ℵ₀-categoricity for semigroups Victoria Gould Abstract

A countable structure M is \aleph_0 -categorical if $\operatorname{Th}(M)$ has one countable model, up to isomorphism. Numerous authors have investigated the \aleph_0 -categoricity of both relational and algebraic structures. Although the notion of \aleph_0 -categoricity is primarily motivated by concerns of model theory, it has yielded significant results for both groups and rings. The Ryll-Nardzewski theorem tells us that a structure M is \aleph_0 -categorical if and only if $\operatorname{Aut}(M)$ has only finitely many orbits on M^n for each $n \in \mathbb{N}$, that, is $\operatorname{Aut}(M)$ is an *oligomorphic* group. Thus \aleph_0 -categoricity may be translated entirely into an algebraic context.

A semigroup is a set together with an associative binary operation. The aim of this talk is to present the beginnings of the exploration of \aleph_0 -categorical semigroups. Our viewpoint is to break a semigroup S into constituents of 'simpler' type such as groups and sets and consider how categoricity of S passes to and from that of its components. We illustrate our approach by focussing on the case of *inverse semigroups*, where a semigroup is inverse if for each $a \in S$ there is a unique $a' \in S$ such that a = aa'a and a' = a'aa'. Inverse semigroups share some of the properties of groups, yet are distinct enough to provide a good setting to illustrate our techniques, being determined, up to a point, by groups and semilattices.

No prior knowledge of semigroups will be assumed.

This is joint work with Thomas Quinn-Gregson.