laurent series field. Similarly, a differential
field K (of characteristic 0 throughout, in m ≥ 1 commuting derivations) is e.c. in
a differential field extension L if every differential variety defined over K that has
an L-rational differential point, also has a K-rational differential point. (See 2.1
for other characterizations of this property.)

A differential field is differentially large if it is large as a pure field and for every
differential field extension L/K, if K is e.c. in L as a field, then it is e.c. in L as a
differential field. For example differentially closed fields (aka constrainedly closed in
Kolchin terminology) and closed ordered differential fields in the sense of [Sin78b]
are differentially large.

In Theorem 4.3, we establish several equivalent formulations of differential large-
ness that justify why indeed this is the right differential analogue of largeness. For
instance, we characterise them in terms of differential varieties having a Kolchin-
dense set of rational points as long as they have suitable “smooth” rational points.
In addition, we prove (in analogy to the characterisation of largeness in terms of
being e.c. in its Laurent series field) that a differential field K is differentially large
just if it is e.c. in its power series field K((t1, . . . , tm)) as differential fields. The
derivations on the power series field are given by the unique commuting derivations
δ1, . . . , δm extending the ones on K that are compatible with infinite sums and
satisfy δi(tj) =

dtj
dti

.
A key tool in establishing our formulations of differential largeness (and fur-

ther results) is the introduction of a twisted version of the classical Taylor mor-
phism associated to a ring homomorphism ϕ : A −→ B for a given differential ring
A. We explain this briefly in the case of one derivation δ. Recall that the Tay-
lor morphism Tϕ(a) =

∑
k≥0

ϕ(δk(a))
k! tk defines a differential ring homomorphism

(A, δ) −→ (B[[t]], d
dt ). Typically this is applied when A is a differential K-algebra

for a differential field K and ϕ is a (not necessarily differential) K-algebra homo-
morphism A −→ K (so B = K). If the derivation on K is trivial, then Tϕ is in
fact a (differential) K-algebra homomorphism and in this context it was used by
Seidenberg for example, to establish his embedding theorem for differential fields
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into meromorphic functions. However, if the derivation on K is not trivial, then
Tϕ is not a K-algebra homomorphism, i.e, it is not an extension of ϕ. On the other
hand, Tϕ can be “twisted” in order to obtain a natural differential K-algebra homo-
morphism T ∗ϕ : (A, δ) −→ (K[[t]], ∂), where ∂ is the natural derivation extending
the given one on K and satisfying ∂(t) = 1. This is established in 3.4, where we use
it to derive the following result that is of independent interest (for instance, in the
analysis of formal solutions to PDEs, cf. [San17]), and is deployed in most parts of
this article (in the more general form 3.5).

Theorem. Let (K, δ) be a differential field of characteristic zero that is large as a
field and let (S, δ) be a differentially finitely generated K-algebra. If there is a K-
algebra homomorphism S → L for some field extension L/K in which K is e.c. (as
a field), then there is a differential K-algebra homomorphism (S, δ)→ (K[[t ]], ∂).

Differentially large fields will play a very similar role in differential field arithmetic
to that played by large fields in field arithmetic (of characteristic 0). The principal
indicators for this are established in this paper (in Sections 4 and 5). We show that

(a) A differential fieldK is differentially large if and only if it is existentially closed
in its power series field K((t1, . . . , tm)) furnished with m natural derivations
extending those on K satisfying ∂i(tj) =

dtj
dti

. See 4.3.

(b) Every large field equipped with commuting derivations has an extension to a
differentially large field L such that K is e.c. in L as a pure field. See 4.8.

(c) Differentially large fields are first order axiomatisable (see 4.7 and also 6.4 for
a concrete algebro-geometric description), and the elimination theory of the
underlying field transfers to the differential field; see 4.8.

(d) Differential largeness is preserved under algebraic extensions. Thus, the alge-
braic closure of a differentially large field is differentially closed. This provides
many new differential fields with minimal differential closures. see 5.12.

(e) Differentially large fields (and differentially closed fields) can be produced by
iterated power series constructions. See 5.2.

(f) The existential theory of the class of differentially large fields is the existen-
tial theory of the differential field Q((t 1))((t 2)) equipped with its natural
derivations, see 5.7.

(g) Differentially large fields are Picard-Vessiot closed, see 5.9.

(h) Connected differential algebraic groups defined over differentially large fields
have a Kolchin-dense set of rational points, 5.15.

(i) A differentially large field is PAC (at the field level) if and only it is pseudo
differentially closed, see 5.17.

Large fields have also made an appearance in the (inverse) Picard-Vessiot theory
of linear ordinary differential equations. In [BHHP20], it is shown that if K is a
large field of infinite transcendence degree, then every linear algebraic group over
K is a Picard-Vessiot group over (K(x), d

dx ). We envisage that differentially large
fields will make a similar appearance in the Parameterised Picard-Vessiot theory
and its differential (constrained) coholomogy. The first application in this direction
already appears in a paper of the first author with A. Pillay [LSP21] using an earlier
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draft of the present paper. They show that if an ordinary differential field (K, δ)
is differentially large and bounded as a field (i.e., has finitely many extensions of
degree n, for each n ∈ N), then for any linear differential algebraic group G over
K the differential Galois cohomology H1

δ (K,G) is finite. This can be thought of
as a differential analogue of the classical result of Serre stating that if a field K
is bounded then the Galois cohomology H1(K,G) is finite for any linear algebraic
group over K.

2. Preliminaries

All rings and algebras in this article are assumed to be commutative and unital.
We also assume that all our fields are of characteristic zero.

In this section we briefly summarize the key notions and terminology, mostly
from differential algebra, that we will freely use throughout the paper (especially in
Section 4 where we give several equivalent formulations of differential largeness). We
make a few remarks on the notion of existentially closed differential ring extensions,
we recall the Structure Theorem for finitely generated differential algebras, and give
a quick review of jets and prolongation spaces.

Recall that a derivation on a ring R is an additive map δ : R → R satisfying the
Leibniz rule

δ(rs) = δ(r)s+ rδ(s) for all r, s ∈ R.
Throughout a differential ring R = (R,∆) is a ring R equipped with a distinguished
set of commuting derivations ∆ = {δ1, . . . , δm}. Usually the order of the derivations
does matter, but it will either be clear from the context or we make it explicit. We
also allow the case when m = 0, in which case we are simply talking of rings with
no additional structure.

Given a differential ring R, a differential R-algebra A is an R-algebra equipped
with derivations ∆ = {δ1, . . . , δm} such that the structure map R → A is a dif-
ferential ring homomorphism. If L is another differential R-algebra which is also
a field, then an L-rational point of A is a differential R-algebra homomorphism
A −→ L. This terminology is in line with the standard language of algebraic ge-
ometry, where A is thought of as R{x1, . . . , xn}/I, with I a differential ideal of
the differential polynomial ring R{x1, . . . , xn}, and the differential R-algebra ho-
momorphisms A −→ L are coordinate free descriptions of the common differential
zeroes a ∈ Ln of the polynomials from I (via evaluation at a).

For the basics in differential algebra, such as differential field extensions and
differentially closed fields (also called constrainedly closed which is the differen-
tial analogue of algebraically closed), we refer the reader to the excellent book of
Kolchin [Kol73].

2.1. Existentially closed extensions. Fix m ≥ 0. Let B = (B, δ1, . . . , δm) be
a differential ring and let A be a differential subring of B. (If m = 0, B is just a
ring and A is a subring.) Then A is said to be existentially closed (e.c.) in
B if for every n ∈ N and all finite collections Σ,Γ ⊆ A{x1, . . . , xn} of differential
polynomials in m derivations and n differential variables, if there is a common
solution in Bn of P = 0 & Q 6= 0 (P ∈ Σ, Q ∈ Γ), then such a solution may also be
found in An.

We are mainly interested in the case when A = K is a differential field and in this
case we will use the following properties (in the case m = 0, differentially finitely
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generated, differential field, etc. should be understood as finitely generated, field,
etc., and differentially closed field should be understood as algebraically closed field
and Kolchin topology should be understood as Zariski topology). We make heavy
use of the following properties:
(i) If K is e.c. in B, then one easily checks that B is a domain and that K is also

e.c. in qf(B).

(ii) If B is also a differential field, then K is e.c. in B if and only if every dif-
ferentially finitely generated K-algebra S that possesses a differential point
S −→ B, also possesses a differential point S −→ K. The reason is that
when B is a field then the inequalities Q 6= 0 in the definition of existentially
closed above may be replaced by the equality y·Q(x) − 1 = 0, where y is a
new variable.

(iii) If B is a differentially finitely generated K-algebra then the following are
equivalent.
(a) K is e.c. in B.
(b) B is a domain and for each b ∈ B, if f(b) = 0 for every differential

K-rational point f : B −→ K, then b = 0.[1] (In particular B has a
differential K-rational point.) We refer to this property as B has a
Kolchin dense set of differential K-rational points.

(c) For all n ∈ N, each differential prime ideal p of K{x}, x = (x1, . . . , xn)
with B ∼=K K{x}/p and each differential field L containing K, the set
VK = {a ∈ Kn | p(a) = 0} is dense in VL = {a ∈ Ln | p(a) = 0} for the
Kolchin topology of Ln (having zero sets of differential polynomials
from L{x} as a basis of closed sets).

(d) There is some n ∈ N, a differential prime ideal p of K{x}, x =
(x1, . . . , xn) with B ∼=K K{x}/p and a differentially closed field M con-
tainingK such that the set VK is dense in VM for theK-Kolchin topology
ofMn (having the zero sets inMn of differential polynomials from K{x}
as a basis of closed sets).

Proof of (iii). We may assume that B is a domain throughout and write B =
K{x}/p, x = (x1, . . . , xn). The arguments below go through for any choice of
these data. By the differential basis theorem there is some finite Φ ⊆ K{x}
such that p is the radical differential ideal d

√
Φ generated by Φ. For a differ-

ential field L containing K we write VL = {a ∈ Ln | p(a) = 0} and IL = {Q ∈
L{x} | Q|VL

= 0}. If L is differentially closed, then the differential Nullstel-
lensatz [Kol73, Ch. IV, section 3, Theorem 2, p. 147] says IL = d

√
p (in L{x}).

(a)⇒(b). If K is e.c. in B and b ∈ B \ {0}, then take Q ∈ K{x} with
b = Q(x + p). Since in B we have a solution of Φ = 0 & Q 6= 0, there is
also a solution a ∈ Kn and evaluation K{x} −→ K at a factors through a
differential K-rational point B −→ K that is non-zero at b.

(b)⇒(c). LetM be a differentially closed field containing L such that the fixed
field of the group of differential K-automorphisms of M is K (for example M
could be a sufficiently saturated differentially closed field or, in Kolchin’s ter-
minology, a universal differential extension of K). It suffices to show that VK

[1]In other words, in the subspace of Spec(B) consisting of differential prime ideals, the set of
maximal and differential ideals with residue field K, is dense.
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is dense in VM for the Kolchin topology of Mn. Let W be the closure of VK
in Mn for the Kolchin topology of Mn and let J = {Q ∈ M{x} | Q|W = 0}.
Then every differential K-automorphism of M fixes W set wise and so also
fixes J set wise. Using our assumption onM we see that the differential field of
definition of J is contained in K; hence the differential ideal J is generated as
an ideal by J∩K{x}. On the other hand we have IM∩K{x} = p. AsW ⊆ VM
we get p ⊆ IM ⊆ J and we claim that p = J ∩K{x}. Take P ∈ J ∩K{x}.
Then P vanishes on VK , which says that the element P + p ∈ B is mapped to
0 by all differential K-rational points of B. By (b), this implies P + p = 0 in
B, in other words P ∈ p. We have shown that p = IM ∩K{x} = J ∩K{x},
which implies W = VM as required.
(c)⇒(d) is trivial.
(d)⇒(a). Let Σ = {P1, . . . , Ps},Γ ⊆ K{y} be finite, y = (y1, . . . , yr) and
assume there is some c ∈ Br with Σ(c) = 0 & Γ(c) 6= 0. We need to
find some a ∈ Kr with Σ(a) = 0 & Γ(a) 6= 0. Since B is a domain we
may assume that Γ = {Q(y)} is a singleton. We write ci = Hi(x + p)
with Hi ∈ K{x} and H = (H1, . . . ,Hr). Then Σ(c) = 0 & Q(c) 6= 0
means P1(H), . . . , Ps(H) ∈ p and Q(H) /∈ p. Since M is differentially
closed and Q(H) /∈ p = K{x} = IM ∩ K{x} there is some d ∈ VM with
Q(H(d)) 6= 0. By (d) and because Q(H) ∈ K{x}, there is some b ∈ VK with
Q(H(b)) 6= 0. Since Pi(H) ∈ p we also know Pi(H(b)) = 0. Hence the tuple
a = (H1(b), . . . ,Hr(b)) ∈ Kr solves the given system. �

(iv) Ifm = 0 and B is a finitely generatedK-algebra thenK is e.c. in B if and only
if B is a domain and the set of smooth K-rational points of B is Zariski dense
in the L-rational points for any field L containing K. This is a statement in
classical algebraic geometry (using the formulation (c) of e.c. in (iii)). If in
addition K is a large field, then K is e.c. in B if and only if B is a domain
that has a smooth K-rational point.

If B is a differential K-algebra we will say that K is existentially closed in B
as a field if it is e.c. in B when we forget about the derivations; hence if the above
condition holds true for systems Σ,Γ of ordinary (non-differential) polynomials. If
we want to emphasize that the derivations are to be taken into account we say K
is existentially closed in B as a differential field.

2.2. Structure theorem for finitely generated differential algebras. Let K
be a differential field (of characteristic 0) and let S be a differential K-algebra that
is differentially finitely generated and a domain. Then, by [Tre02], there are K-
subalgebras A,P of S and an element h ∈ A\{0} such that A is a finitely generated
K-algebra, P is a polynomial K-algebra (i.e., P ∼=K K[T ] for some possibly infinite
set T of indeterminates) and the natural homomorphism Ah ⊗K P −→ Sh given
by multiplication, is an isomorphism. Note that in general neither Ah nor P is
differential.

2.3. Definition. Let K be a differential field and let S be a differentially finitely
generated K-algebra that is a domain. A decomposition of S consists of (not
necessarily differential) K-subalgebras A,P such that
(a) A is a finitely generated K-algebra and P is a polynomial K-algebra, and
(b) the natural map A⊗K P −→ S given by multiplication is an isomorphism.



DIFFERENTIALLY LARGE FIELDS 7

If S possesses a decomposition we say that S is composite and we indicate the
data of a decomposition by writing S = A⊗ P .

2.4. Corollary. Let K be a differential field and let S be a differentially finitely
generated K-algebra. Let f : S −→ L be a differential K-algebra homomorphism to
some differential field extension L of K.

(i) There is a differential K-subalgebra S0 ⊆ L that is composite and contains the
image of f .

(ii) If K is e.c. in L as a field, then there is a K-algebra homomorphism S −→ K.

Proof. (i). Let p be the kernel of f . Then S/p is again a differentially finitely
generatedK-algebra and so we may assume that p = 0 and S ⊆ L. By the Structure
Theorem 2.2, Sh ∼=K Ah ⊗K P where A is a finitely generated K-subalgebra of S,
h ∈ A, and P is a polynomial K-algebra, P ⊆ S. As S ⊆ L, we have Ah ⊆ L.
Hence we may take S0 = Sh.

(ii). Take S0 as in (i) and A,P for S0 as in 2.3. Since A is a finitely generated
K-subalgebra of L and K is e.c. in L as a field, there is a K-algebra homomorphism
A → K. Since P is a polynomial K-algebra there is also a K-algebra homomor-
phism P −→ K. Hence by the universal property of the tensor product there is a
K-algebra homomorphism S −→ K. �

2.5. Differential Varieties, Jets and Prolongations. We recall the basic ob-
jects of differential algebraic geometry in the sense of Kolchin [Kol73], and the
constructions of jets and prolongations. Some parts are notationally heavy but we
try to only introduce those that we will need (and freely use) in coming sections.

We work inside a (sufficiently saturated or universal) differentially closed field
(U,∆), and K denotes a differential subfield of U. A Kolchin-closed subset of Un
is the common zero set of a set of differential polynomials over U in n differential
variables; such sets are also called affine differential varieties. If the definining
polynomials can be chosen with coefficients in K we say the set is defined over K.

By a differential variety V we mean a topological space which has as finite
open cover V1, . . . , Vs with each Vi homeomorphic to an affine differential variety
(inside some power of U) such that the transition maps are regular as differential
morphisms; see [LS13, Chap. 1, section 7]. We will say that the differential variety
is over K when all objects and morphisms can be defined over K. This definition
also applies to our use of algebraic varieties, replacing Kolchin-closed with Zariski-
closed in powers of U (recall that U is algebraically closed and a universal domain
for algebraic geometry in Weil’s “foundations” sense).

2.6. We fix integers n > 0 and r ≥ 0, and set

Γn(r) = {(ξ, i) ∈ Nm × {1, . . . , n} |
m∑
i=1

ξi ≤ r}.

The r-th nabla map ∇r : Un → Uα(n,r) with α(n, r) := |Γn(r)| = n ·
(
r+m
m

)
is

defined by

∇r(x) = (δξxi : (ξ, i) ∈ Γn(r)),
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where x = (x1, . . . , xn) and δξ = δξ11 · · · δξmm . We order the elements of the tuple
(δξxi : (ξ, i) ∈ Γn(r)) according to the canonical orderly ranking of the indetermi-
nates δξxi; that is,

(2.1) δξxi < δζxj ⇐⇒
(∑

ξk, i, ξ1, . . . , ξm

)
<lex

(∑
ζk, j, ζ1, . . . , ζm

)
Let Ur := U[ε1, . . . , εm]/(ε1, . . . , εm)r+1 where the εi’s are indeterminates, and

let e : U→ Ur denote the ring homomorphism

x 7→
∑

ξ∈Γ1(r)

1

ξ1! · · · ξm!
δξ(x) εξ11 · · · εξmm .

We call e the exponential U-algebra structure of Ur. To distinguish between the
standard and the exponential algebra structure on Ur, we denote the latter by Uer.

2.7. Definition. Given an algebraic variety X the r-th prolongation τX is the
algebraic variety given by the taking the U-rational points of the classical Weil
descent (or Weil restriction) of X ×UUer from Ur to U. Note that the base change
V ×UUer is with respect to the exponential structure while the Weil descent is with
respect to the standard U-algebra structure.

For details and properties of prolongation spaces we refer to [MPS08, §2]; for a
more general presentation see [MS10]. In particular, it is pointed out there that
the prolongation τrX always exist when X is quasi-projective (an assumption that
we will adhere to later on). A characterising feature of the prolongation is that for
each point a ∈ X = X(U) we have ∇r(a) ∈ τrX. Thus, the map ∇r : X → τrX
is a differential regular section of πr : τrX → X the canonical projection induced
from the residue map Ur → U. We note that if X is defined over the differential
field K then τrX is defined over K as well.

In fact, τr as defined above is a functor from the category of algebraic varieties
over K to itself, and the maps πr : τrX → X and ∇r : X → τrX are natural. The
latter means that for any morphism of algebraic varieties f : X → Y we get

(2.2) f ◦ πr,X = πr,Y ◦ τrf and τrf ◦ ∇r,X = ∇r,Y ◦ f.
If G is an algebraic group, then τrG also has the structure of an algebraic group.
Indeed, since τr commutes with products, the group structure is given by

τr(∗) : τrG× τrG→ τrG

where ∗ denotes multiplication in G. Moreover, by the right-most equality in (2.2),
the map ∇r : G → τrG is an injective group homomorphism. Hence, ∇r(G) is a
differential algebraic subgroup of τrG. We will use this in 5.15 below.

Assume that V is a differential variety which is given as a differential subvariety
of a quasi-projective algebraic variety X. We define the r-th jet of V to be the
Zariski-closure of the image of V under the r-th nabla map ∇r : X → τrX; that is,

Jetr V = ∇r(V )
Zar
⊆ τrX.[2]

The jet sequence of V is defined as (Jetr V : r ≥ 0). Note that this sequence
determines V , indeed

V = {a ∈ X : ∇r(a) ∈ Jetr V for all r ≥ 0}.

[2]Notice that Jetr V is not the jet space defined in [MS10, 5.3].
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2.8. General Assumption. Throughout we assume, whenever necessary for the
existence of jets, that our differential varieties are given as differential subvarieties
of quasi-projective algebraic varieties. Of course, in the affine case this is always
the case. It is worth noting, as it will be used in 5.15, that for connected differential
algebraic groups this is also true. Indeed, by [Pil97, Corollary 4.2(ii)] every such
group embeds into a connected algebraic group and the latter is quasi-projective
by Chevalley’s theorem.

3. The Taylor Morphism

In parallel to the characterization of large fields in terms of being e.c. in Laurent
series, we will prove in 4.3 that differential largeness can be characterized similarly.
For this, we will make use of a twisted Taylor morphism. In this section, we give
a description of this morphism and use it to construct solutions in power series to
systems of differential equations (cf. Corollary 3.5)

3.1. Let (A,∆) be a differential ring with commuting derivations ∆ = {δ1, . . . , δm}.
Recall that given a ring homomorphism ϕ : A → B (where B is a Q-algebra), the
Taylor morphism Tϕ∆ : A→ B[[t ]], where t = (t1, . . . , tm), is defined as

a 7→
∑
α

ϕ(δαa)

α!
t α

where we make use of multi-index notation. Namely, α = (α1, . . . , αm) ∈ Nm,
α! = α1! · · ·αm!, δα = δα1

1 · · · δαm
m , and t α = tα1 · · · tαm

m . It is a straightforward
computation to check that Tϕ∆ is a differential ring homomorphism

(A,∆)→
(
B[[t ]],

d

dt1
, . . . ,

d

dtm

)
.

For every such family of commuting derivations ∆ on A, there is a unique extension
to A[[t ]] such that the derivations commute with meaningful sums[3] and map all
ti’s to 0. We continue to denote these derivations on A[[t ]] by ∆ = {δ1, . . . , δm};
note that they still commute with each other. We work with the derivations δi+ d

dti
,

for i = 1, . . . ,m, on A[[t ]]; again these commute with each other. Assuming that
A is a Q-algebra, we now study the algebraic properties of the Taylor morphism
associated to the evaluation map

ev : A[[t ]]→ A[[t ]], f 7→ f(0, . . . , 0).

For instance, we show that the map from Der(A) to ring endomorphisms of A[[t]]
given by δ 7→ T ev

δ+ d
dt

is a monoid homomorphism when restricted to any submonoid
of commuting derivations. Here the monoid structure on Der(A) is just addition
of derivations (and so is indeed a group), while the monoid structure on ring en-
domorphisms is composition. Note that as a consequence T ev

δ+ d
dt

is a differential
ring isomorphism, because T ev

δ+ d
dt

has compositional inverse T ev
−δ+ d

dt

and T ev
d
dt

is the
identity map on A[[t]]. We state all this more generally below.

We first introduce some convenient notation and terminology. Let ∆ =
{δ1, . . . , δm} and Ω = {∂1, . . . , ∂m} be families of commuting derivations on A.
We say that these families commute if δi commutes with ∂j for all 1 ≤ i, j ≤ m;

[3]in the sense of [Kol73, Chap. 0, section 13, p.30]; specifically if (fi)i∈N is a sequence that
converges to 0 in the (t)-adic topology of K[[t]], then

∑
i fi is meaningful
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when this is the case, we denote by ∆ + Ω the family of commuting derivations on
A given by {δ1 + ∂1, . . . , δm + ∂m}. Note that the natural extensions of ∆ and Ω
to A[[t ]], as discussed above, commute with the family

d

dt
:=

{
d

dt1
, . . . ,

d

dtm

}
.

Therefore, the family of derivations ∆ + Ω + d
dt on A[[t ]] is a commuting family.

3.2. Theorem. Let A be a Q-algebra, and let ∆ and Ω be families of m-many
commuting derivations on A. If ∆ and Ω commute, then

(3.1) T ev
∆+Ω+ d

dt
= T ev

∆+ d
dt
◦ T ev

Ω+ d
dt
.

Proof. For α ∈ Nm we use the multi-index notation

(δ + ∂)α = (δ1 + ∂1)α1 · · · (δm + ∂m)αm , and

(δ + ∂ +
d

dt
)α = (δ1 + ∂1 +

d

dt1
)α1 · · · (δm + ∂m +

d

dtm
)αm .

We use the product order ≤ on Nm given by β ≤ α if and only if βi ≤ αi for
1 ≤ i ≤ m). As the derivations commute, we have the usual binomial identities

(δ + ∂)α =
∑
β≤α

(
α

β

)
δβ∂α−β =

∑
β+γ=α

(
α

β

)
δβ∂γ , and

(δ + ∂ +
d

dt
)α =

∑
ξ≤α

∑
β+γ=ξ

(
α

ξ

)(
ξ

β

)
δβ∂γ

dα−ξ

dt

=
∑

β+γ≤α

(
α

β + γ

)(
β + γ

β

)
δβ∂γ

dα−β−γ

dt
.

Now take f =
∑
ξ aξt

ξ ∈ A[[t ]]. We show that both sides of equation (3.1) applied
to f are equal to

(3.2)
∑
α

 ∑
β+γ≤α

1

β! · γ!
δβ∂γ(aα−β−γ)

 t α.
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We begin with the left-hand-side. By definition, the coefficient at t α of
T ev

∆+Ω+ d
dt

(∑
ξ aξt

ξ
)
is given by

1

α!
ev

(δ + ∂ +
d

dt
)α(
∑
ξ

aξt ξ)

 =

=
1

α!
ev

 ∑
β+γ≤α

(
α

β + γ

)(
β + γ

β

)
δβ∂γ

dα−β−γ

dt
(
∑
ξ

aξt ξ)


=

1

α!
ev

 ∑
β+γ≤α

∑
ξ

(
α

β + γ

)(
β + γ

β

)
δβ∂γ(aξ)

dα−β−γ

dt
(t ξ)


=

1

α!

∑
β+γ≤α

(
α

β + γ

)(
β + γ

β

)
δβ∂γ(aα−β−γ) · (α− β − γ)!

=
∑

β+γ≤α

1

β! · γ!
δβ∂γ(aα−β−γ),

which is the term in (3.2). We now compute the right-hand-side of (3.1), when
applied to f . The coefficient at t α is

1

α!
ev

(δ +
d

dt
)α(T ev

Ω+ d
dt

(
∑
ξ

aξt ξ))

 =

=
1

α!
ev

(δ +
d

dt
)α(
∑
ζ

1

ζ!
ev((∂ +

d

dt
)ζ(
∑
ξ

aξt ξ))t ζ)


=

1

α!
ev

(δ +
d

dt
)α(
∑
ζ

1

ζ!
ev(
∑
γ≤ζ

(
ζ

γ

)
∂γ

dζ−γ

dt
(
∑
ξ

aξt ξ))t ζ)


=

1

α!
ev

(δ +
d

dt
)α(
∑
ζ

1

ζ!
(
∑
γ≤ζ

(
ζ

γ

)
∂γ(aζ−γ) · (ζ − γ)!)t ζ)


=

1

α!
ev

(δ +
d

dt
)α(
∑
ζ

∑
γ≤ζ

1

γ!
∂γ(aζ−γ)t ζ)


=

1

α!
ev

∑
ζ

∑
β≤α

∑
γ≤ζ

1

γ!

(
α

β

)
δβ∂γ(aζ−γ)

dα−β

dt
(t ζ)


=

1

α!

∑
β≤α

∑
γ≤α−β

1

γ!

(
α

β

)
δβ∂γ(aα−β−γ) · (α− β)!

=
∑
β≤α

∑
γ≤α−β

1

β! · γ!
δβ∂γ(aα−β−γ)

=
∑

β+γ≤α

1

β! · γ!
δβ∂γ(aα−β−γ),
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which is the term in (3.2), as required. �

What will be important to us is the following consequence.

3.3. Corollary. For any family of commuting derivations ∆ = {δ1, . . . , δm} on a
Q-algebra A, the Taylor morphism of the evaluation map ev : A[[t ]] −→ A at 0 is
an isomorphism of differential rings

T ev
∆+ d

dt
: (A[[t ]],∆ +

d

dt
)→ (A[[t ]],

d

dt
).

Its compositional inverse is T ev
−∆+ d

dt
, where −∆ is the family of commuting deriva-

tions {−δ1, . . . ,−δm}. Furthermore, T ev
∆+ d

dt
is also a differential isomorphism

(A[[t ]],∆)→ (A[[t ]],∆).

Proof. We recall that T ev
∆+ d

dt
is a differential homomorphism (A[[t ]],∆ + d

dt ) →
(A[[t ]], d

dt ). By Theorem 3.2, we have

T ev
∆+ d

dt
◦ T ev
−∆+ d

dt
= T ev

d
dt

= T ev
−∆+ d

dt
◦ T ev

∆+ d
dt
.

It is easy to check that T ev
d
dt

is the identity on A[[t ]]. Hence, T ev
−∆+ d

dt
is the compo-

sitional inverse of T ev
∆+ d

dt
.

It follows that T ev
−∆+ d

dt
is also a differential isomorphism (A[[t ]], d

dt ) →
(A[[t ]],∆ + d

dt ), in other words that T ev
−∆+ d

dt
◦ d

dti
= (δi + d

dti
) ◦ T ev

−∆+ d
dt
. Now

d
dti
◦T ev
−∆+ d

dt
= T ev

−∆+ d
dt
◦ (−δi+ d

dti
), because T ev

−∆+ d
dt

is a differential isomorphism

(A[[t ]],−∆ + d
dt )→ (A[[t ]], d

dt ). It follows that

T ev
−∆+ d

dt
◦ d

dti
= δi ◦ T ev

−∆+ d
dt

+ T ev
−∆+ d

dt
◦ (−δi +

d

dti
),

which implies T ev
−∆+ d

dt
◦ δi = δi ◦T ev

−∆+ d
dt
, as claimed in the “furthermore” part. �

We now use 3.3 to introduce a twisting of the Taylor morphism.

3.4. The twisted Taylor morphism. We assume all derivations commute. Let
A be a differential ring with derivations ∆ = {δ1, . . . , δm} and let B be a Q-algebra
and a differential ring with derivations Ω = {∂1, . . . , ∂m}. Let ϕ : A −→ B be a
(not necessarily differential) ring homomorphism. We write ∂i again for the ex-
tension of ∂i to B[[t ]], t = (t1, . . . , tm) obtained from differentiating coefficients
as explained in 3.1. Let ev : B[[t ]] −→ B be the evaluation map at 0. If we equip
B[[t ]] with the derivations Ω + d

dt as in 3.1 and apply 3.3 for (B,Ω), we get a
differential ring isomorphism

T ev
Ω+ d

dt
: (B[[t ]],Ω +

d

dt
) −→ (B[[t ]],

d

dt
)

with compositional inverse T ev
−Ω+ d

dt
. Consequently, the map

T ∗ϕ := T ev
−Ω+ d

dt
◦ Tϕ∆ : (A,∆)

Tϕ
∆−−→ (B[[t ]],

d

dt
)
T ev

−Ω+ d
dt−−−−−→ (B[[t ]],Ω +

d

dt
)
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is a differential ring homomorphism (A,∆) −→ (B[[t ]],Ω+ d
dt ), called the twisted

Taylor morphism of ϕ. Writing T ∗ϕ(a) =
∑
α bαt

α, the bα’s are explicitly com-
puted as

bα =
1

α!

∑
β≤α

(−1)α−β
(
α

β

)
∂α−β

(
ϕ(δβ(a))

)
.

If a ∈ A and Z{a} denotes the differential subring generated by a in A, one checks
readily that
(i) Tϕ∆(a) = ϕ(a) ⇐⇒ δα(a) ∈ ker(ϕ) for all nonzero α ∈ Nm.
(ii) T ∗ϕ(a) = Tϕ∆(a) ⇐⇒ ϕ(Z{a}) is contained in the ring of Ω-constants of B.
(iii) T ∗ϕ(a) = ϕ(a) ⇐⇒ the restriction of ϕ to Z{a} is a differential homomor-

phism.
Hence by the implication ⇐ in (iii), if R is a differential subring of A such that the
restriction ϕ|R is a differential ring homomorphism (R,∆|R) −→ (B,Ω), then T ∗ϕ
extends ϕ and the part showing solid arrows in the following diagram commutes:

(B[[t ]], d
dt ) (B[[t ]],Ω + d

dt )

(A,∆) (B,Ω)

(R,∆|R)

T ev

Ω+ d
dt
∼=

ev

T∗ϕ

ϕ

Tϕ
∆

ϕ|R

Notice that all solid arrows in this diagram are differential homomorphisms. The
main case for us is when R = K is a field and B is a K-algebra such that ϕ is a
K-algebra homomorphism. In this case the twisted Taylor morphism T ∗ϕ is in fact
a differential K-algebra homomorphism.

3.5. Corollary. Let (K,∆) be a differential field that is large as a field and let S be
a differentially finitely generated K-algebra. If there is a K-algebra homomorphism
S → L for some field extension L/K in which K is e.c. (as a field, there are
no derivations on L given), then there is a differential K-algebra homomorphism
S → K[[t ]], where the derivations on K[[t ]] are ∆ + d

dt as described above.

Proof. Since K as a field is e.c. in L, there is a field extension L′ of L which is an
elementary extension of the field K. We replace L by L′ if necessary and assume
that L is an elementary extension of the field underlying K. As K is large, also
L is large. We equip L with a set of commuting derivations extending those on K
(this is chosen arbitrarily and can always be done).

By Theorem 3.4, there is a differential K-algebra homomorphism S → L((t )).
As L is large and also an elementary extension of the field K, we know that K
is e.c. as a field in L((t )). Hence by 2.4(ii) there is a K-algebra homomorphism
S −→ K. By 3.4 there is a differential K-algebra homomorphism S −→ K[[t ]]. �
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4. Differentially large fields and algebraic characterisations

In this section we introduce the notion of differential largeness and characterize it
in multiple ways, see 4.3 and 4.7. First we recall the notion of largeness of fields.
4.1. Definition. A field K is said to be large (or ample in [FJ08, Rem. 16.12.3])
if every irreducible affine algebraic variety V over K with a smooth K-point has a
Zariski-dense set of K-points (equivalently, K is e.c. in the function field K(V )).
Another equivalent formulation of largeness is that K is e.c. in the formal Laurent
series field K((t)). Examples of large fields are pseudo algebraically closed fields,
pseudo real closed fields and pseudo p-adically closed fields. By [Pop10] the fraction
field of any Henselian local ring is large, in particular for every fieldK and all n ≥ 1,
the power series field K((t1, . . . , tn)) is large.
Convention. Recall that for us a differential field always means a differential field
in m commuting derivations ∆ = {δ1, . . . , δm} and of characteristic 0. For a differ-
ential field (K,∆), we equip the Laurent series field K((t )) with the natural deriva-
tions extending those on K; namely, ∆ + d

dt as described in the previous section.
4.2. Definition. A differential field K is said to be differentially large if it is
large as a pure field and for every differential field extension L of K the following
implication holds:

If K is e.c. in L as a field, then K is e.c. in L as a differential field.

We now provide several algebraic characterisations of differential largeness. These
characterizations resemble to some extent the characterizations of largeness of a
field and serve as justification for the terminology “differentially large”. A further
characterization will be given in 4.7.

4.3. Characterizations of differential largeness Let K = (K,∆) be a differ-
ential field. The following conditions are equivalent.
(i) K is differentially large.

(ii) K is e.c. in K((t )) as a differential field, where the derivations on K((t )) are
the natural ones extending those on K.

(iii) K is e.c. in K((t 1)) . . . ((t k)) as a differential field for every k ≥ 1.

(iv) K is large as a field and every differentially finitely generated K-algebra that
has a K-rational point, also has a differential K-rational point.

(v) K is large and every composite K-algebra in which K is e.c. as a field, has a
differential K-rational point.

(vi) Every composite differential K-subalgebra S of K((t )) has a differential K-
rational point.

(vii) K is large as a field and for every composite K-algebra S = A⊗K P , if A has
a K-rational point, then S has a differential K-rational point.

(viii) K is large as a field and for every composite K-algebra S = A ⊗K P , if the
variety defined by A is smooth and if A has a K-rational point A −→ K, then
S has a differential K-rational point.

(ix) K is large as a field and for every composite K-algebra S = A ⊗K P , if A
has a smooth K-rational point, then S has a Kolchin dense set of differential
K-rational points (cf. 2.1(iii)(b)).
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(x) K is large as a field and for every irreducible differential variety V over K
such that for infinitely many r ≥ 0 the algebraic variety Jetr(V ) has a smooth
K-point, the set of differential K-rational points of V is Kolchin dense in V ;
in other words, for every proper closed differential subvariety W ⊆ V there is
a differential K-point in V \W .

Proof. (i)⇒(iii) In the tower K ⊆ K((t 1)) ⊆ K((t 1))((t 2)) ⊆ . . . ⊆
K((t 1)) . . . ((t k)) all fields are large and therefore K is e.c. in K((t 1)) . . . ((t k)) as
a field. So by definition of differential largeness, K is e.c. in K((t 1)) . . . ((t k)) as a
differential field.
(iii)⇒(ii) is trivial.
(ii)⇒(iv) Since K is e.c. in K((t )) as a differential field it is also e.c. in K((t ))
as a field and so K is large as a field. Let S be a differentially finitely generated
K-algebra and assume there is a point S −→ K. Then by 3.4, there is a differ-
ential K-algebra homomorphism S −→ K[[t ]]. By 2.1(ii) applied to K ⊆ K((t )),
assumption (ii) entails a differential K-algebra homomorphism S −→ K.
(iv)⇒(v) Take A,P for S as in 2.3. Since K is also e.c. in A as a field and A is
a finitely generated K-algebra, there is a K-algebra homomorphism g : A −→ K.
Since S ∼=K A ⊗K P and P is a polynomial K-algebra, g can be extended to a
K-algebra homomorphism S −→ K. Hence (iv) applies.
(v)⇒(i) Let L be a differential field extension of K and suppose K is e.c. in L as a
field. Let S be a differentially finitely generated K-algebra, which has a differential
point f : S −→ L. By 2.1(ii) it suffices to find a differential point S −→ K. By
2.4(i) we may replace S by a composite K-algebra contained in L and assume that
f is the inclusion map S ↪→ L. Now (v) applies.

Hence we know that conditions (i)–(v) are equivalent.
(iv)⇒(vii) If S = A⊗K P is composite and A has a K-rational point, then as P is
a polynomial K-algebra we may extend this point to a point S −→ K. By (iv), S
has a differential K-rational point.
(vii)⇒(vi) If S = A ⊗K P is a composite K-subalgebra of K((t )), then as K is a
large field, K is e.c. in A as a field and thus A has a K-rational point. Now (vii)
applies.
(vi)⇒(ii) follows from 2.4(i) using the characterization 2.1(ii) of e.c.

Hence we know that conditions (i)–(vii) are equivalent.
(i)⇒(ix) If S = A ⊗K P is composite and A has a smooth K-rational point, then
as a large field, K is e.c. in A as a field. Since P is a polynomial K-algebra we
know that S is a polynomial A-algebra and so A is e.c. in S as a ring. It follows
that K is e.c. in S as a field and by (i) (invoke 2.1(i)) it is then also e.c. in S as
a differential field. By 2.1(iii) we see that S has a Kolchin dense set of differential
K-rational points.
(ix)⇒(viii) is trivial.
(viii)⇒(v) Let S = A⊗K P be a composite K-algebra in which K is e.c. as a field.
Then K is also e.c. in A as a field and therefore it possesses a smooth K-rational
point f : A −→ K (cf. 2.1(iv)). Pick h ∈ A with f(h) 6= 0 such that the variety
defined by the localization Ah is smooth. We may now apply (viii) to the composite
algebra Sh = Ah ⊗K P .
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Hence we know that (i)–(ix) are equivalent. Property (x) is just a reformulation of
the definition of differential largeness in geometric form as follows. Let S = K{x}/p,
x = (x1, . . . , xn) be a differentially finitely generated K-algebra and a domain with
quotient map π : K{x} −→ S. Let V be the differential variety defined by S,
hence V = {a ∈Mn | p(a) = 0}, where M is the differential closure of K. Then V
is a K-irreducible differential variety defined over K. Now for r ∈ N, the variety
Jetr(V ) has coordinate ring Ar := π(K{x}≤r)[4] and S is the union of the chain
(Ar)r of K-subalgebras of S. Clearly K is e.c. in S as a field if and only if K is e.c.
in Ar as a field for all (or infinitely many) r. Since K is large, this is equivalent to
saying that Jetr(V ) has a smooth K-point for all (or infinitely many) r. Hence the
assumption about V in (x) precisely says that K is e.c. in S as a field.

On the other hand, the conclusion about V in (x) precisely says that K is e.c.
in S as a differential field (use 2.1(iii)).

This shows that differential largeness is equivalent to (x) formulated for affine
differential varieties. But obviously the affine case implies (x) in full. �

4.4. Corollary. If K = (K, δ1, . . . , δm, ∂1, . . . , ∂k) is a differentially large field,
m, k ≥ 0, then also K = (K, δ1, . . . , δm) is differentially large.

Proof. This is immediate from the power series characterization 4.3(ii). �

4.5. Corollary. Let K = (K, δ1, . . . , δm, ∂1, . . . , ∂k) be differentially large, m ≥
0, k ≥ 1 and let C = {a ∈ K | ∂1(a) = . . . = ∂k(a) = 0} be the constant field of
(∂1, . . . , ∂k).
(i) C is closed under the derivations δ1, . . . , δm and (C, δ1, . . . , δm) is e.c. in

(K, δ1, . . . , δm).
(ii) (C, δ1, . . . , δm) is differentially large; when m = 0, this just says that C is a

large field.

Proof. We write δ = (δ1, . . . , δm) and by a trivial induction we may assume that
k = 1. Set ∂ = ∂1.
(i) Since all derivations commute, C is closed under all derivations. Let (S, δ̂) be a
(C, δ)-algebra that is finitely generated as such. Suppose we are given a differential
K-rational point λ : (S, δ̂) −→ (K, δ) (in fact we will only need that S has a K-
rational point). It suffices to find a differential C-algebra homomorphism (S, δ̂) −→
(C, δ). We expand (S, δ̂) by the trivial derivation and obtain a differentially finitely
generated (C, δ, ∂)-algebra (S, δ̂, 0) (note that ∂ is trivial on C).

A straightforward calculation shows that (S, δ̂, 0) ⊗C (K, δ, ∂) is a differential
(K, δ, ∂)-algebra (the derivations are given by δ̂i ⊗ δi and 0 ⊗ ∂) that is finitely
generated as such, and λ ⊗ id : S ⊗C K −→ K is a (not necessarily differential)
K-algebra homomorphism; also see [LST22, §3.1] for generalities on derivations and
tensor products.

Since (K, δ, ∂) is differentially large, 4.3(iv) gives a differential point µ :

(S, δ̂, 0) ⊗C (K, δ, ∂) −→ (K, δ, ∂) and we get a C-algebra homomorphism µ0 :

S −→ S ⊗C K
µ−−→ K. Since the natural map S −→ S ⊗C K is differential for δ,

also µ0 is a differential homomorphism (S, δ̂) −→ (K, δ). But µ0 has values in C
because for s ∈ S we have ∂(µ0(s)) = ∂(µ(s⊗ 1)) = µ((0⊗ ∂)(s⊗ 1)) = µ(0) = 0.
Hence indeed µ0(s) ∈ C as required.

[4]Here K{x}≤r denotes the subring of K{x} of all polynomials in θxi, where ord(θ) ≤ r.
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(ii) Since (K, δ, ∂) is differentially large, it is e.c. in K((t1, . . . , tm+1)) when the
latter is furnished with the natural derivations, cf. 4.3(ii). By (i), (C, δ) is e.c. in
(K, δ). If m = 0 it follows that C is e.c. as a field in K((t1)), hence C is a large
field. If m ≥ 1, we see that (C, δ) is e.c. in C((t1, . . . , tm)), which shows that it is
differentially large by 4.3(ii). �

At the end of this section we show that differentially large fields are first-order ax-
iomatizable; in other words, the class of differentially large fields is an elementary
class in the language of differential rings. We show this implicitly in 4.7, by proving
that differentially large fields are precisely those large and differential fields satis-
fying the axiom scheme UC in [Tre05, 4.5]; thus we refer to this paper for explicit
axioms. The proof of 4.7 only uses properties of models of UC and results from
this paper.

4.6. Remark. It is worth mentioning (for the non-logician) the benefits of knowing
that a class of structures is elementary (i.e., first-order axiomatisable). In our
context this means that two properties hold: (1) ultraproducts of differentially large
fields are again differentially large, and (2) differential fields that are existentially
closed in some differentially large field are themselves differentially large. Property
(2) is obvious from the characterization 4.3(ii). So it is only property (1) that needs
to be established. Being an elementary class, opens up the model theoretic toolbox
to the analysis of differentially large fields, and it implies for example the following
transfer principle (phrased in technical terms in 4.8 below).

If K is a differentially large field and K as a pure field has “good”
elimination theory, then the differential field K also has good elim-
ination theory.

To illustrate what “good” elimination theory means, we look at classical examples
of “good” elementary classes of fields. Algebraically closed fields have good elimi-
nation theory, this is due to Chevalley’s theorem which says that the projection of
a variety is constructible. If K is a real closed field or a p-adically closed field, then
projections of K-varieties (by which we mean here Zariski closed subset of some
Kn) are generally not constructible; however, the following weaker statement holds:
the complement of a projection of a K-variety is again the projection of a K-variety
(this property of a field is called “model-completeness”, cf. [Hod93, sectoin 8.3]).
So then the transfer principle above says that for a differentially large field K the
following holds: if K is algebraically closed as a field, then the projection of a dif-
ferential variety is differentially constructible (i.e., a finite Boolean combination of
Kolchin closed sets); if K is real closed or p-adically closed, then the complement of
a projection of a differential variety is again the projection of a differential variety.

4.7. Proposition. Let K be a differential field that is large as a field. Then K is
differentially large if and only if it satisfies the axiom scheme UC from [Tre05, 4.5].

Proof. First assume that K is differentially large. By [Tre05, Theorem 6.2(II)],
there is a differential field extension L of K such that L |= UC and such that K
is elementary in L as a field. In particular K is e.c. in L as a field. Since K is
differentially large, K is e.c. in L as a differential field. By [Tre05, Proposition 6.3],
UC has an inductive axiom system in the language of differential rings. But then
K also satisfies these axioms. Hence K |= UC.
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For the converse assume that K is a model of UC. We verify the definition of
differentially large. Let L be a differential field extension of K such that K is e.c.
in L as a field. Then there is a field M extending L such that K is elementary in
M as a field. In particular M is a large field. We may now extend the derivations
of L arbitrarily to commuting derivations of M . Hence we may replace L by M
furnished with these derivations and assume that L is large as a field. By [Tre05,
Theorem 6.2(II)] again, there is a differential field extension F of L such that
F |= UC and such that L is elementary in F as a field. Then K is e.c. in F as a
field and K,F |= UC. By [Tre05, Theorem 6.2(I)], this shows that K is e.c. in F
(as a differential field), showing the assertion. �

By 4.7 we may now record important properties of differentially large fields (that
follow from being models of UC, see [Tre05]).

4.8. Corollary.
(i) If L and M are differentially large fields and K is a common differential

subfield, then L and M have the same existential theory over K (meaning
they solve the same systems of differential equations with coefficients in K) if
and only if they have the same existential theory over K as fields.

(ii) If K is a differential field that is large as a field, then there is a differential
field extension L of K such that L is differentially large and an elementary
extension of K as a field.

(iii) Let K be a differentially large field and let A ⊆ K. Suppose K is model com-
plete as a field in the language Lri(A) of rings extended by constant symbols
naming the elements of A.

Then also K is model complete in the language Ldiff(A) of differential rings
extended by all constant symbols naming the elements of A. Furthermore, if
L̂ is a language extending Lri and K̂ is an expansion of K to L̂diff such that
the new symbols are A-definable in the field K and such that the restriction of
K̂ to L ∗(A) has quantifier elimination[5], then K̂ has quantifier elimination
in the language L̂diff(A).

5. Fundamental properties, constructions and applications

Summary We show that algebraic extensions of differentially large fields are again
differentially large by invoking the differential Weil descent in 5.12. Specifically
differentially closed fields are identified as precisely the algebraic closures of differ-
entially large fields; in a similar way, M. Singer’s closed ordered differential fields
are characterized, see 5.13. We show that a differentially large field is pseudo alge-
braically closed just if it is pseudo differentially closed, see 5.17. We characterize
the existential theory of differentially large fields in 5.7. We show that differentially
large fields are Picard-Vessiot closed in 5.8. In 5.15 we establish Kolchin-denseness
of rational points in differential algebraic groups.

We start with a concrete method to construct differentially large fields. This is
deployed in 5.14 to obtain concrete constructions of differentially closed fields.

[5]An example of L̂ is the language Lri(≤) of ordered rings, K = (K, δ) is a real closed field
furnished with commuting derivations, A = ∅ and K̂ = (K,≤, δ). The restriction of K̂ to Lri(A)
then is the ordered field (K,≤).
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5.1. Proposition. Let (Ki, fij)i,j∈I be a directed system of differential fields and
differential embeddings with the following properties.
(a) All Ki are large as fields.
(b) All embeddings fij : Ki −→ Kj are isomorphisms onto a subfield of Kj that

is e.c. in Kj as a field.
(c) For all i ∈ I there exist j ≥ i and a differential homomorphism Ki[[t ]] −→ Kj

extending fij.
Then the direct limit L of the directed system is a differentially large field.

Proof. We write fi : Ki −→ L for the natural map into the limit, which obviously is
a differential homomorphism between differential fields. We use the characterization
4.3(vii) to show that L is differentially large. Firstly, L is large as a field, because
if C is a curve defined over L that has a smooth L-rational point then take i ∈ I
such that C is defined over Ki (via fi) and such that C has a smooth Ki-rational
point. By (a), the curve C has infinitely many Ki-rational points and so it also has
infinitely many L-rational points.

Now let S be a differentially finitely generated L-algebra and a domain that has a
point S −→ L. Pick r ∈ N and a differential prime ideal p of L{x}, x = (x1, . . . , xr)
such that S = L{x}/p. By the Ritt-Raudenbusch basis theorem there is a finite
Σ ⊆ p whose differential radical is p. By 4.3(vii) it suffices to find a differential zero
of Σ in L. Take i ∈ I with Σ ⊆ fi(Ki){x} and let S0 := Ki{x}/f−1

i (p). Then S0

is a differentially finitely generated Ki-algebra and the composition of the natural
embedding S0 −→ S with a point S −→ L is a homomorphism S0 −→ L extending
fi. We now want to invoke 3.5 and here we need (b). Namely, with this condition
one readily verifies definition 2.1 and checks that Ki is existentially closed in L as
a field (via fi).

Hence we may apply 3.5 to obtain a differentialK-algebra homomorphism S0 −→
Ki[[t ]]. Finally assumption (c) gives us a differential Ki-algebra homomorphism
S0 −→ Kj for some j ≥ i. This yields a differential solution of Σ in L. �

Concretely, 5.1 may be used to produce differentially large fields via iterated power
series constructions using standard power series, Puiseux series or generalised power
series. Here are a few instances, see 5.14 for applications.

5.2. Differentially Large Power Series Fields. Let K be a differential field.
We write K0 = K.
(i) We define by induction on n ≥ 0, the differential field extension Kn+1 of Kn

as Kn+1 = Kn((t n)), where t n = (tn1, . . . , tnm); the derivations on Kn+1 are
the natural ones, extending those on Kn and satisfying δj(tnk) = d

dtnj
(tnk).

Then K∞ =⋃n∈NKn is differentially large. If K is large as a field, then K
is e.c. in K∞ as a field.

To see this we apply 5.1 to the family of all Kn, n > 0 together with the
inclusion maps Ki ↪→ Kj for i ≤ j. Hence K∞ is differentially large. Since
all Kn are large fields we know that they are e.c. in K∞ as a field. Hence if
K happens to be large as a field, then K is also e.c. in K∞ as a field.
This construction is discussed further in 5.14.

(ii) Assume here that the number m of derivations is 1. Then the generalised
power series field K((tQ)) carries a derivation defined by d

dt (
∑
aγt

γ) =
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aγ ·γ·tγ−1 and the given derivation δ on K can be extended to a deriva-

tion ∂ by ∂(
∑
aγt

γ) =
∑
δ(aγ)tγ . We consider K((tQ)) as a differential field

extension of K((t)), equipped with the derivation d
dt + ∂.

Now define Kn+1 = Kn((tQn )). Since Kn carries a Henselian valuation for
n > 0 we know that Kn is a large field. Hence conditions 5.1(a),(c) hold for
the family of all Kn, n > 0 and the inclusion maps Ki ↪→ Kj when i ≤ j.

If K is algebraically closed, real closed or p-adically closed, then so are
all Kn and by standard theorems from model theory condition 5.1(b) holds
in each case. Thus K∞ = ⋃nKn is a differentially large field. Further-
more K∞ = ⋃nKn is again algebraically closed, real closed or p-adically
closed, respectively. To be precise: If K is algebraically closed, then K∞ is
a differentially closed field; if K is real closed, then K∞ is a closed ordered
differential field in the sense of [Sin78b]; and if K is p-adically closed, then
K∞ is an existentially closed differential field in the class of p-adically valued
and differential fields as considered in [GP10].

(iii) The differentially large field K∞ in (ii) has various interesting differentially
large subfields: For example in each step of the construction we can work with
Puiseux series only. More precisely, if Pn+1 is defined to be the Puiseux series
field over Pn, namely

Pn+1 = Pn((t
1
∞ )) = ⋃

k∈N
Pn((t

1
k )),

then P∞ =⋃n Pn is a differentially large subfield of K∞. Another example is
given by working with completions of Puiseux series. More precisely if Cn+1

is defined to be the completion of the Puiseux series field over Cn, namely

Cn+1 = {f ∈ Cn((tQ)) | supp(f) is finite, or, supp(f) is unbounded in Q
and of order type ω},

then C∞ =⋃n Cn is a differentially large subfield of K∞.
Again the fields P∞ and C∞ as pure fields, are algebraically closed, real

closed, or p-adically closed if K has this property. By applying 4.8(iii) and
model completeness of algebraically closed, real closed, and p-adically closed
fields, we see that the differential fields P∞ and C∞ are elementary substruc-
tures of K∞ in these cases.

5.3. Counterexample. Let L be the differential subfield K((t 1, t 2, . . .)) of the dif-
ferential field K∞ from 5.2(i) and let Lalg be its algebraic closure. Then none of the
t−1
nj has an integral in Lalg, hence Lalg is not differentially large and so obviously
neither is K((t 1, t 2, . . .)). Notice that the latter is large as a pure field by [Pop10].

For the proof we may restrict to the case of one derivation. For k ∈ N, the
derivation δ of K∞ restricts to a derivation of L0 = K((t1, . . . , tk)). The definition
of the derivation, restricted to K[[t1, . . . , tk]], shows that the K-automorphism of
this ring permuting the variables is differential; obviously such an automorphism
extends uniquely to a differential automorphism of Lalg

0 . Hence in order to show
that none of the t−1

n , n ≤ k has an integral in Lalg
0 we may assume that n = k.

We write t = tk and let F be the algebraic closure of the differential subfield
K((t1, . . . , tk−1)). Then Lalg

0 is a differential subfield of the Puiseux series field
P = F ((t

1
∞ )), the latter being equipped with the natural derivation extending the
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one on F and mapping t to 1. It remains to show that t−1 has no integral in P .
Suppose for a contradiction that δ(f) = t−1 for some f ∈ P . Then the order of
f is −q for some q ∈ Q, q > 0. Hence tq·f has order 0 and so by definition of
the derivation of P we see that the order of δ(tq·f) is > −1. On the other hand
δ(tq·f) = q·tq−1·f + tq·t−1 = tq−1·(q·f + 1) has order −1, a contradiction.

5.4. Remark. In view of 5.3 it is of interest to see integrals of t−1
1 in the differential

field K∞ from 5.2(i) in the ordinary case: Take k ≥ 2 and let fk =
∑
n≥1

1
ntn1
·tnk

(resembling − log(1− tk
t1

)). One readily checks that δ(fk) = t−1
1 .

5.5. Iterating algebraic power series. A further natural question related to
the field K∞ of 5.2(i) asks what type of differential equations can be solved when
we iterate only algebraic Laurent series instead of all Laurent series: Let K be
an ordinary differential field and let L = ⋃nK((t1))alg . . . ((tn))alg, where the
derivation is chosen as in 5.2(i). Thus L is a differential subfield of K(t1, t2, . . .)

alg,
where δ(ti) = 1 for all i. Notice that L is large as a pure field, because algebraic
power series are a local henselian domain and so [Pop10] applies again. Since L is a
differential subfield of the algebraic closure of K((t1, t2, . . .)) we already know form
5.3 that L is not differentially large. Here we show that L is not even Picard-Vessiot
closed in general.

If L were Picard-Vessiot closed, then L has non-trivial solutions of the differential
equation δx = x. However, we show that this is in general not the case even forM =
K(t1, t2, . . .)

alg. To see this, consider the following property of a differential field F .

(†) ∀x ∈ F, n ∈ N : δ(x) = n·x⇒ x = 0.

Then, if F has property (†) so does its algebraic closure F alg and its function field
F (t), where δ(t) = 1. Hence if we start with K being a differential field with trivial
derivation, then by induction, property (†) passes to K(t1, . . . , tn)alg and so also
passes to M .

For the proof that (†) passes to F (t), assume that δ(f/g) = n·f/g with g monic
and f with leading coefficient a. Then nfg = δ(f)g−fδ(g) = (fδ+f ′)g−f(gδ+g′)
and comparing leading coefficients shows that n·a = δ(a). Hence by (†) for F we
get a = 0 as required.

For the proof that (†) passes to F alg, one first checks that it passes to F (C), where
C is the constant field of F alg. Hence we may replace F by F (C) and assume that
F and F alg have the same constant field. Let α be algebraic over F with minimal
polynomial f and assume δ(α) = n·α. then any other root β of f also satisfy this
equation, which implies that δ(αβ ) is a constant, thus it is in F . Hence F (α) is the
splitting field of f and so F (α)/F is Galois. Let d be the order of the Galois group
and let σ ∈ Gal(F (α)/F ). As we have seen, σ(α) = c·α for some constant c. Hence
α = σd(α) = cd·α and so cd = 1. But then σ(αd) = (cα)d = αd, which shows that
αd is in the fixed field F . Since δ(αd) = d·n·αd, we get α = 0 from (†) for F .

5.6. The existential theory of differentially large fields. The existential
theory of the class of all large fields of characteristic 0 is the existential theory of
the field Q((t)) (cf. [San96, Prop. 2.25]). This follows essentially from the fact
that Q((t)) is itself a large field. Since the existential theory of a differentially large
field is uniquely determined by its existential theory of its field structure – in the
sense of 4.8(i) – one is led to the question on whether the existential theory of the
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class of differentially large fields is the existential theory of Q((t )), equipped with
its natural derivations.

However Q((t )) does not satisfy the existential theory of the class of differentially
large fields (and so it is not differentially large either). To see an example, let C
be the curve defined by x3 + y3 = 1. Then (1, 0) and (0, 1) are the only rational
points on C (and they are regular points). Hence the sentence ϕ saying that there
is a point (x, y) on C with x 6= 0, y 6= 0 and x′ = y′ = 0 fails in the differential
field Q((t)) (we work with m = 1 here). On the other hand ϕ is true in every
differentially large field K, because the constants of K are large as a field by 4.5.

On the positive side we now show that

5.7. Theorem. The existential theory of the class of differentially large fields is
the existential theory of Q((t 1))((t 2)).

Proof. Let Σ ⊆ Z{x1, . . . , xn} be a system of differential polynomials in n variables
and m commuting derivations. If Σ has a solutions in Q((t 1))((t 2)) and K is
a differentially field, then Σ also has a solution in K((t 1))((t 2)). Hence if K is
differentially large, then by 4.3(iii), Σ also has a solution in K.

Conversely, suppose Σ has a solution in every differentially large field. By 4.8(ii)
there is a differentially large fieldK containing Q((t 1)) as a differential subfield such
that the extension K/Q((t 1)) of fields is elementary. Let S0 = Q{x1, . . . , xn}/ d

√
Σ

and let f : S0 −→ K be a differential point of S0. Let p = Ker(f) and let S = S0/p.
It suffices to find a differential point S −→ Q((t 1))((t 2)). Write S = Ah ⊗Q P
as in 2.2. The the restriction f |Ah

is a K-rational point of Ah. Since Ah is a
finitely generated Q-algebra and Q((t 1)) is e.c. in K as a field, there is also a point
g0 : Ah −→ Q((t 1)). Since P is a polynomial Q-algebra, g0 can be extended to a
point g : S −→ Q((t 1)). By 3.4, there is a differential point S −→ Q((t 1))[[t 2]]. �

5.8. Differentially large fields are PV-closed. We prove that differentially
large fields solve plenty of algebraic differential equations. Namely, we prove that
they solve all consistent systems of linear differential equations. We first show that
they are Picard-Vessiot closed (or PV-closed).

Let (K, δ1, . . . , δm) be a differential field, and let Ai ∈Matn(K), for i = 1, . . . ,m
satisfying what is called the integrability condition; namely

δiAj − δjAi = [Ai, Aj ],

where δjAj denotes the n×n matrix obtained by applying δi to Aj entry-wise. The
differential field K is said to be PV-closed if for each such tuple (A1, . . . , Am) of
matrices there is a Z ∈ GLn(K) such that

δiZ = AiZi for i = 1, . . . ,m.

5.9. Lemma. Every differentially large field is PV-closed.

Proof. Suppose K is a differentially large field. Suppose A1, . . . , Am are elements
in Matn(K) satisfying the integrability condition. Let X be an n × n matrix of
variables and define derivations on K(X) that extend the ones in K and satisfy

δiX = AiX

Then, by the integrabilty condition, these derivations commute in all of K(X).
Since K is e.c. in K(X) as fields, by differential largeness, it is also e.c. as differ-
ential fields. This yields the desired (fundamental) solution in K. �
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In differentially large fields, 5.9 is a special case of a stronger property:

5.10. Proposition. Let Σ and Γ be finite collections of differential polynomials in
K{x1, . . . , xn}. Assume that the system

P = 0 & Q 6= 0, for P ∈ Σ and Q ∈ Γ

is consistent (i.e., it has a solution in some differential field extension of K). If
Σ consists of linear differential polynomials and K is differentially large, then the
system has a solution in K.

Proof. Since the system is assumed to be consistent, the differential ideal generated
by Σ in K{x1, . . . , xn}, denoted [Σ], is prime. Thus, the differential field extension
L =qf(K{x1, . . . , xn}/[Σ]) has a solution to the system. Since [Σ] is generated, as
an ideal of K{x1, . . . , xn}, by linear terms, we get that K is e.c. in L as fields, and,
by differential largeness, also as differential fields. The result follows. �

5.11. A glimpse on the Differential Weil Descent. If K is a large field, then
every algebraic field extension of K is again large. This follows from an argument
involving Weil descent in the case when L/K is finite, see [San96, Theorem 2.14]
and [Pop96, Prop. 1.2]. For differentially large fields, this can also be carried
out. We will explain a special case of the differential Weil descent suitable for our
purpose and refer to [LST22, Theorem 3.4] for the general assertion and for proofs.

We will be working with a finite extension L/K of differential fields and a dif-
ferential L-algebra S. Then the classical Weil descent W (S) of the underlying
L-algebra of S is a K-algebra and there is a “natural” bijection

HomK-Alg(W (S),K) −→ HomL-Alg(S,L).

Here homomorphisms are algebra homomorphisms overK and L, respectively. Now
in [LST22, Theorem 3.4] it is shown that the ring W (S) can be naturally expanded
to a differential K-algebra W diff (S) such that the bijection above restricts to a
bijection

Homdiff. K-Alg(W
diff(S),K) −→ Homdiff. L-Alg(S,L).

This time, homomorphisms are differential algebra homomorphisms over K and L,
respectively. The terminology “natural” in both bijections refers to the fact that
W and W diff are indeed functors defined on categories of algebras and differential
algebras, respectively. However for our application below only the existence of the
bijections above are needed. We refer to [LST22, Section 3] for a self contained
exposition of the matter, where all data are constructed explicitly. In particular
the construction there shows that W diff(S) is a differentially finitely generated K-
algebra if S is a differentially finitely generated L-algebra.

5.12. Theorem. If K is differentially large, then so is every algebraic extension
(equipped with the induced derivations).

Proof. Let L/K be an algebraic extension. We first deal with the case when L/K is
finite. We verify condition 4.3(iv) for L. So let S be a differentially finitely generated
L-algebra that has an L-rational point. Let W diff (S) be the differential Weil
descent as explained in 5.11. Thus, W diff (S) is a differentially finitely generated
K-algebra and we have a bijection

HomK-Alg(W (S),K) −→ HomL-Alg(S,L),
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which restricts to a bijection

Homdiff. K-Alg(W
diff(S),K) −→ Homdiff. L-Alg(S,L).

Since S has an L-rational point we may use the first bijection and see thatW (S) has
a K-rational point. Since K is differentially large there is a differential K-rational
point W diff(S) −→ K. Using the second bijection we see that S has a differential
L-rational point.

Hence we know the assertion when L/K is finite. In general, let S = A⊗P be a
composite L-algebra such that the affine variety defined by A is smooth. Suppose
there is an L-rational point A −→ L. By 4.3(viii) it suffices to show that there
is a differential point S −→ L. Write S = L{x}/p, x = (x1, . . . , xr), for a prime
differential ideal p of L{x} and let Σ ⊆ p be finite with p = d

√
Σ. It suffices to

find a differential solution of Σ = 0 in L. Choose a finite extension K0/K in L
with Σ ⊆ K0{x}. Let S0 = K0{x}/p ∩ K0{x}, which we consider as a subring
of S. By 2.2 there are a finitely generated K0-subalgebra A0 of S0, a polynomial
K0-subalgebra P0 of S0 and an element h ∈ A0 such that (S0)h ∼= (A0)h ⊗K0

P0.
Since A0 ⊆ S is finitely generated we may write P = P1 ⊗L P2 for some polyno-

mial L-algebras Pi, P1 finitely generated such that A0 ⊆ A ⊗L P1. Then A ⊗L P1

is again finitely generated, the affine variety defined by A ⊗L P1 is again smooth
and still has an L-rational point. Since L is large, there is also an L-rational point
(A ⊗L P1)h −→ L. Via restriction we get an L-rational point f : (A0)h −→ L.
Since (A0)h is finitely generated as a K0-algebra, there is a finite extension K1/K0

contained in L such that f has values in K1. Since P0 is a polynomial K0-algebra,
f can be extended to a K1-rational point (S0)h −→ K1. Tensoring with K1 gives a
K1-rational point of (S0)h ⊗K0 K1. The latter is a differentially finitely generated
K1-algebra. By what we have shown, K1 is differentially large. By 4.3(iv) there
is a differential point (S0)h ⊗K0

K1 −→ K1. Since Σ ⊆ K1{x} this gives rise to a
differential solution of Σ = 0 in K1 ⊆ L. �

As an application, we see from 5.12 and 4.8(iii) that the algebraic closure of a
differentially large field is differentially closed. Hence showing that differentially
large fields have minimal differential closures:

5.13. Corollary. The algebraic closure of a differentially large field is differentially
closed. In particular, if K |= CODFm, the theory of closed ordered differential fields
in m commuting derivations, then K(i) |= DCF0,m.

The result above has already been deployed in [ACGZ22] making reference to an
earlier draft of this paper. Previously known examples of differential fields with
minimal differential closures are models of CODF (which we denote as CODF1),
see [Sin78a], and fixed fields of models of DCF0,m A, the theory differentially closed
fields with a generic differential automorphism, see [LS16]. The corollary delivers
a vast variety of new differential fields with this property, namely all differentially
large fields, see also 4.8(ii).
We also get new and explicit models of DCF0,m and CODFm:

5.14. Construction of Differentially Closed Fields. We continue with the
constructions in 5.2(i). If K is a differential field, then the algebraic closure of the
differentially large field K∞ =⋃n∈NK((t 1)) . . . ((t n)) from 5.2(i) is differentially
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closed. If K is an ordered field and the order is extended to L in some way, then
the real closure of L is a model of CODFm.

Observe that these models are different from those obtained using iterated
Puiseux series or generalized power series constructions in 5.2(ii),(iii).

5.15. Kolchin-Denseness of Rational Points in Differential Algebraic
Groups. In the classical case of a connected linear algebraic group G over any
field F of characteristic zero, the Unirationality Theorem implies that the F -rational
points of G are Zariski-dense. In the differential situation the corresponding state-
ment does not hold. For example, the linear differential algebraic group defined by
δx = x does in general not have a Kolchin dense set of rational points. However, as
a further application, we prove that in differentially large fields this is true again:

5.16. Proposition. Assume K is differentially large. If G is a connected differen-
tial algebraic group over K, then the set of K-rational points of G, denoted G(K),
is Kolchin-dense in G = G(U).

Proof. We verify 4.3(x), hence it suffices to show that for infinitely many values
of r the jet Jetr G has a smooth K-rational point. By [Pil97, Corollary 4.2(ii)], G
embeds over K into a connected algebraic group H defined over K. As we saw in
2.5, for each r, ∇rG is a differential algebraic subgroup of τrH. As a result, Jetr G
is an algebraic subgroup of τrH, and so Jetr G is smooth. If e denotes the identity
of G, which is a K-point, then, for each r, the K-point ∇r(e) is a smooth point of
Jetr G. �

The result above has already been deployed in [LSP21] making reference to an
earlier draft of this paper.

5.17. Pseudo differentially closed fields. Recall that a field K is pseudo
algebraically closed (PAC) if every absolutely irreducible algebraic variety over K
has a K-point. It is easy to see and well known that PAC fields are large and
that the PAC property is equivalent to saying that K is e.c. in every regular field
extension L (meaning that K is algebraically closed in L). From model theoretic
literature one can formulate several notions of pseudo differentially closed fields,
see [PP06] and [Hof19]. We show that they are all equivalent to the property “PAC
+ differentially large”.

Let K be a differential field. The following are equivalent.
(i) K is PAC (as a field) and K is differentially large.

(ii) Every absolutely irreducible differential variety over K has a differential K-
point. Recall that a differential variety V over K is absolutely irreducible if it
is irreducible in the Kolchin topology of a differential closure Kdiff and this
is equivalent to saying that V is irreducible over Kalg.

(iii) K is e.c. in every differential field extension L in which K is R-regular (i.e.
tp(a/K) is stationary for every tuple a from L, where the type tp(a/K) is
with respect to the stable theory DCF0,m).

(iv) K is e.c. in every differential field extension L in which K is H-regular (i.e.
Kalg ∩ L = K).

If these equivalent conditions hold we call K pseudo differentially closed.

Proof. We use [Hof19, Lemma 3.35], which says in our situation that a tuple a from
U (the monster model of DCF0,m), the type tp(a/K) is stationary if and only if the
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differential field extension K〈a〉 over K is H-regular. Clearly this characterization
implies that H-regularity and R-regularity are equivalent. In particular, (iii) is
equivalent to (iv).

(i)⇒(iv) Let K be PAC and differentially large. Let L/K be an H-regular extension
of K. Then K is algebraically closed in L as a field and because K is PAC, it is
e.c. in L as a field. Since K is differentially large, it follows that it is e.c. in L as a
differential field.

(iv)⇒(ii) follows from the fact that a type tp(a/K) is stationary if and only if
the Kolchin-locus of a over K is absolutely irreducible: Let V be an absolutely
irreducible differential variety over K. Then the generic type p = tp(a/K) of V
over K is stationary, and hence, by the quoted characterization of stationarity, the
differential field L = K〈a〉 is an H-regular extension of K. By (iv), K is e.c. in L
as a differential field and so there is a differential K-point in V , as required.

(ii)⇒(i) Suppose V is a K-irreducible differential variety such that all jets of V
have a smooth K-point, then all these jets are absolutely Zariski irreducible (as
they are Zariski K-irreducible and contain a smooth K-point). It follows that V is
absolutely irreducible. Hence, V has a K-point. In fact, V has Kolchin-dense many
K-points; indeed, we can take any open differential subvariety O of V and argue
similarly (using the fact that K is large, as it is PAC, to produce smooth K-points
in the jets of O). This shows (i) using the equivalence (i)⇐⇒ (x) of 4.3. �

5.18. Pseudo Differentially Closed Fields are Axiomatizable. An appli-
cation of 5.17 is that the class of pseudo differentially closed fields is first order
axiomatisable (so far this had only been established in the case of one derivation
in [PP06, Proposition 5.6]). Indeed, being a PAC field is a first order condition (cf.
[FJ08, 11.3.2]) and we have seen in 4.7 that differential largeness is too. The fact
that being pseudo differentially closed is a first order property has very interest-
ing model-theoretic consequences: (i) by [Pol07, §3] it implies that the theory of a
bounded pseudo differentially closed field is supersimple, and (ii) by [DHL20, The-
orem 5.11] it implies that the Elementary Equivalence Theorem holds for pseudo
differentially closed fields.

6. Algebraic-geometric axioms

In this last section we present algebraic-geometric axioms for differentially large
fields in the spirit of the classical Pierce-Pillay axioms for differentially closed fields
in one derivation [PP98] (cf. Remark 6.6(i) below). While this section might seem
mostly of interest to model theorists, the general reader should keep in mind that
Theorem 6.4 is a general statement on systems of algebraic PDEs that have solutions
in differentially large fields.

Our presentation here follows the recent algebraic-geometric axiomatization of
differentially closed fields in several commuting derivations established in [LS18]. In
particular, we will use the recently developed theory of differential kernels for fields
with several commuting derivations from [GLS18]. One significant difference with
the arguments in [LS18] is that there one only requires the existence of regular
realizations of differential kernels, while here we need the existence of principal
realizations, see Remark 6.1 and Fact 6.2. We carry on the notation and conventions
from previous sections.
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We use two different orders ≤ and E on Nm × {1, . . . , n}. Given two elements
(ξ, i) and (τ, j) of Nm × {1, . . . , n}, we set (ξ, i) ≤ (τ, j) if and only if i = j and
ξ ≤ τ in the product order of Nm. Furthermore, we set (ξ, i)E (τ, j) if and only if

(
∑

ξk, i, ξ1, . . . , ξm) ≤lex (
∑

τk, j, τ1, . . . , τm)

Note that if x = (x1, . . . , xn) are differential indeterminates and we identify (ξ, i)

with δξxi := δξ11 · · · δξmm xi, then ≤ induces an order on the set of algebraic indeter-
minates given by δξxi ≤ δτxj if and only if δτxj is a derivative of δξxi (in particular
this implies that i = j). On the other hand, the ordering E induces the canonical
orderly ranking on the set of algebraic indeterminates.

We will look at field extensions of K of the form

(6.1) L := K(aξi : (ξ, i) ∈ Γn(r))

for some fixed r ≥ 0. Here we use aξi as a way to index the generators of L over K.
The element (τ, j) ∈ Nm × {1, . . . , n} is said to be a leader of L if there is η ∈ Nm
with η ≤ τ and

∑
ηk ≤ r such that aηj is algebraic over K(aξi : (ξ, i) C (η, j)). A

leader (τ, j) is a minimal leader of L if there is no leader (ξ, i) with (ξ, i) < (τ, j).
Observe that the notions of leader and minimal leader make sense even when r =∞.

A (differential) kernel of length r over K is a field extension of the form

L = K(aξi : (ξ, i) ∈ Γn(r))

such that there exist derivations

Dk : K(aξi : (ξ, i) ∈ Γn(r − 1))→ L

for k = 1, . . . ,m extending δk and Dka
ξ
i = aξ+k

i for all (ξ, i) ∈ Γn(r − 1), where k
denotes the m-tuple whose k-th entry is one and zeroes elsewhere.

Given a kernel (L,D1, . . . , Dk) of length r, we say that it has a prolongation of
length s ≥ r if there is a kernel (L′, D′1, . . . , D

′
k) of length s over K such that L′ is

a field extension of L and each D′k extends Dk. We say that (L,D1, . . . , Dk) has a
regular realization if there is a differential field extension (M,∆′ = {δ′1, . . . , δ′m})
of (K,∆ = {δ1, . . . , δm}) such that M is a field extension of L and δ′ka

ξ
i = aξ+k

i for
all (ξ, i) ∈ Γn(r− 1) and k = 1, . . . ,m. In this case we say that g := (a01 , . . . , a

0
n) is

a regular realization of L. If in addition the minimal leaders of L and those of the
differential field K〈g〉 coincide we say that g is a principal realization of L.

6.1. Remark. Note that if g is a principal realization of the differential kernel L,
then L is existentially closed in K〈g〉 as fields. Indeed, since the minimal leaders of
L and K〈g〉 coincide, for every (ξ, i) ∈ Nm × {1, . . . , n} we have that either δξgi is
in L or it is algebraically independent from K(δηgj : (η, j)C (ξ, i)). In other words,
the differential ring generated by g over L, namely L{g}, is a polynomial ring over
L. The claim follows.

In general, it is not the case that every kernel has a principal realization (not
even regular). In [GLS18], an upper bound Cnr,m was obtained for the length of a
prolongation of a kernel that guarantees the existence of a principal realization. This
bound depends only on the data (r,m, n) and is constructed recursively as follows:

C1
0,m = 0, C1

r,m = A(m− 1, C1
r−1,m), and Cnr,m = C1

Cn−1
r,m ,m

,
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where A(x, y) is the Ackermann function. For example,

Cnr,1 = r, Cnr,2 = 2nr and C1
r,3 = 3(2r − 1).

In [GLS18, Theorem 18], it is proved that

6.2. Fact. If a differential kernel L = K(aξi : (ξ, i) ∈ Γn(r)) of length r has a
prolongation of length Cnr,m, then there is r ≤ h ≤ Cnr,m such that the differential
kernel K(aξi : (ξ, i) ∈ Γn(h)) has a principal realization.

6.3. Remark. Note that in the ordinary case ∆ = {δ} (i.e.,m = 1), we have Cnr,1 = r
by definition, and so the fact above shows that in this case every differential kernel
has a principal realization (this is a classical result of Lando [Lan70]).

The fact above is the key to our algebraic-geometric axiomatization of differential
largeness. We need some additional notation. For a given positive integer n, we set

α(n) = n ·
(
Cn1,m +m

m

)
and β(n) = n ·

(
Cn1,m − 1 +m

m

)
.

We write π : Uα(n) → Uβ(n) for the projection onto the first β(n) coordinates; i.e.,
setting (xξi )(ξ,i)∈Γn(Cn

1,m) to be coordinates for Uα(n) then π is the map

(xξi )(ξ,i)∈Γn(Cn
1,m) 7→ (xξi )(ξ,i)∈Γ(Cn

1,m−1).

It is worth noting here that α(n) = |Γn(Cn1,m)| and β(n) = |Γn(Cn1,m− 1)|. We also
use the projection ψ : Uα(n) → Un·(m+1) onto the first n·(m+1) coordinates, that is,

(xξi )(ξ,i)∈Γn(Cn
1,m) 7→ (xξi )(ξ,i)∈Γn(1).

Finally, we use the embedding ϕ : Uα(n) → Uβ(n)·(m+1) given by

(xξi )(ξ,i)∈Γn(Cn
1,m) 7→

(
(xξi )(ξ,i)∈Γn(Cn

1,m−1),(x
ξ+1
i )(ξ,i)∈Γn(Cn

1,m−1), . . .

. . . , (xξ+m
i )(ξ,i)∈Γn(Cn

1,m−1)

)
.

Recall from 2.5 that for a Zariski-constructible set X of Un, the first prolongation of
X is denoted by τX = τ1X ⊆ Un(m+1). For the first prolongation it is easy to give
the defining equations: τ(X) is the Zariski-constructible set given by the conditions

x ∈ X, and
n∑
i=1

∂fj
∂xi

(x) · yi,k + fδkj (x) = 0 for 1 ≤ j ≤ s, 1 ≤ k ≤ m,

where f1, . . . , fs are generators of the ideal of polynomials over U vanishing at
X, and each fδkj is obtained by applying δk to the coefficients of fj . Note that
(a, δ1a, . . . , δma) ∈ τX for all a ∈ X. Further, if X is defined over the differential
field K then so is τX.

6.4. Theorem. Assume K is a differential field that is large as a field. Then, K
is differentially large if and only
(♦) for every K-irreducible Zariski-closed set W of Uα(n) with a smooth K-

point such that ϕ(W ) ⊆ τ(π(W )), the set of K-points of ψ(W ) of the form
(a, δ1a, . . . , δma) is Zariski-dense in ψ(W ).
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Proof. The proof follows the strategy of [LS18], but here regular realizations are
replaced by principal realizations with the appropriate adaptations. As the set up
is technically somewhat intricate we give details.

Assume K is differentially large. Let W be as in condition (♦), we must find
Zariski-dense many K-points in ψ(W ) of the form (a, δ1a, . . . , δma). Let b =

(bξi )(ξ,i)∈Γn(Cn
1,m) be a Zariski-generic point of W over K. Then (bξi )(ξ,i)∈Γn(Cn

1,m−1)

is a Zariski-generic point of π(W ) over K, and

ϕ(b) =
(

(bξi )(ξ,i)∈Γn(Cn
1,m−1), (b

ξ+1
i )(ξ,i)∈Γn(Cn

1,m−1), . . . , (b
ξ+m
i )(ξ,i)∈Γn(Cn

1,m−1)

)
∈ τ(π(W ))

By the standard argument for extending derivations (see [Lan02, Chapter 7, The-
orem 5.1], for instance), there are derivations

D′k : K(bξi : (ξ, i) ∈ Γn(Cn1,m − 1))→ K(bξi : (ξ, i) ∈ Γn(Cn1,m))

for k = 1, . . . ,m extending δk and such that D′kb
ξ
i = bξ+k

i for all (ξ, i) ∈
Γn(Cn1,m − 1). Thus, L′ = K(bξi : (ξ, i) ∈ Γn(Cn1,m)) is a differential kernel over
K and, moreover, it is a prolongation of length Cn1,m of the differential kernel
L = K(bξi : (ξ, i) ∈ Γn(1)) of length 1 with Dk = D′k|L. By Fact 6.2, there is
r ≤ h ≤ Cn1,m such that L′′ = K(bξi : (ξ, i) ∈ Γn(h)) has a principal realization;
in particular, there is a differential field extension (M,∆′) of (K,∆) containing L′′
such that δ′kb

0 = bk, where b0 = (b01 , . . . , b
0
n) and similarly for bk. Then

(∗) (b0, δ′1b
0, . . . , δ′mb

0) is a generic point of ψ(W ) over K.

Now, since W has a smooth K-point and K is large, K is e.c. in L′ as fields; in
particular, K is e.c. in L′′ as fields. By Remark 6.1, L′′ is e.c. in the differential
field K〈b0〉 as fields, and so K is e.c. in K〈b0〉 as fields. Since K is differentially
large, the latter implies that K is e.c. in K〈b0〉 as differential fields as well. The
conclusion now follows using (∗).

For the converse, assume K is e.c. as field in a differential field extension F . We
must show that K is also e.c. in F as differential field. Let ρ(x) be a quantifier-free
formula overK (in the language of differential rings withm derivations) in variables
x = (x1, . . . , xt) with a realization c in F . We may write

ρ(x) = γ(δξxi : (ξ, i) ∈ Γt(r))

where γ((xξ)(ξ,i)∈Γt(r)) is a quantifier-free formula in the language of rings over K
for some r. If r = 0, then ρ is a formula in the language of rings, and so ρ(x)
has a realization in K since K is e.c. in F as a field. Now assume r > 0. Let
n := t ·

(
r−1+m
m

)
, d := (δξci)(ξ,i)∈Γt(r−1), and

W := Zar-locK(δξdi : (ξ, i) ∈ Γn(Cn1,m)) ⊆ Uα(n).

We have that ϕ(W ) ⊆ τ(π(W )). Moreover, since W has a smooth F -point (namely
(δξdi)(ξ,i)∈Γn(Cn

1,m)) and K is e.c. in F as fields, W has a smooth K-point. By
(♦), there is a = (aξi )(ξ,i)∈Γt(r−1) ∈ Kn such that (a, δ1a, . . . , δma) ∈ ψ(W ). This
implies that aξi = δξa0i for all (ξ, i) ∈ Γt(r − 1). Thus,

(δξa0i )(ξ,i)∈Γt(r) ∈ Zar-locK((δξci)(ξ,i)∈Γt(r)) ⊆ U
t·(r+m

m ),



30 OMAR LEÓN SÁNCHEZ AND MARCUS TRESSL

and so, since (δξci)(ξ,i)∈Γt(r) realizes γ, the point (δξa0i )(ξ,i)∈Γt(r) also realizes γ.
Consequently, K |= ρ(a0), as desired. �

In the ordinary case (m = 1) we get the values α(n) = 2n and β(n) = n. Also,
in this case, π : U2n → Un is just the projection onto the first n coordinates, and
ψ,ϕ : U2n → U2n are both the identity map. We thus get the following

6.5.Corollary. Assume that (K, δ) is an ordinary differential field of characteristic
zero which is large as a field. Then, (K, δ) is differentially large if and only
(♦′) for every K-irreducible Zariski-closed set W of U2n with a smooth K-point

such that W ⊆ τδ(π(W )), the set of K-points of W of the form (a, δa) is
Zariski-dense in W .

6.6. Remark.
(i) If K is algebraically closed of characteristic 0, then Corollary 6.5 yields the

classical algebraic-geometric axiomatization of DCF0 given by Pierce and Pil-
lay in [PP98].

(ii) If K has a model complete theory T in the language of fields and if K is large,
then Corollary 6.5 yields a slight variation of the geometric axiomatization of
TD given by Brouette, Cousins, Pillay and Point in [BCPP18, Lemma 1.6].

(iii) For large and topological fields with a single derivation, an alternative de-
scription of differentially large fields with reference to the topology may be
found in [GR06].
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