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CHARACTERISTIC SETS

MARCUS TRESSL

ABsTrRACT. We give a detailed and self-contained introduction to Kolchin’s
approach, mostly in characteristic 0 (cf. [Kol]), including a full proof of the
Rosenfeld lemma.

CONTENTS

Auto reduced sets

Characteristic sets

The Separant

Reduction of the order

Coherence and the Rosenfeld Lemma,

References

Date: April 24, 2020.

2000 Mathematics Subject Classification. Primary: XXXXX, Secondary: XXXXX.
Thanks to...

[\

O Ut

10
13
16



2 MARCUS TRESSL

1. AUTO REDUCED SETS
1.1. Definition. Let
D = {00 | i1, ..yik € No}
be the free abelian monoid generated by A := {0, ..., dk }, written multiplicatively.
Here Ny = {0,1,2,3...}, whereas N = {1,2,3,...}. Let R = (R,Aq,...,Ak) be a
unitary, commutative, differential ring in K commuting derivations. Let N € IN.

For n € {1,..,N} and § € Z let §Y, be an indeterminate over R. Then the
differential polynomial ring of R in the indeterminates Y7, ..., Yy is defined as

A:=R{Y1,.. YN} :=R[0Y, |0€ P, ne{l,..,N}]

(where Yy = Yy if 0 = 89...9Y%; by definition), together with the unique derivations
A; 0 A — A satisfying A;(r0Y,,) = A(r)0Y, + r(0,0)Y,, for every r € R, n €
{1,..,N} and 6 € 2. So A is a differential ring extension of R and A is the free
object generated by N elements over R in the category of differential rings with K
commuting derivatives.
From now on we also write 0y, ...,k for the derivations Ay, ...., Ax given on R.
This will not lead to confusion and increases readability.
1.2. Notation. Let f € R{Y}. We say that a monomial M occurs in f or
appears in f, if there are | > 0, a; € R, monomials U; # M (1 < i <) and some
a € R, a # 0 such that f =aM + 22:1 a;U;. In particular no monomial occurs in
the zero polynomial.

We say that a variable 6Y,, occurs in f or appears in f, if Y, divides a
monomial occurring in f.!

By convention, if we say 0Y,, occurs or appears in f we mean 6Y,, occurs in f
as a variable.
1.3. The rank on variables Throughout we work with one specific rank on
monomials. Notice that in [Kol|] an axiomatic approach of the notion of “rank" is
given.

The rank on 2 is the map tk : 2 — Ny x INE defined by

rk(@flaﬁf) = (i1 4 e ik, UKy ey 1),

where the monoid Ny x INX is ordered lexicographically.

Let 2Y be the set {0Y,, | 8 € 2, n € {1,..., N}} of indeterminates (also called
“variables"). The rank on 2Y is the map rk : 2Y — Ng x {1,..., N} x NK defined
by

k(070 Y,,) i= (i1 + oo g, My ik, ooy 1),
where the set Ng x {1,..., N} x IN¥ is ordered lexicographically. Observe that
tk: 9V — g x {1,..., N} x INK is a monoid embedding and the image of rk in

INo x {1,..., N} x INK has the order type of IN (since every element in that image
has only finitely many predecessors in that image).

Let 2Y* be the set {(0Y,,)P | 6 € 2, n € {1,..,N},p € N} C A. The rank on
PY* is the map 1k : 2Y* — Ny x {1,..., N} x Nf x N defined by

LObserve that by definition, the monomial Y7 does not occur in the polynomial Yf. However,
the variable Y7 does occur in the polynomial YIQ.
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| Tk((0Y,)?) := (tk 0V, p),

where the set

|W = Np x {1,...N} x Nf x N|

is ordered lexicographically. Hence W is well ordered and

rk((@iIG}gYn)p) = (’Ll + ...+ iK,n,iK, ...,il,p).

Observe that the rank on 2Y* is again injective, but its image is not longer of
order type w.

1.4. Order of a variable We define
ord((0...0WE Y, )P) := ord (9} .0 ) i= iy + ... +ix
and
ordy ((07"...00E Y, )P) := ordy, (0 ...00 ) := ix.
1.5. Leader, leading degree and rank of a differential polynomial If f €

A\ R we define the leader (or conductor) us of f to be the variable 6Y,, € 2Y
of highest rank that appears in f. Moreover we define

* L dEg“ff

The natural number deg,, ; f is called the leading degree of f and is denoted by

Ldeg(f) = deg,, f.

We expand the rank from 2Y™* to polynomials f € A\ R by

rk(f) == rk(u}).

Sork isamap A\ R — W.

1.6. Definition. If f,g € A\ R, then f is called weakly reduced with respect to
g if no proper derivative of u, appears in f. Furthermore, f is called reduced with
respect to g if f is weakly reduced with respect to g and if degug f< degug g. So
by definition f is reduced with respect to g if and only if f is reduced with respect
to uy, i.e. the relation 'f is reduced with respect to g’ only depends on rkg for
given f. An element f € R is reduced and weakly reduced with respect to every
g € A\ R by definition.

Note that if f € A\ R is reduced with respect to g € A\ R, then the rank of f
need not be less than the rank of g. Take f = y{ and g = y5.

1.7. Lemma. Let f € A and g € A\ R. Then

(i) If f & R is reduced with respect to g, then rk f # rkg.
(ii) Let f € R ortk f <tkg. Then
(a) f is reduced with respect to g.
(b) If ug appears in f, then up = u,.
(c) If g is reduced with respect to f then ugy does not appear in f.



4 MARCUS TRESSL

Proof. Certainly (i) holds.

(ii). We may assume that f ¢ R. Suppose rk f < rkg, hence rk u}i < rkuy and
rkur < tku,g.

f is weakly reduced with respect to g, since every proper derivative of u, has
a rank bigger than rkuy =rkg. So if uy does not appear in f, then f is reduced
with respect to g. If u, appears in f, then rku; < rkug, implies uy = uy and
rku} < rkug implies degug < degug g. Hence f is reduced with respect to g and
g is not reduced with respect to f. ([l

1.8. Definition of (auto)-reduced sets An element f € A is called reduced
with respect to a set G C A\ R, if f is reduced with respect to g for each g € G. A
subset G C A\ R is called reduced or autoreduced if for all f,g € G with f #£ ¢
we have that f is reduced with respect to g. If G has a single element, then G is
called reduced as well.

1.9. Lemma. If0y,0s,... € Z and ord 0, < ord 0y < ..., then there is a subsequence
Ok, Okyy ... Of 01,02, ... such that Oy, , is a proper derivative of Oy, for every i € IN.

Proof. The claim certainly holds if K = 1. Assume we know (i) in the case of

K — 1 partial derivatives. Let 0; = 0} 1....8?;" . Suppose first that there is some
k € {1,..., K} such that the sequence (u}); is bounded. Then we also may assume
that it is constant by taking a subsequence of (6;) if necessary. But then we can

apply the inductive hypothesis to the sequence (8}’ i 8Zf ;165_’;? ...8’;;’{ )i, which in
turn gives the assertion for the original sequence (6;);.

So we may assume that (pf); is unbounded for every k € {1,..,K}, i.e. - by
taking a subsequence of (6;) if necessary - we may assume that (u}); is strictly
increasing for every k € {1, ..., K}.

But in this case, for every i € IN there is some 0 € & with 0,1 = 60;. O

1.10. Proposition. Fvery reduced set is finite.

Proof. If there is an infinite reduced set, then by 1.7(i) there is a chain rkg; <
tkgo < ... and g; is reduced with respect to g; for all i # j. Then u,, # ug,, for all
i # j. It follows that ug, is reduced with respect to u,; for all i # j and we may
assume that g; = ug,.

As g; is not a derivative of g; for all 7 # j may assume that g; = 6;Y; for some
0; € 2 and all i € N. Since (rk6,Y7) is strictly increasing, it follows that after
taking a subsequence, the sequence (ord 8;Y7); is strictly increasing, too. But this
contradicts 1.9, since {6,Y7 | j € IN} is (weakly) reduced by assumption. O

1.11. Definition of the rank of a reduced set Let oo be an element, which
is bigger than W. We consider (W U {oo})N as an ordered set, equipped with the
lexicographic order. If G C A\ R is reduced, then G is finite by 1.10 and by 1.7(i),
there is a unique enumeration (gi,...,g;) of G, such that tkg; < ... < rkg; and
I € N (Note that | < N if K = 1). We define tkG € (W U {oo})¥ by

kG := (tk gy, ...,k g;, 00, 00, ...).
If f € A\ R, then we want to write rk f = rk{f}, thus we identify W U {oc} with
(W U {o0}) X [T;=1{o0} C (W U {oo})™ if necessary.

1.12. Theorem. There is no infinite sequence G1,Ga, ... of reduced sets with the
property tk Gy > rkGg > .....
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Proof. Otherwise let G; = {gi1,...,g;, } With tkgin < ... < g;,. AstkGi >
rk G5 > ... we must have rk g11 > rk go; > ... and the sequence (rk g;1); is eventually
constant. Let M; € IN be an index such that rk g;; = rkgas1 for all ¢ > My — 1.

As rk Gy > rkGy > ... we must have k; > 1 for all ¢ > M;. Consequently
oo > rkgnn2 > tkgan4+1)2 > ... and the sequence (rk g(ar,44)2)i is eventually
constant. Let My > M be an index such that rk g;o = rk gas,o for all ¢ > My — 1.
Then k; > 2 for all i > M>.

Proceeding in this way we get a new sequence (G, ); which we denote by (G;);
again. (G;); has the following property: k; > i and rkg; = rkgj; for all j > i.
If 7 > 4, then g;; is reduced with respect to g;;, since G; is a reduced set. As
rk g;; = rk gy it follows that g;; is reduced with respect to g;;. Conversely since
rk g;; = rkgj < rkgjj, it follows that g;; is reduced with respect to g;;. Hence
{9ii,9j;} is a reduced set for all 7 < j and the set of diagonal entries {g;; | ¢ € IN}
is an infinite reduced set. This contradicts 1.10. (I

2. CHARACTERISTIC SETS
By 1.12 we may define:
2.1. Definition. For each subset M of A, M ¢ R we define
tk M :=min{rkG | G € M \ R, G reduced} € (W U {oco})N.
A characteristic set of M is a reduced subset S of M with rk M =rk S.

2.2. Lemma. IfG C A\ R is a reduced set and f € A\ R is reduced with respect
to G, then G:={g € G | rkg <tk f}U{f} is a reduced set and rk G < rkG.

Proof. By 1.7(ii), the set G is reduced. Since ]iis reduced with respect to G, 1.7(i)
implies that rk f # rk g for all g € G, thus rkG < rkG. O

2.3. Corollary. If S is a characteristic set of M C A and f € M\ R, then f is
not reduced with respect to S

Proof. Immediately from 2.2. (|

2.4. Definition. The leading coefficient of f € A\ R is defined as follows:
Let uy = 0Yy,, let B := R[0Y,, | 0Y,, # 0Y,] and let f = f;- u}i + ...+ fi-ur + fo,
with fg4, ..., fo € B, fa # 0. Then f; is called the leading coefficient L(f) of f.

Observe that rk L(f) < rkus. Moreover if f is (weakly) reduced with respect
to g then L(f) is (weakly) reduced with respect to g. But in general L(f)™ is not
reduced with respect to g if f is reduced with respect to g.

2.5. Lemma. Let R be a domain. Let G C A\ R be a reduced set, G = {g1,...,q1 }
with vk gy < ... <rkg;. Let h € A be weakly reduced with respect to G and suppose
there is given some i € {1,...,1} such that h is reduced with respect to {gi+1,-.., g1}
Then there are q,r € A and some k € Ny such that

(a) L(g:)*-h=q-gi+r and

(b) r is weakly reduced with respect to G and reduced with respect to {gi,...,gi}-

(¢) tku, < max{rkup,rtkug,} and k = deg,, h—degug,g;+1 if h is not reduced

with respect to g;. '
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Proof. We may assume that h is not reduced with respect to g;. Let
Ay = R[0Y, | 0Y, appears in h or in g;, 0Y, # ug,].

Then h,g; € Aplug,] and we can apply the division theorem for the ring Agluy,].
Hence, there are ¢,7 € Aglug,] with L(g:)* -h=q-g;+r, k= deg,, h—degug,g;+
1 such that deg,, r < deg,, gi Furthermore the uniqueness statement of the
division theorem applied to A instead of Ag[u,,] says: if ¢*,r* € A with L(g;)*-h =
q*-g;+r* and degugi r* < degugi gi, then ¢ = ¢* and r =r*.

Since r € Aglug,] we know that rku, <rkh or rku, <rku, and since h and g;
are weakly reduced with respect to G we have that r is weakly reduced with respect
to G as well. By the choice of » we know that r is reduced with respect to g; and
it remains to show that r is reduced with respect to g; for each j € {i +1,...,1}.

Let z be the conductor of g; and let d := deg, g;. Since r is weakly reduced with
respect to g; it is enough to prove deg, r < d.

Since g; is reduced with respect to g; and rkg; < rkg; the variable z does not
appear in g; (1.7(ii)(c)). Consequently z does not appear in L(g;). Let

A = R[0Y, | 0Y, € DY,0Y, # z].

Since h is reduced with respect to g;, there are hg,...,hq—1 € A, such that h =
ha—12%"Y+ ...+ hiz+ho. Let gs,75 € A (8 > 0) such that ¢ = qo +q12 + 22> + ...
and r = 79 + 12 + r922 4+ .... Now we have the polynomial equality

L(gi)khd_l . Zdil + ...+ L(gl)khl cz 4+ L(gl)kho =

= (9iq0 +70) + (9iq1 +71) - 2+ (gig2 +12)2" + ...
in the variable z, where all coefficients are in A. Consequently g;q3 + g = 0 for
B>d With ¢ :=qo+qz+ ... +qa_12¥ P and 7* :=rg + riz+ ... + 141241 we
found a decomposition L(g;)* - h = ¢* - g; + r* such that degug_ < degugA g; and
deg, r* < d. From the uniqueness statement of the division theorem we getlr =r¥
thus deg, r < d. O

2.6. Remark. In the situation of 2.5 the polynomial L(g;)™ - r is weakly reduced
with respect to G and reduced with respect to {g;, ..., g} for all m € INy. Hence we
may increase the power k if we want.

2.7. Definition. If G is a finite subset of A\ R we define L¢ == {[[ < L(g)s | ig4 €
Ny for g € G} and L(G) := [[,cq L(9)-

If G is a reduced set then every L € Lg is weakly reduced with respect to
every g € G but L need not be reduced with respect to G. For example if G =
{Y13’ YIQYQ’ YIQY?J}

2.8. Definition. If G C A and y € 2Y we define

G<y=1{09| g€ G, 62 and rk(fuy) <1k(y)}
Gey={0g|9€G, 62 and rk(fuy) <rk(y)}

Note that in general G is not a subset of G<,, even if y is a proper derivative of
some ug, g € G. Clearly G, = U{ng | tkz < rky}.
At the moment we only work with the set GNG<y = {9 € G | tkuy <tky}.
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2.9. Proposition. Let R be a domain. Let G C A\ R be a reduced set. If f € A
is weakly reduced with respect to G, then there is some f € A, which is reduced with
respect to G and some L € Lg, such that L - f = fmod (G N G<y,). In particular

fe(@nNGey,)+ f- A

Proof. Let G ={g1, ..., 91, gi+1, .-, gm } Withrk g1 < ... <tk g, and rkugy, <rkuy <
rkug, , (note that I = m is not excluded; also, in the case rkuy < rkug, there is
nothing to do). We construct fi, ..., f1, fo € A taking f; := f with the following
properties:

(1) If i € {1,...,1}, then g; divides L(g;)* f; — fi_1 for some k; € IN.
(2) fi is weakly reduced with respect to G for ¢ € {0, ...,1}.
(3) f; is reduced with respect to {giy1,...,gm } for i € {0,...,1 — 1}.

Firstly f; = f is weakly reduced with respect to G by assumption and reduced
with respect to {gi41,...,gm} as tkuy < rkug, . Thus (2) and (3) hold for f;.
Suppose we have already constructed the f;, ¢ < j <[, with ¢ € {1,...,1}, such
that (2) and (3) holds for j > 4 and (1) holds for j > i. We apply 2.5 with h = f;
(note that f; € R is allowed here). We get some k; € Ny and f;—1 (the remainder
polynomial 7 from 2.5) such that g; divides L(g;)* f; — f;_1, such that f;_; is weakly
reduced with respect to G and reduced with respect to {g;, ..., g;}. Hence property
(1) holds for ¢ and properties (2),(3) hold for ¢ — 1. This gives the construction.
Note that in the case f; = 0 we have f; =0 for each j <.

If we take f := fo, then condition (1) implies that L - f = fmod {g1,--sa1})
for some L € L. By condition (3) we have that f = fo is reduced with respect to
G. O

2.10. Definition. If Z is a subset of A and 1 € H C A is multiplicatively closed
we define
Satg(Z):={f€A|h-feZforsomehec H}.
If h € A then
Sath(Z) = Sat{l’h,hz’”_}(Z).

2.11. Corollary. Let R be a domain. Let 0 # a C A be an ideal and let G C a\ R
be a characteristic set of a. If f € a is weakly reduced with respect to G, then

feSatp,(aNR+(GNGey,)).
Ifan R =0 then
fe SatL(G)((Gﬁ Gguf)) = SatLG((G N Gguf)).

Proof. Take f asin 2.9. Since f € a we get f € a from fe(G)+f-A Since fis
reduced with respect to G this is only possible if f € R (by 2.3). O

2.12. Remark. If ais an ideal of A with aN R = 0 and G is a characteristic set of
a, then L(g) # 0 is reduced with respect to G for every g € G, hence L(g) € a by
2.3. Thus if a is prime in addition, then Satr, ((G)) C a.

2.13. Example. Without the assumption anNR = 0 we need not have Satr . ((G)) C a
- even if a is prime. The reason is that L(g) might be a member of a - more precisely
of anN R for some g € G.

To see an example let Ry be a factorial Q-algebra, let ¢ be an ordinary inde-
terminate over Ry and let R := Rylt] together with derivations 0, ....,dk, such
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that 0;t € t- R (e.g. if all derivatives are trivial). Let Y be a single differential
indeterminate, A := R{Y} and let a := ¢- A be the ideal generated by ¢ in A. Since
0;t € t- R it follows that a is a differential prime ideal. Moreover a set G C A is
a characteristic set of a if and only if G = {¢t- (h1 - Y + ho)} for some hi,ho € R,
hi # 0. Now if we take h; = 1 and hg = 0 then Y € Satr.((G)), since t- Y € (G)
andt=L(t-Y). Bt Y € a.

Moreover this example shows that in general there is no characteristic set G of a
such that Satr,(aNR+(G)) C a - even if a is prime. This is so, since for arbitrary
hi,ho € R, hy # 0 we have Satr ., (aNR+ (G))=A,ast-h1-1€anRk.

2.14. Example. Let R be an arbitrary differential domain in K derivations, Z C R
and let A := R{Y} be the differential polynomial ring over R in the single variable
Y. IfaC Aisanideal and r € RNa, r # 0, then {r- Y} is a characteristic subset
of a. Hence every characteristic subset of a is of the form {r;Y + ro} with some
ri,r0 € R, mp 750

2.15. Proposition. Let R be a field and let G be a characteristic set of an ideal
a C A with a# (0) and an R = (0).

(i) If a is a radical ideal then no g € G is a proper power of another polynomial
from A.

(i) If a is a prime ideal, then for each g € G there is a unique irreducible factor go
of g with go € a. The set {go | g € G} of all these factors is a characteristic
set of p. Moreover if h € A with g = gy - h, then h € R or h is reduced with
respect to G and tkh < rkug.

Proof. (i). Suppose h¥ = g € G. Then h € a, so h is not reduced with respect to G.
Since h divides g, h is reduced with respect to every g € G\ {g} by 2.3. It follows
that h is not reduced with respect to g, thus h = g.

(ii). Fix some g € G. Let go be an irreducible factor of g with go € a. Since
G is reduced, go is reduced with respect to each g € G\ {g}. By 2.3 go is not
reduced with respect to g. Since go divides g we must have uy = wuy, hence
rk go = rkg. This proves that u, must not appear in any other irreducible factor of
g and g = go - h implies tkh < rkug. Since h divides g, it is reduced with respect
to every g € G\ {g}.

Since uj, = uy and go divides g (g € G), the set {go | g € G} C a is a reduced
subset of a. As rkgyg =rkg (g € G) this set is even a characteristic set of a. O
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3. THE SEPARANT

From now on we assume that R has characteristic 0.

By convention every f € A is a derivative of itself (namely the Oth derivative).
Again, we say that a variable z € 2Y appears in f € A if the degree of the
polynomial f in the variable z is non zero. So z appears in a derivative of z but z
does not appear in any proper derivative of z.

If rkd < rk E with 0, E € 2 then F need not be a derivative of § unless there
is only one derivative. This is the main difficulty in the reduction process of the
order. We begin with a fairly obvious but useful

3.1. Observation. Ifz,.....,2; € 2Y and 0 € 9, then
O(R|z1,...,21]) C R[Ez,...,Ez | E € 9 and there is some E € 9 with EE = 6]

Hence if f € A, then by choosing the z; as the list of all the variables in Y that
appear in f, we get the following:

If 2 € DY appears in Of (so z is one of the Ez;), then there is a variabley € Y
appearing in f (namely z; ) such that z is a derivative of y, and 0y (= 0z; = FEEz =
Ez) is a derivative of z.

Proof. This is a consequence of the Leibniz rule on the derivative of products. [
3.2. Definition. The separant of f € A\ R is defined as follows:

Let up = 0Y,, let B := R[0Yy, | 0Y;, # 0Y,] and let f = fq-ud + ...+ f1-up + fo,
with fq4,..., fo € B, fq # 0. The separant S(f) is

_d d-1
S(f) = Wff:d'fd'uf +...+ 1.
Moreover if § € Z is of order > 0 we define
0] = 0 — S(f)0uy.
If § = 0Y...00 we define [0]f := f. An alternative notation is f¢ = [0]f.

3.3. Lemma. Let0e€ P, 2€2Y,ke{l,..,K} and f € A\ R.
(i) If f = fdu‘fc + ... + fiug + fo, where uy does not appear in any f;, then

[0k = (Okfa)uf + . + (Onf1)us + Ok fo-

(i1) Quy is the leader of 0f and S(f) = S(0f) #0.
(iii) If ord @ > 0 then S(f) = L(0f) and Ldeg(f) = 1.
(iv) [0k01f = [Ok]6 .

(v) If ord® > 0 and [0|f & R then rk[0]f < rkOuy .

Proof. (i) follows immediately from the product rule for the derivative.

For the remaining parts we use

Claim. If (O] f & R then rk[Ok|f < rk Opuy.

Proof. Look at the representation of [0]f from (i). It is enough to show that
rk Oy f; has rank < 1k dyus. Let z € ZY be a variable which appears in rk d f;. By
3.1, there is a variable y € 2Y which appears in f;, such that z is a derivative of y
and such that Ory is a derivative of z. Hence z =y or z = Ory. As y appears in f;
we have rky < rkuy, thus rkz < rk Jyuy and the claim is proved. o



10 MARCUS TRESSL

(ii) and (iii). Clearly every variable y € 2Y which appears in S(f) has rank
< rkOruy. So the claim implies that dyus is the conductor of Jyf, as well as
S(0kf) = S(f) = L(Of). By a trivial induction we get (ii) and (iii).

(iv) holds if ord® = 0. If ord @ > O then [0x]0f = OkOf — S(0f)Okugy = OKOf —
S(f)O0kbuy by (ii) and (iii), so [0x]0f = [Ox8]f.

(v). As ordf > 0 we may assume that § = Oy F for some E € 2. Hence rk[f]f =
[Ok)Ef < tkOgugy by (iv) and the claim. Hence (ii) implies rk[f]f < rk Oy Euy =
rk Ouy. O

3.4. Example. Clearly 6u; = ugy. However, neither is fuy a derivative of the
leader of [8]f nor is the leader of [4]f a derivative of uy in general. For example if
f = 81Y82Y and 0 = (93. Then uf = 82Y, Uds f = 8382Y and u[@g]f = (9381)/.

4. REDUCTION OF THE ORDER
By 3.3(v) we have
0f =S(f)0uy+ [0]f and rk[f]f < rkbuy.

This is the core step for the reduction of the order if ord D > 0. It means that
S(f)0us can be reduced to a polynomial (namely —[6]f) of smaller rank modulo
the differential ideal [f].

4.1. Definition. If G C A\ R is finite then the separant of G is the polynomial

S@) =[] s

geG
Moreover we define S¢ := {[[\—; S(¢;) | n € N,g; € G}.

Observe that S(G) # 0, as char R = 0 and R is a domain. Moreover if G is a
reduced set, then S(G)? is weakly reduced with respect to G for all d € Ng. S(G)
need not be reduced with respect to G, for example G = {Y,Y1Y5} has separant
S(GQ) = 2Y2.
In what follows we fix a reduced set G C A. If f € A is not weakly reduced with
respect to G we define
ra(f) == max{rk(y) | y € 2Y appears in f and

y is a proper derivative of some ug4,g € G}

Observe for g € G such that u, appears in f we need not have rk(uy) < rg(f).
Therefore the next lemma is not true if we would define rg(f) as
max{rk(y) | y € 2Y appears in f and y is a derivative of some ug4, g € G}

42. Lemma. Let f € A\ R and let G be a reduced set. Lety € PY be a
variable which appears in f and suppose for some g € G, 0 € 2, ordD > 0 we
have y = Ou, (observe that g is not uniquely determined by this demand, even if
tk(y) = ra(f)). Let f = fay®+ fa—1y? "t + ... + fo, where y does not appear in f;,
fa # 0. Furthermore let

d
h=> fa-Sg)* - (~[0]g)".
a=0
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Then

S(9)?f = hmod (Ag)
and either h is weakly reduced with respect to G or rg(h) < rq(f). Moreover
tk(S(g)® - h) < rk(f) for all & € Ng and if tk(y) = ra(f) then rg(h) < ra(f).

Proof. The plan is to replace y = 6u, in f by %(99 — [0]g). After multiplying
the resulting expression with a suitable power of S(g) we subtract a multiple of 8¢
in A to get h.

Since y = Oug, we have

S(9)'f = fa- (S(9)0ug)® + fa—15(9)(S(9)0ug)™™" + ... + foS(g)™.
Since S(g)0uy = g — [0]g we may replace S(g)0uy by 8g — [f]g in this equation and
get

S(9)'f = fa- (09 — [019)" + fa-15(9)(0g — 10]9)"~" + ... + foS(9)",
which proves S(g)?f — h € (0g).

Now suppose h is not weakly reduced with respect to G. Let z € 2Y, suppose
z appears in h and z is a proper derivative of ugz for some g € G. If z appears
in S(g), then rkz < rku, < rkfu, = rky < re(f). If z appears in [@]g then
tkz < 1k[f]lg < rkbuy, = rky < rg(f) by 3.3(v). If z appears in f, for some
a € {0,..,d} then rkz < rg(f) by the definition of r¢(f). If rky = rg(f) and 2z
appears in f, for some a € {0,..,d} then rk z < rky =< rg(f) by the definition of
ra(f) and the choice of the f,’s. This shows rg(h) < rg(f) and rg(h) < re(f) if
rky = rkg(f). It remains to prove rk S(g)® - h < rk f.

Let u := ug(g)o.p,- If u does not appear in S(g) and in [f]g, then u* appears in
some fq, hencerk S(g)*-h <rk f. If uj, appearsin S(g), thenrku < rkg < rkfu, <
tk f, so tk S(g)* - h <rk f. If u appears in [f]g, then rku < rk[f]g < rku, < rk f
(by 3.3), hence rk S(g)* - h < 1k f. O

4.3. Notation If f € A is not weakly reduced with respect to G then we define
G<y:={0g| g€ G,0€c P and rk(fuy) <ra(f)}
Gey:={0g| g€ G,0c P and rk(fuy) <ra(f)}

Observe that for g € G we do not have g € G<y in general, even if u, appears in f.

Moreover, if y € 2Y appears in f with rk(y) = r¢(f), then G<y = G<, and
G<fj = Gcy. (See 2.8 for definitions.)

If f is weakly reduced with respect to G we define G<y := Gguf and Gy := G<uf.

4.4. Corollary. Let G C A be a reduced set and let f € A. Then there is some
f € A which is weakly reduced with respect to G and some S € Sg such that
rk(f) < rk(f) and

S f=fmod(G<y).
In particular

S f = fmod (Gzu,).

Proof. If f is weakly reduced with respect to G we may take f = f and S = 1. If f
is not weakly reduced with respect to GG, we apply 4.2 to f and denote the resulting
polynomial by fi. If f; is not weakly reduced with respect to G we apply 4.2 to
f1- Ongoing in this way we get a sequence f = fy, f1, f2,... of polynomials with
ra(f) >ra(fi) > ...and rk f > rk f; > .... As such a sequence can not be infinite,
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some f,, has to be weakly reduced with respect to G. We have rk f,, < rk f and

S; - fi = fiximod (D'g;) for some S; € Sg, 0" € 2 and g; € G with rq(f) >
r(fi) = rk@ugy,. Thus 0'g; € G<y and So - ... - Sp—1f = frmmod (G<y). So we
may take f = fi,. |
4.5. Definition. If G C A is finite we define

Hg ::{L~S|L€LG, SESG}
and

H(G):=L(Q) - S(G).

We summarize both reduction processes:

4.6. Theorem. Let G C A be a reduced set and let f € A. Then there is some

f € A, which is reduced with respect to G and some H € Hg such that
H-f= fmod(Gguf).

In particular H - f = f mod [G].
Proof. By 4.4 there is some h € A, which is weakly reduced with respect to G such
that S - f = hmod (G<,,) for some S € S and such that rk(h) < rk(f). By 2.9
there is some f € A, which is reduced with respect to G and some L € Lg such
that L - h = fmod (G N G<y,). As tk(h) < rk(f) we get G<y, € G<u,, hence
H-f=fmod(Gzy,) with H:=L-S. O
4.7. Corollary. Let R be a domain. Let 0 # a C A be a differential ideal, anR = 0
and let G C a\ R be a characteristic set of a. Then

()

acC SatHG [G]
(i) (Coherence of the characteristic set G)

If g1,92 € G, g1 # g2 and 0*,0% € D such that 0'ugy, = 0%u,, =: y, then there
is some H € Hg such that

H - (S(g2) 091 — S(g1) - 0°g2) € (Gy).
(Recall that G, :=={0g | g € G, 6 € P and rk(fuy) < rk(y)}.)

(i) If a is prime then
a= SatHG [G]

Proof. (i) and (ii). Let f € a and take f and H as in 4.6. Since f € a we get f € a
from f € [G] + f - A. Since f is reduced with respect to G this is only possible if
feR(by23). SofecRNa=0and H-f ¢ (G<u;)- In particular f € Saty,[G].

If f =S(g2)-0"g1 —S(g1) 6?92, then rk(us) < rk(y) and 4.6 shows H - f € (G<y).

(iii). If a is a differential prime ideal and f € Satp,,[G] then H - f € a for some
H € Hg. Since H # 0 and each leading coefficient and each separant of an element
in G is reduced with respect to G we get H ¢ a from 2.3 again. Hence f € a. [
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5. COHERENCE AND THE ROSENFELD LEMMA
We start with a lemma about saturations when passing to polynomial rings

5.1. Generation of the saturation Let B ba a ring and let Y be a set of
indeterminates over B. Let G C B and let H C B be multiplicatively closed. Let
A := B[Y] and let (G) g, (G)a be the ideal generated by G in B and in A respectively
. Let
b={feB|h fe(G)p for somehec H}
a={feB[Y]|h-fe(G)a for someh € H}.

Then
(i) The ideal a of A is generated by the ideal b of B.
(i) anN B =b.

(iii) a is radical if and only if b is radical and a is prime if and only if b is prime.

Proof. Clearly (ii) holds and (iii) follows from (i). In order to see (i) we may assume
that Y is a finite set of indeterminates. Then the claim follows by induction on the
number of variables from the one variable case. So we may assume that A = B[Y]
is the polynomial ring over B in one indeterminate Y.

We prove (i) by induction on the degree of f € ain Y. If deg f = 0, then we
have f € b. Now suppose f = f~Y+r € a with r € B and degf < degf.
Take h € H,f; € A and ¢g; € G with h- f = > f; - g;- Setting ¥ = 0 shows
r € b, hence we may assume that r = 0. Let f; = f'Y +r; with r; € B. Then
h-f-Y = Yoicr [i9i Y+ rigi, s0 Y rigi = 0 and h-f= > icr Jigi- This means
f € a and by the inductive hypothesis, f is in the ideal generated by b in A. So
f= f - Y is in the ideal generated by b in A as well. O

Again R is a differential domain containing Z in K commuting derivatives and A :=
R{Y1,...,Yn} is the differential polynomial ring in N variables and K derivations.
Recall from 2.8 that for G C A and y € 2Y we have defined

G<y={09|9€G, 0P and rk(fuy) < rk(y)}
Gey={09|9€G, 62 and rk(0uy) <rk(y)}

Recall that G is in general not a subset of G<,, even if y is a proper derivative of
some ug, g € G.

Clearly G, = | J{G<. | tkz < rky}. Moreover G U d;(G<,) C G<g,y, thus
9i((G<y)) € (G<oyy)-

5.2. Definition. A reduced subset G of A is called coherent if for all g;, g5 for
which ug, and u,, have a common (higher) derivative the following condition holds.

Let 01,02 € & be such that y := O1uy, = Oaug, is the least common derivative
of ug, and ug,. Then there is some n € INy such that

H(G)"(S(g2)0191 — S(g1)0292) € (G<y).

If w:= O1ug, = Ouy, is any common derivative of ug, and ug4,, then one checks
that there is some n € INg with
H(G)"(5(92)0191 — S(91)0292) € (G<w)-

This is done in the following lemma.
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5.3. Lemma. Let G C A, g1,90 € G, 01,05 € 2, h,s1,80 € A and y € PY such
that y is a derivative of Ohug, and of Orug,. If
h™ (5160191 — $20292) € (G<y)
then
Rt (510i61g1 — $20i0292) € (G<a,y)

Proof. Let f := s10191 — s202g92. Then

h-0;(h™-f) = nh"fo;h+h"t10f =
= nh"fo;h +
+ A" (0i(s1)0191 — Di(s2)0292) +
+ W (510,0191 — $200292)

Since h" - f € (G<y) by assumption we get that h - 9;(h™ - f), nh™ fo;h, 0191
and 0ag2 are in (G<p,y), 0 K" (5100191 — $20;0292) € (G<a,y) as well. O

5.4. Proposition. Let G C A be a reduced and coherent set. If f € A is weakly
reduced with respect to G and f € Satp,[G], then f € Saty,(G), where (G) denotes
the ideal generated by G in A.

Proof. Let g1,...,9m € G and let 04, ...,0,,, € Z of order > 0 such that

(+) H-f=> fi0gi+Y hgg
=1 geqG

for some H € Hg and polynomials fi,hy € A (1 <i <m, g € G). Let o :=
max{rk f;ug, | 1 <i < m}. We'll reduce (*) to an equation of the form (x) where
the corresponding « is smaller than the present one. After applying this argument
finitely many times we get a representation of f in Saty,(G) which proves the
proposition. The reduction goes as follows.

We may assume that there is some [ € {1, ..., m} such that rk;u,, = o (1 <i <
m) and rkfO;uy, < o (1 <1 <1). Let y = Qug, = ... = Opuy, . By (x) we know
that H- fe > ", fi-0;g; + (G<y) + (G). We have

S(gm) - Y fi0igi =Y _(S(gm)fi - Oigi — S(9i) - fibmgm) + > 5(9) - fiOmGrm.-
i=l i=l i=l
Since G is a coherent set we get that S(g,) - ZZZ fi big; € f OmGm + (G<y),
where f = >, S(g;) - f;- Hence

S(gm)'H'f € f’emgm+(G<y) + (G)

This means that there is an equation of the form (%) such that 6;u,, = y for at
most one index i € {1,...,m}. Say y = 6,,u,, . Then 6,,u,, does not appear in
H, f,0191,...,0m—1gm—1 nor in any g € G. We have 6,,,g,, = S(gm)-Omug,, +[0m]gm
and 6,,u,,, does not appear in [0,,]¢m. So if we replace 0p,ug,, by —[0m]gm/S(gm)
in (x) we get an equation

m—1
(%) H'f:Zfi'Qz‘gi+Zﬁg'g
=1

geG
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with rational functions fi, ?Lg € As(g,,)- By multiplying with a suitable power p of
S(gm) we get S(gm)? - H - f € (G<y) + (G) as desired. O

5.5. Corollary. Let G C A be reduced and coherent. If Satp,,(G) is reduced then
Saty, |G is reduced. If Satp,(G) is prime then Saty,[G] is prime.

Proof. Let f1, fa € A with f1fs € Saty,(G). Let H; € Hg and f; € A reduced
with respect to G such that H,;f; = fymod[G]. Since H - fif, € [G] for some
H € Hg it follows that fl fg € Saty,[G]. As fl fg is weakly reduced with respect
to G it follows f fo € Satg,, (@) from 5.4. Hence f; € Satg, (G) or fo € Satp,(G)
if Satp,(G) is prime and f; or f2 is in Saty,[G]. This shows that Saty,[G] is
prime if Satg,, (G) is prime. The same argument proves that Satp,,[G] is reduced
if Satp, (G) is reduced. O

5.6. Theorem. (The Rosenfeld Lemma)
Let G C A be a reduced set. Then the following are equivalent.
(1) G is a characteristic set of [G] : HY and [G] : HX N R = 0.
(2) (a) G is coherent and
(b) The ideal (G)a : HEF of A does not contain non zero elements of A,
reduced with respect to G.
(3) Let B denote the R-algebra R[y € 2Y | y appears in g for some g € G].
(a) G is coherent and
(b) The ideal (G)p : HE of B does not contain non zero elements of B,
reduced with respect to G.
In this case [G] : HE is reduced respectively prime if and only if (G)a : HY is
reduced respectively prime.

Proof. (1)=(2) follows from 4.7 and 2.3.

(2)=(1). Let G = {g1, ..., g1} with rkg; < ... <rkg and let G = {g1, ..., §m} be
a characteristic set of a := [G] : HZ such that rk§; < ... < tk . As kG <1k G
we have rk g; < rkg;. Suppose rkg; < rkg;. Then g; € a is reduced with respect
to G. By (a) and 5.4 we have g1 € (G)a : HZ. By (2)(b) we have §; = 0, which is
impossible.

Thus rk§; = rkg; and we may replace §; with ¢, in G. The same argument
now applies to go and we may replace go by go. Ongoing in this way we obtain
I <mand G C G. But [ < m is not possible either, otherwise the argument above,
applied to g, produces a contradiction, too. This shows that G is a characteristic
set of [G] : HZ, hence (1) and (2) are equivalent.

Clearly (2) implies (3). We prove (3)(b)=(2)(b) now. Let f € (G)a : HY
and suppose f # 0. We consider f as a polynomial over Rly € 2Y |y ¢ B] and
write f = > fym;, where m; are mutually different monomials in the variables
from B and f; are polynomials not containing any variable from B. As f # 0
there is at least one f; among the f; such that f; # 0. Let v : A — B be a
B-algebra homomorphism sending f; to a nonzero element of R and every variable
y € Y \ B to an element from R. Let H € Hg with H - f € deG Ag. Then
H-1(f) € X2 cq Bg and ¢(f) # 0. Moreover ¢(f) is reduced with respect to G,
so the ideal (G)4 : HZ of B contains the nonzero element #(f), which is reduced
with respect to G.

So we know that (1), (2) and (3) are equivalent. Finally suppose [G] : HZ is
prime and let B := R[y | y € ZY appears in some g € GJ. By 5.1 it is enough to
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show that (G)p : HY is prime. So let fi, fo € B with fy - fo € (G)p : HY. By
assumption we may assume that f; € [G] : HY. Since f; € B, B is weakly reduced
with respect to G, hence fi € RN (G)a : HX = (G)p : HX. A similar argument
shows that (G)a : HZ is reduced if [G]a : HZ is reduced. Finally 5.5 finishes the
proof of the theorem. O

5.7. Example. Suppose G C A is reduced, (G)p is prime and L(g),S(g9) € (G)p
(9 € G), where B=R[y | y € G]. Then (G)a : H¥ = (G)a by 5.1.
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