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Abstract

This paper investigates the accuracy of high-order extended finite element methods
(XFEMs) for the solution of discontinuous problems with both straight and curved
weak discontinuities in two dimentsions. The modified XFEM is found to offer
advantages in cost and complexity over other approaches, but suffers from suboptimal
rates of convergence due to spurious higher order contributions to the approximation
space. An improvedmodifiedXFEM is presented, with basis functions ‘corrected’ by
projecting out higher order contributions that cannot be represented by the standard
finite element basis. The resulting corrections are independent of the equations being
solved. An accurate numerical integration scheme that correctly integrates functions
with curved discontinuities is also presented. Optimal rates of convergence are then
recovered for Poisson problemswith both straight and quadratically curved interfaces
for approximations up to order p ≤ 4. These are the first truly optimal convergence
results achieved using the XFEM for a curved weak discontinuity, and also the first
optimally convergent results achieved using the modified XFEM for any problem
with approximations of order p > 1. Almost optimal rates of convergence are recov-
ered for an elastic problem with a circular weak discontinuity for approximations up
to order p ≤ 4.
KEYWORDS:
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1 INTRODUCTION

High-order methods for the solution of partial differential equations offer huge potential for increased accuracy1,2. Provided the
problem is sufficiently smooth, a higher order finite/spectral element method can approximate the solution to a much higher
degree of accuracy than a low order method for comparable cost3. A p-order accurate method is defined as one in which the error
in the approximate solution reduces with the mesh spacing ℎ at a rate O(ℎp)1 in the H1 norm. The definition of a high-order
method is generally regarded as being one that is third-order or higher1.
Optimal rates of convergence for higher order approximations to smooth problems are straightforward to obtain4. Our aim is

to achieve the same optimal rates of convergence for higher order approximations to problems with arbitrarily aligned disconti-
nuities. Such problems arise in several areas, including crack propagation5,6 and multi-phase fluid flow problems7. The standard
finite element method (FEM) is unable to accurately resolve kinks or jumps in the solution in element interiors4. Instead we
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can either align the FE mesh with the discontinuity, or enrich the FE approximation space in order to accurately represent the
discontinuity independent of the mesh.
The use of a mesh with element boundaries aligned with the discontinuity allows kinks in the solution to be handled naturally

by the finite element method because it permits jumps in gradient of the solution across element boundaries. However, if a time-
dependent problem is to be solved, particularly one in which the location of the discontinuity changes with time, then the mesh
must be updated continually in response to the movement of the interface. We call this an interface-tracking method. In contrast,
with the enriched approach the mesh need not change as the interface moves. However, simply using the standard finite element
basis functions on an unfitted mesh results in an approximation space that is unable to accurately represent the discontinuous
solution, as is demonstrated later in section 4. Instead, the enriched basis functions must be updated to incorporate the moving
discontinuity. We call this an interface-capturing method because the interface is immersed in the fixed background mesh and
its location is ‘captured’ implicitly.
The application of boundary-fitted methods suffers from the need to solve the equations governing the motion of the mesh in

response to the prescribed boundary deformation together with those of the physical problem, which can be costly. Furthermore,
if the interface undergoes large deformations then remeshing is required and this can be problematic8. If instead an immersed
method is used, then none of the costly update or remeshing procedures associated with boundary-fitted methods are required.
However, an additional auxiliary function is required that is defined over the whole domain. Storing and updating this function
increases the memory requirements and cost of the method. The size of the approximation space for immersed methods is also
larger than that for boundary-fitted methods, thus also increasing the problem size.
In this paper we focus on the use of immersed methods to model discontinuities independently of the mesh. We use the level

set method9,10 to capture the location of the discontinuity and the extended finite element method (XFEM)5,11 to incorporate
the discontinuity into the finite element approximation space.
Note that, although immersed methods can be used for steady problems (e.g. to simplify the meshing of complex geome-

tries12,13), typically boundary-fitted methods are preferred. Our use of immersed methods here is motivated instead by the
potential for their extension to time-dependent problems for which they are better-suited. In this paper we use the XFEM to solve
some simple steady discontinuous problems with the aim of achieving the same optimal rates of convergence as can be achieved
using the standard FEM for smooth problems. That is, we expect to achieve rates of convergence of order O(ℎp), where ℎ is the
mesh spacing and p is the polynomial order of the approximation.
In section 2 we introduce the XFEM approximation and some possible enrichment functions. We also discuss the current state

of knowledge according to the literature. Next, in section 3, we introduce a Poisson problem with a discontinuity that is used
throughout this paper to evaluate the performance of our XFEM with respect to an analytic solution. Then in section 4 we com-
pare the performance of some XFEMs in two dimensions and demonstrate how the modified XFEM converges suboptimally. We
also present an improvement to the modified XFEM that recovers optimal rates of convergence for the Poisson problem with a
straight discontinuity. In section 5 we consider a Poisson problem with a quadratically curved discontinuity and generalise both
the integration scheme and our corrections to the modified XFEM for curved discontinuities. We then present optimally con-
vergent results. The resulting corrections are independent of the equations to be solved, in contrast to assumed strain projection
methods7,14. In section 6 we consider a two-dimensional linear elasticity problem with a circular discontinuity which recovers
almost optimally convergent results. Finally, our conclusions are presented in section 7.

2 XFEM APPROXIMATION

The extended finite element method is based on the partition of unity (PU) concept proposed by Babuška et al.15,16. It uses a
priori information about the form and location of the discontinuity to incorporate additional functions into the standard finite
element approximation space. The XFEM approximation takes the form

uℎ(x) =
∑
i
ui i(x) +

∑
i
u⋆i Ψ(x)Ni(x), (1)

where ui ∈ ℝ are the standard FE unknowns,  i are the standard FE basis functions, u⋆i ∈ ℝ are the enriched unknowns, Ψ is a
global enrichment function that represents the discontinuity that is to be included, and {Ni} forms a PU over the domain. That is,∑
iNi(x) ≡ 1. This PU property allows the global enrichment functionΨ to be reproduced exactly in the XFEM approximation.

Often Ni are chosen to be equal to  i. This ensures that they form a global partition of unity over Ω, although the resulting
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method is not as general as the PUM/PUFEM17,18. We call the functions  ⋆
i = Ψ i the local enrichment functions because

their support is restricted to that of the standard FE basis functions.
Let us describe the locationΓ of the discontinuity by the zero level set of a function� defined over the whole domainΩ. That is,

Γ = {x ∈ Ω ∣ �(x) = 0}. We can then use this level set function � to characterise the discontinuity. Note that in practice we use
the discretised level set function �ℎ = ∑

i �i i rather than � itself. The Kronecker-� property of the standard FE basis functions
ensures that �ℎ is equal to � at each node. The zero level set of this discretised level set function, Γℎ = {x ∈ Ω ∣ �ℎ(x) = 0},
provides an approximation to Γ.
If a function has a jump in value then we call it a strong discontinuity, and typically step-enrichment,

Ψstep = sign(�ℎ),
is used. Alternatively, if a function is continuous but has a jump in its gradient we call it weakly discontinuous, and typically
abs-enrichment,

Ψabs = |�ℎ|, (2)
is used.
The local enrichment functions Ψ i are constructed using the standard FEM basis (PU) functions  i. They can also be

‘shifted’19 so that they become zero at each node, thus regaining the Kronecker-� property of the XFEM approximation. The
shifted local step-enrichment functions are

 ⋆
i = (sign(�

ℎ) − sign(�i)) i,

and the shifted local abs-enrichment functions are
 ⋆
i = (|�ℎ| − |�i|) i, (3)

where �i = �(xi) and xi is the position of the ith global node.
Since the FE basis functions form a PU over Ω, our local enrichment functions are able to exactly reproduce the global

enrichment functionΨ onΩ. These enriched basis functions, together with the standard part of the XFEM approximation should
allow us to accurately represent any function with a strong or weak discontinuity located at �−1(0), but that is smooth elsewhere.
The local finite element basis functions, defined on a reference element Ωref = [−1, 1]d ∈ ℝd , are the restrictions of the

global finite element basis functions. We define the enriched local basis functions in the same way, as the restrictions of the local
enrichment functions to each element.

2.1 Blending
The standard FE basis functions build a PU over the whole domainΩ, allowing the global enrichment function to be reproduced
exactly everywhere. Although this is desirable in problems where the enrichment is required globally, the discontinuities we
hope to incorporate are local features; elsewhere the solutions are smooth. In elements that contain a discontinuity the local
standard basis functions of degree p, together with the corresponding local enriched basis functions, form a complete basis for
piecewise polynomial functions of degree p on the reference element. However, in elements that do not contain a discontinuity
the global step- and abs-enrichment functions can already be reproduced by the standard finite element basis alone. We therefore
apply the enrichment only locally, close to the discontinuity.
Suppose we incorporate only the enriched basis functions that correspond to a subset I⋆ of nodes. Then we classify elements

as follows.
Definition 1. 1. Elements over which the standard basis functions corresponding to the nodes I⋆ form a PU are called

reproducing elements;
2. elements over which every standard basis function corresponding to a node in I⋆ vanishes are called unenriched elements;

and
3. elements over which the standard basis functions corresponding to the nodes I⋆ neither vanish nor form a PU are called

blending elements.
All nodes belonging to elements cut by the discontinuity belong to I⋆, and so the global enrichment function can be repro-

duced there. In an element that neighbours a reproducing element only some of its nodes belong to I⋆. The standard global
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basis functions corresponding to those nodes have support in the element, but those basis functions do not form a PU over the
element. This element is therefore a blending element and is able to partially, but not fully, reproduce the global enrichment
function. This in itself does not present a problem since we are only concerned with reproducing the global enrichment locally
in elements that contain a discontinuity. However, the terms introduced into the approximation that do partially reproduce the
global enrichment can be problematic. The local abs-enrichment functions corresponding to nodes shared between reproducing
and blending elements have support in both elements, but the enriched basis functions are of a higher degree than the standard
basis functions. The (parasitic) terms introduced by these nodes into the local approximation in the blending region therefore
cannot be removed by contributions from the standard basis functions.
It is expected that an approximation of order p should be able to exactly reproduce functions that are piecewise polynomial

of degree p. However, the parasitic terms cause the XFEM approximation to be unable to exactly represent these functions.
In some cases, as we will see in section 4.1, It is sometimes possible for the XFEM solution to converge at the optimal rate
under mesh refinement despite the inability of the approximation space to exactly represent piecewise polynomial functions20.
However, the presence of these parasitic terms generally does adversely affect the achievable rates of convergence. Note that
blending is not required when shifted step-enrichment is used because the enrichment vanishes outside of elements that contain
the discontinuity.
Since abs-enrichments do suffer from parasitic terms in the blending region, unless these spurious contributions can be

eliminated or otherwise accounted for then sub-optimal rates of convergence for the XFEM approximation will result. Several
strategies exist to combat these complications in the blending region. These include:

1. a global enrichment strategy where enough additional enrichments at element boundaries are included to eliminate the
spurious contributions from neighbouring elements,

2. the use of additional hierarchical basis functions in blending elements7,
3. the construction of assumed strain blending elements7,14 to eliminate the unwanted terms in the blending region

analytically,
4. a strategy in which the reproducing region is uncoupled from the rest of the domain and the solutions are matched to

regain continuity8,21,
5. the use of partition of unity functions Ni of a lower order in the enriched part of the approximation22 such that the

additional terms introduced in the blending region can be represented by the standard FE basis in those elements,
6. a corrected XFEM23,24 where a ramp function is employed to reduce the enriched contribution to zero on the outer edge

of the blending region,
7. the use of several enrichment terms based on linear partition of unity functionsNi

25, and
8. a modified XFEM26 where the enrichment is constructed such that it vanishes in the blending region.
Strategy 1 takes advantage of the local linear dependence of the local enrichment functions, but introduces many additional

unknowns into the system, drastically increasing the cost. In strategy 2 additional degrees of freedom are required, increasing
the problem size. This strategy is used with linear elements in Chessa et al.7, and extended to higher order in Tarancón et al.27,
although the results are not always optimal28. Strategy 3 uses assumed strain projection to eliminate the unwanted terms in
the blending elements with analytic representations of the parasitic terms. It performs optimally, and the additional degrees
of freedom can be removed via static condensation14,29. However, the equations associated with these unknowns are problem-
dependent, meaning that a new assumed strain blending element must be constructed if a different set of equations are to be
solved, and the adjustment is quite involved28. Linear assumed strain blending elements are used in Chessa et al.7, Legay et al.22
and Gracie et al.14. The decomposition of the domain into enriched and standard FE regions in strategy 4, with the solution
matched between regions by enforcing continuity, is a promising approach. No nodes are shared between the domains, and so
the enriched basis functions only have support in the reproducing region. Parasitic terms are therefore not introduced. Due to
the matching of enriched and unenriched approximations, strong continuity cannot in general be regained even on conforming
meshes. Instead weak continuity must be recovered, and this can be done in several ways including pointwise matching at nodes
(Laborde et al.8), a discontinuous Galerkin method (Gracie et al.14), Lagrange multipliers (e.g. the mortar method as in Chahine
et al.30), the penalty method or Nitsche’s method31,32.
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Strategies 6 and 8 both localise the enrichment by changing the global enrichment function such that it vanishes away from
the discontinuity. The corrected XFEM requires additional nodes to be enriched such that the basis functions build a PU over
the blending region in addition to the reproducing region. The use of the ramp function prevents spurious contributions from
entering the unenriched region. The modified XFEM is discussed in detail in section 2.3.

2.2 Optimal Convergence
Error bounds on generalised/unfitted finite element approximations of O(ℎp) in the H1 norm and O(ℎp+1) in the L2 norm are
proved by Babuška et al.33 and Lehrenfeld and Reusken34, although numerical results demonstrating these rates of convergence
are not presented.
For a point interface, in one dimension, optimal rates of convergence for a weak discontinuity have been demonstrated by

Fries23 for approximations up to p = 4.
Fries and Belytschko28 note that the description of an interface in higher dimensions is formally independent of the approx-

imation in the bulk. Interfaces are often assumed to be (piecewise) planar in order to simplify the quadrature28. Higher order
convergence studies with planar cracks by Laborde et al.8 and Tarancón et al.27 have displayed optimal accuracy. However, to
obtain optimal convergence rates for the solution to problems involving curved interfaces a higher order description of both the
approximation and the interface is required, as demonstrated by Cheng and Fries25 and others. It is also essential to resolve
problems in the blending elements, as discussed in the previous section.
Higher order descriptions of the interface in the XFEM have been considered, for example in Dolbow et al.35, Stazi et al.36 and

Zi and Belytschko37, but in these papers the interface is still considered to be straight for the purposes of integration28. As such,
optimal convergence is not obtained. Some recent work has focused on discretising curved interfaces to the required accuracy
using piecewise linear approximations of the within elements (Jiang et al.38), or by using higher order level set functions (Fries
and Omerović39). Other approaches involve local remeshing about the interface and the use of standard finite elements40,41, or
local refinement about the interface42,43. There has also been some work on improving the split integration in cells containing
the interface43,39,44. In Ndeffo et al.45, the approximation space is modified to improve conditioning, but optimal convergence
is not obtained.
Optimal convergence results have been achieved for straight strong discontinuities in22,27,46 (and in8 where blending strategy 4

was used around crack tips), and for straight weak discontinuities (for p ≤ 4) in22 using strategy 5. Optimal convergence
results for curved strong discontinuities are presented in47. However, achieving optimal convergence rates for curved weak
discontinuities is not as straightforward.
Cheng and Fries25 show that strategies 5 and 8 converge sub-optimally for curved weak discontinuities with approximations

of order p > 1. They go on to achieve “close to optimal” rates of convergence for curved weak discontinuities using strategies 6
and 7 with approximations of order p ≤ 3, although the latter suffered from ill-conditioning.
These studies considered only quadratic and cubic approximations. Until recently, truly high-order (p > 3) XFEM had not

been reported in the literature. Byfut and Schröder46 have since developed a high-order XFEM for polygonal crack problems,
reporting optimal rates of convergence for orders p ≤ 4. As-yet there have been no truly optimally-convergent higher order
strategies for curved weak discontinuities reported in the literature. Furthermore, there have been no optimal convergence results
presented for blending strategy 8 for weak discontinuities, straight or curved, for approximations of order p > 1. We now take
a closer look at strategy 8, the so-called modified XFEM.

2.3 The Modified XFEM
The problems that arise in the blending region occur because some of the abs-enriched global basis functions have support
outside of the reproducing region, in the blending region. The modified XFEM, introduced by Moës et al.26, alters the global
abs-enrichment function in order to avoid these problems. It uses a modified global enrichment function,

Ψmodified = |�ℎ| − |�|ℎ, (4)
where we define |�|ℎ = ∑

i |�i| i. Note that here we have chosen the opposite sign from that used in26. The first term in this
global enrichment is the same as for the standard shifted abs-enrichment, and has a jump in the gradient at (�ℎ)−1(0). The second
term is just the standard finite element representation of the absolute value of the level set function, |�|. The modified local
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enriched basis functions are
 mod
i = (|�ℎ| − |�|ℎ) i. (5)

Now, in elements not cut by the discontinuity the sign of � does not change. Therefore |�ℎ| = |�|ℎ, and so the enrichment
vanishes. Thus parasitic terms are not introduced to the approximation in the blending elements. The construction of themodified
global enrichment function is shown in figure 1.
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1

x
xc

�ℎ

Ψabs = |�ℎ|

-1

0

1

x
xc

|�|ℎ =
∑
i
|�(xi)| i

-1

0

1

x

Ψabs

Ψmodified

−

=
Reproducing element
Blending element
Enriched node
Unenriched node

FIGURE 1 Construction of the modified global enrichment functions using linear PU functions. (Based on figure 14 from25.)

This approach has several advantages over other blending methods. Firstly, in the modified XFEM only the nodes in the
reproducing elements are enriched, whereas in the corrected XFEM (and others) the nodes in the blending region are also
enriched. The modified XFEM therefore requires fewer degrees of freedom than other blending techniques, although often the
affect of this on the total problem size is small. Secondly, in order to construct the local enrichment functions it is necessary to
compute the level set function everywhere that they have support. For the standard/corrected local enrichment functions this is
over both the reproducing and blending regions, whereas for the modified local enrichment functions it is just on the reproducing
region. The initialisation and update of the level set function can be costly48,49, so it is advantageous that the modified XFEM
allows the level set function to be calculated on a narrower band around the discontinuity. However, it is often necessary to
calculate the level set function on a wider band for other reasons, such as for velocity extension or for updates to fast-moving
interfaces. Additionally, because �ℎ matches � at each node, we have mod

i (xj) = 0 for all i, j and so the approximation naturally
has the Kronecker-� property: no further shifting is required.
However, as reported in25, the modified XFEM is known to yield poor rates of convergence for higher order approximations.

This problem must be addressed before the method can be used efficiently at higher orders. We consider this in more detail in
section 4.2.

3 A POISSON PROBLEMWITH A DISCONTINUITY

Let us now introduce a discontinuous problem to which we can apply the XFEM. We will use it in the following sections
to analyse the performance of different enrichments. Consider a Poisson problem that includes a spatially varying diffusivity
D = diag(�(x)), with �(x) > 0. That is,

∇ ⋅ (D∇u) = f. (6)
If � is discontinuous then the solution u will also be discontinuous. We impose boundary conditions

u|||)Ω = u. (7)
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We write the Galerkin weak form of (6) as

∫
Ω

(∇ ⋅ (D∇u) − f )v dΩ = 0

∫
Ω

D∇u ⋅ ∇v + fv dΩ − ∫
)Ω

D∇uvn̂ ⋅ ds = 0 ∀v ∈ V . (8)

We restrict the trial space to functions which satisfy the boundary conditions (7),H1
(Ω) ⊂ H

1(Ω). We can also restrict our test
space to functions which vanish at the boundary,H1

0 (Ω) ⊂ H
1(Ω). The weak form now becomes

find u ∈ H1
(Ω) s.t. ∫

Ω

D∇u ⋅ ∇v + fv dΩ = 0 ∀v ∈ H1
0 (Ω). (9)

We discretise the test and trial spaces, Hℎ
(Ω),H

ℎ
0 (Ω) ⊂ H1(Ω), and then choose a basis Hℎ(Ω) = span{ i,  ⋆

i }, where  iare the standard finite element basis functions of degree p and  ⋆
i are local enrichment functions based on the global abs-

enrichment (or one of its variants) and constructed using the  i. We relabel this basis using the functions {�k} = { i,  ⋆
i } withcorresponding unknowns {uk}. Boundary conditions may be imposed by fixing values for the unknowns corresponding to basis

functions that are nonzero at the boundary. We write the XFEM approximation as
uXFEM =

∑
i
ui i +

∑
i
u⋆i  

⋆
i =

∑
k
uk�k.

This gives the discrete weak form

find {uj ∈ ℝ}Mj=1 s.t. ∫
Ω

D
2N∑
j=1

uj∇�j ⋅ ∇�k + f�k dΩ = 0, k = 1,… ,M,

whereN is the global number of nodes, 2N is the number of global basis functions, andM ≤ 2N is the number of degrees of
freedom in the problem. This is a system ofM linear algebraic equations inM unknowns and can be solved using Newton’s
method. The entries in the residual vector and Jacobian matrix are

rk = ∫
Ω

D
2N∑
j=1

uj∇�j ⋅ ∇�k + f�k dΩ (10)

and
Jkj = ∫

Ω

D∇�j ⋅ ∇�k dΩ.

3.1 Tools for Error Analysis
In order to compare the quality of different approximations we must be able to measure how well they match the function we
are trying to approximate. A measure of the quality of an approximation is the size of the error " = u − uℎ between the exact
solution u and the FE approximation uℎ. We define norms on L2(Ω) andHk(Ω) to be

‖g‖ =
⎛⎜⎜⎝∫Ω

g2 dΩ
⎞⎟⎟⎠

1
2

, g ∈ L2(Ω), (11)

and

‖g‖k =
⎛⎜⎜⎝∫Ω

k∑
i=0

d∑
j=0

(
)ig
)xij

)2

dΩ
⎞⎟⎟⎠

1
2

, g ∈ Hk(Ω), (12)

respectively, for Ω ⊂ ℝd . If D is sufficiently smooth, then a bound on the error of the finite element approximation to (9),
‖"‖1 ≤ Cℎ�−1p−(k−1)‖u‖k, (13)

can be obtained where � = min(k, p + 1) and C is independent of ℎ, p and u but does depend on k3,50. We also assume that
the forcing f ∈ Hk(Ω) so that it does not appear in the error estimate. Note that for sufficiently smooth problems the upper



8 SAXBY ET AL

bound on the error in the approximation takes the form ℎp. Uniform ℎ-refinement should therefore lead to polynomial rates of
convergence whereas p-refinement should lead to exponential rates of convergence.
It is often more convenient to compute these errors using a different norm. The weak form (9) of the Poisson problem defines

an inner product
⟨u, v⟩ = ∫

Ω

D∇u ⋅ ∇v dΩ

onH1(Ω). We can use this to define an energy norm

‖g‖E = ⟨g, g⟩ 12 =
⎡
⎢⎢⎣∫Ω

D∇g ⋅ ∇g dΩ
⎤
⎥⎥⎦

1
2

, g ∈ H1(Ω).

This energy norm is equivalent to theH1(Ω) norm50, and we will use it in place of theH1 norm to calculate our error estimates.

3.2 Numerical Integration of Discontinuous Functions
We evaluate the integrals (10) numerically. However, the integrand may be discontinuous on the interior of an element so we
must take care to evaluate these integrals correctly. Using standard Gauss-type quadrature rules51 poorly approximates such
integrals, and this can seriously affect the accuracy of XFEM solutions.
Instead we use split integration11,19,52, or subcell quadrature, to accurately evaluate such integrals. We can decompose an

element Ωe into subelements Ωei such that⋃iΩei = Ω
e,⋂iΩei = ∅. Since ∫Ωe f =

∑
i ∫Ωei f , this decomposition does not affect

the value of the analytic integral. However, if we can choose a decomposition such that the integrand f is smooth on each
subelement then standard Gauss-type quadrature can be used on each part and so the discontinuous integral can be approximated
accurately. The subelements are used simply for the integration so they need not conform, and they introduce no new unknowns
into the problem. The only additional cost is in their construction and the need for quadrature to be performed over the additional
subelements.
Note that for quadrilateral elements the isoparametric mapping of the quadrature knot points of the reference element loses

the exact integration property53,54, but results can still be very good28 and need not affect the overall rate of convergence of the
method as we will see.
Element decompositions into subelements that align with the discontinuity are employed widely in the XFEM28. For elements

Ωe that are cut horizontally by a discontinuity Γ at height t∗ ∈ ℝ, we can write the location of Γ as Γ = {(s, t∗) ∣ s ∈ [−1, 1]}.
Then we can divideΩe about Γ into two subelementsΩe1 = [−1, 1]× [t∗, 1] andΩe2 = [−1, 1]× [−1, t∗]. The integrand is smooth
inside each subelement and so we apply a standard Gauss-type quadrature rule on each. This scheme is used in section 4. It is
extended for arbitrary discontinuities in section 5, and then used again in section 6.

4 A STRAIGHTWEAK DISCONTINUITY

We now consider the discontinuous Poisson problem (6) in two spatial dimensions with a straight weak discontinuity. Later
(in section 5) we extend this problem by considering a curved discontinuity. This problem serves to separate the complications
relating to the curvature of the discontinuity from those that arise from the presence of the discontinuity itself. We specify that
the diffusivity varies only in the y-direction by setting � = (1, �)T . Equation (6) now becomes

)2u
)x2

+ )
)y

(
� )u
)y

)
= f, (14)

on the domain (x, y) ∈ Ω = [0, 1]2. We specify boundary conditions
u|||x=0 = u

|||x=1 = u
|||y=0 = 0 and u|||y=1 = sin(�x),

and choose forcing f = 0 and diffusivity such that

�(y) =
{
�1, y ≤ yc,
�2, y > yc,
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�1, �2 > 0. The analytic solution is then

u(x, y) =

{
sin(�x)A1(e�1y − e−�1y), y ≤ yc,
sin(�x)

[
A2(e�2y − e�2(2−y)) + e�2(1−y)

]
, y > yc.

Details can be found in55. Let us choose �1 = 1, �2 = 10 and yc = 2
3
so that there is a discontinuity in the gradient of the

solution at y = 2
3
. The exact solution is shown in figure 2.
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FIGURE 2 Exact solution to the two-dimensional Poisson problem (14) with discontinuous gradient at y = 2
3
.

4.1 Higher Order Approximation
We solve the two-dimensional discontinuous Poisson problem (14) (details in20) and use an initial 4×4mesh of bilinear elements
and then uniformly ℎ-and p-refine it to the appropriate level. With the discontinuity located at y = 2

3
it can never align with an

element boundary at any refinement level, thus ensuring the discontinuity always cuts element interiors. Figure 3shows the L2
error for the corrected XFEM and modified XFEM solutions on the resulting mesh.
The modified XFEM gives optimal convergence for approximations of orders p = 1, but only sub-optimal convergence for

orders p ≥ 2. Increasing the order of approximation does not improve the rate of convergence for p > 1: all approximations
converge at a rate no faster than O(ℎ5∕2) in the L2 norm. This demonstrates the poor rates of convergence that can be achieved
for higher order modified XFEM approximations, as discussed in section 2.3.
In fact, the modified XFEM approximation space does not span the space of piecewise quadratic functions20. That is, there

are piecewise quadratic functions that cannot be represented exactly by any combination of modified XFEM basis functions,
and so the Galerkin approximation to such problems fails to converge optimally20.

4.2 Corrections to the Modified XFEM
Both the shifted abs-enrichment (with appropriate global enrichment) and the corrected XFEM are able to achieve optimal rates
of convergence for discontinuous problems. To understand why the modified XFEM converges suboptimally we look at how it
differs from those XFEMs that do recover optimal rates of convergence.
The structure of the modified abs-enrichment (4) is similar to that of the shifted abs-enrichment (2). The shifting of the

local abs-enriched basis functions is performed by subtracting a constant contribution |�i| from the global abs-enrichment
function before multiplication by the local basis functions of the standard FEM. In contrast, the modified local basis functions
are constructed by subtracting the whole FE representation of the absolute value of the level set function |�|ℎ = ∑

j |�j| j , from
the global abs-enrichment. That is, shifted abs-enrichment subtracts a polynomial of degree zero from the global enrichment
whereas modified abs-enrichment subtracts a polynomial of degree at most p. Multiplication by the appropriate standard FE
basis function then gives the corresponding local enrichment function. Let us define the smooth and discontinuous parts of a
function f using a decomposition of the form

f (x) ≡ a(x)|�(x)| + b(x), (15)
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FIGURE 3 Convergence results in the L2 norm for corrected XFEM (left) and modified XFEM (right) approximations up to
order p = 4. The modified XFEM approximation only converges optimally for the linear approximation. For orders p > 1 the
rate of convergence is no better than O(ℎ5∕2).

with a, b polynomials. We call b the smooth part and a|�| the discontinuous part. Now, we may decompose the local enrichment
functions into their smooth and discontinuous components using  ⋆

i ≡ (ai|�| + bi) i, where ai and bi are polynomials in x.
For both the shifted abs-enrichment and the modified abs-enrichment we have ai ≡ 1. The discontinuous parts of the local
enrichment functions therefore have degree deg(|�| i) = 2p. However, for the shifted abs-enrichment bi ≡ −|�i|, whereas for
the modified abs-enrichment bi ≡ −|�|ℎ. The smooth parts of the shifted and modified local enrichment functions have degree
deg(|�i| i) = p and deg(|�|ℎ i) = 2p respectively.
Let us also decompose the exact solution, u, and the XFEM approximation, uXFEM, into their smooth and discontinuous parts.

That is,
u = �|�| + �,

where �, � are polynomials in x, and

uXFEM =
∑
i
ui i +

∑
i
u⋆i (ai|�| + bi) i =

[∑
i
u⋆i ai i

]
|�| +∑

i
(ui + u⋆i bi) i.

The ability of the XFEM approximation to accurately represent u depends on the ability of the smooth and discontinuous parts
of the approximation to represent the corresponding parts of the exact solution. Notice that the coefficient u⋆i appears in both
the smooth and discontinuous parts of the approximation, and so they cannot be approximated independently. A change to the
enriched unknown affects both parts of the approximation. We will see in the following example how this property, combined
with the structure of the different XFEM enrichments, is the cause of suboptimal rates of convergence attainable using the
modified XFEM.
We expect that an XFEM approximation constructed from standard basis functions of degree p should exactly reproduce

piecewise polynomial functions of degree p of the form (15). In the following example we demonstrate how the shifted abs-
enrichment is able to exactly represent such functions whereas the modified XFEM is not.
Example 1. Let us suppose that there is an exact representation uXFEM ≡ u, and so � = ∑

i u
⋆
i ai i and � =

∑
i(ui + u⋆i bi) i.Suppose the level set function has deg(�) = p�. Then u is piecewise of degree p if deg(�) = p−p� and deg(�) = p. Now suppose

we perturb u by adding a function Δ�|�|, deg(Δ�) = deg(�). This gives a new function û = �̂|�| + �, where �̂ = � + Δ�,
deg(�̂) = p − p�. This ensures that û is also piecewise polynomial of degree p. It should therefore also be representable exactly
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using the XFEM basis functions. Let us write our XFEM approximation to this perturbed function as

ûXFEM =
[∑

i
û⋆i ai i

]
|�| +∑

i
(ûi + û⋆i bi) i. (16)

Since deg(Δ�) < p we can express it as a linear combination of the standard basis functions,
Δ� =

∑
i
Δ�i i,

with coefficients Δ�i ∈ ℝ. Matching the discontinuous parts of ûXFEM and û gives∑
i
û⋆i ai i =

∑
i
(u⋆i ai + Δ�i) i.

So for the XFEM approximation to be exact we require û⋆i = u⋆i + Δ�i∕ai. Substituting this into equation (16) gives

ûXFEM =
[∑

i
(u⋆i ai + Δ�i) i

]

�̂

|�| +∑
i
(ûi + (u⋆i + Δ�i∕ai)bi) i

�̂

.

We determine ûi by matching the continuous parts of ûXFEM and û, �̂ = �. That is,∑
i
(ûi + Δ�ibi∕ai + u⋆i bi) i =

∑
i
(ui + u⋆i bi) i

∑
i
(ûi − ui + Δ�ibi∕ai) i = 0. (17)

If we use the shifted abs-enriched local basis functions in the XFEM approximation then ai = 1 and bi = −|�i|. Writing our
perturbed enriched unknowns as

ûi = ui + Δ�|�i| (18)
satisfies equation (17). Thus given an exact representation uXFEM of u we have found expressions for the unknowns ûi, û⋆i such
that ûXFEM exactly matches the perturbed function û.
If we use the modified XFEM basis functions instead then ai = 1 and bi = −|�|ℎ. Equation (17) becomes∑

i
(ûi − ui − Δ�i|�|ℎ) i = 0

[∑
i
(ûi − ui) i

]
− Δ�|�|ℎ = 0.

The first term is a polynomial of degree p, whereas the second term has degree deg(Δ�) + deg(|�|ℎ) = (p− p�) + p = 2p− p�.
If the degree of the level set function, p�, is less than p then it is not possible to find expressions for the perturbed unknowns
that satisfy the equality. The smooth part of the XFEM approximation is not equal to that of the perturbed exact solution, so it
is therefore impossible to exactly represent the perturbed solution û using the modified XFEM1.
Now, consider the linear case with p = 1. The level set function must have degree p� = 1, and so for u to be piecewise linear

we must have deg(�) = deg(Δ�) = p − p� = 0. This implies Δ�i = Δ� for all i. We express |�|ℎ as a linear combination of the
standard basis functions, |�|ℎ = ∑

i |�i| i, and so equation (17) becomes∑
i
(ûi − ui − Δ�|�i| i) i = 0.

The expression (18) for the perturbed unknowns again satisfies the equation. In this case the XFEM approximation ûXFEM for the
piecewise linear function û is exact, and so the modified XFEM enriched basis functions constructed from linear PU functions
escape the problems suffered at higher orders. This explains why the modified XFEM recovers optimal rates of convergence in
the linear case, but not for higher order approximations.
This example demonstrates the inability of the modified XFEM approximation to accurately represent the smooth and dis-

continuous parts of the solution independently. Higher order terms resulting from the construction of the modified XFEM basis

1Note that, in general, this does not imply that using a level set function with degree p ensures that the modified XFEM approximation is exact for any piecewise
polynomial of degree p. The class of functions for which u = �|�| + � with deg(�) = 0, deg(�) ≤ p and deg(�) = p is much smaller.
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functions appear in the smooth part of the approximation and cannot be eliminated by the standard FE basis functions. This is
similar to the problems with blending encountered with the original abs-enrichment, except that rather than the spurious terms
appearing in the approximation in the blending region, here they appear in the reproducing region instead. If we are to recover
optimal rates of convergence for modified XFEM approximations then we must eliminate these higher order contributions, of
degree p + 1,… , 2p, to the smooth part of the approximation.

4.2.1 Construction of Correction Polynomials
Let us consider the difference between the local basis functions of the shifted abs-enrichment and the modified abs-enrichment
on the reference element [−1, 1] ⊂ ℝ. Let  abs

i denote the local enriched basis functions of the shifted abs-enrichment and  mod
idenote those of the modified abs-enrichment.

Now consider the XFEM approximation computed using the shifted abs-enriched basis functions,
uabs =

∑
i
ui i +

∑
i
u⋆i  

abs
i . (19)

Let us fix the values of the standard and enriched unknowns and substitute the modified XFEM basis functions into (19) in place
of the shifted abs-enriched basis functions. The new approximation is

umod =
∑
i
ui i +

∑
i
u⋆i  

mod
i .

The difference between these two approximations is

umod − uabs =
[∑

i
ui i +

∑
i
u⋆i  

mod
i

]
−

[∑
i
ui i +

∑
i
u⋆i  

abs
i

]
=
∑
i
u⋆i di,

where
di =  mod

i −  abs
i =  i

(
|�i| −

∑
j
|�j| j

)
. (20)

Note that di is a polynomial of degree 2p on each element, and that the discontinuity is not present. Thus the difference umod−uabs
is also piecewise of degree 2p. Therefore, given an XFEM solution computed using the shifted XFEM (everywhere), if we
were to substitute in the basis functions of the modified XFEM in place of those of the shifted XFEM then we would have the
same description of the discontinuity, but with an additional polynomial contribution of degree at most 2p on each element. If
we can remove this contribution then we should be able to recover the same optimal rates of convergence for modified XFEM
approximations as for shifted abs-enrichments. However, we must do this only in the reproducing region because otherwise we
would lose the property that the enrichment vanishes everywhere else.
We project the basis functions into a hierarchical basis for polynomials of degree atmost 2p. This yields correction polynomials

in terms of that basis, and allows contributions at certain orders to be removed in a straightforward fashion.
We define a one-dimensional modal basis {mi}qi=0 of order q on s ∈ [−1, 1] as

mi(s) =
⎧⎪⎨⎪⎩

1
2
(1 − s), i = 0,
1
2
(1 + s), i = 1,
1
4
(1 − s)(1 + s)Pi−2(s), 2 ≤ i ≤ q,

(21)

where Pn is the nth Legendre polynomial51. For n ≥ 2, deg(Pn) = n. Higher-dimensional modal bases of order q, {Mj(s)}
(q+1)d−1
j=0 ,

can be defined as tensor products of the one-dimensional basis functions on [−1, 1]d . We project the differences di (polynomials
of degree 2p) into this modal basis {Mj} up to order 2p to produce a system of (2p + 1)d equations and unknowns,

A(i)�(i) = f (i). (22)
This system is then solved to find the unknowns �(i)j . We remove the contributions to the modified enriched basis functions at
orders p+1 ≤ q < 2p by subtracting the corresponding terms �(i)j Mj(s)20. Note that �(i)j can be expressed purely in terms of the
values �i of the level set function at the element nodes, and that these are known a priori.
We solved the system (22) symbolically using Mathematica56, just once, to find expressions for the correction polynomials

in terms of the values of the level set function at the nodes. The evaluation of these polynomials at runtime is fast, and so the
cost of evaluating an enriched basis function in this way is comparable to that of evaluating an enriched basis function of the
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corrected or abs-enriched XFEMs. The additional cost of calculation of the modified XFEM basis functions is only the few extra
floating point operations required to evaluate the correction polynomials from their analytic expressions.
Contributions of degree 3 are removed from the XFEM approximation by subtracting a correction polynomial C3i of degree 3of the formC3i (s) = �

(i)
3 M3(s) from mod

i . Contributions of degree 4 may be eliminated in a similar way usingC4i (s) = �(i)4 M4(s).
The improved basis functions of order 2 of the modified XFEM are therefore  ⋆

i =  mod
i − C3i − C

4
i . The one-dimensional

corrections C3i and C4i to the modified enriched basis functions of order 2, written out in full, are:
C30 (s) = 2( |�(s0)| − |�(s1)|)M3(s), C40 (s) = −

2
3
(|�(s0)| − 2|�(s1)| + |�(s2)|)M4(s),

C31 (s) = 2(−|�(s0)| + |�(s2)|)M3(s), C41 (s) =
4
3
(|�(s0)| − 2|�(s1)| + |�(s2)|)M4(s),

C32 (s) = 2( |�(s1)| − |�(s2)|)M3(s), C42 (s) = −
2
3
(|�(s0)| − 2|�(s1)| + |�(s2)|)M4(s),

where si are the positions of the element nodes. Notice that each correction polynomial vanishes at s = ±1 (from the definition
of the one-dimensional modal basis functions (21)). This ensures that the improved basis functions match the original modified
XFEM basis functions at one-dimensional element boundaries, and thus ensures continuity of the global enrichment functions.
This is important since the correction polynomials are applied only in the reproducing region. Ensuring continuity across higher-
dimensional element boundaries is discussed in section 5.2.
Note also that the only information required for the calculation of these correction polynomials on any element is the standard

basis functions on that element and the values of the level set function at its nodes.
The general form of the improved modified XFEM basis functions is

 ⋆
i =  

mod
i −

2p∑
k=p+1

Ck
i . (23)

Note that we could calculate and subtract other correction polynomials of degree lower than p+1, but the XFEM basis functions
would still span the same approximation space. Note also that the degree of the local enriched basis function  ⋆

i remains 2p.
We are not simply removing the higher order parts of the modified local enrichment functions.

4.3 Error Analysis
The rates of convergence of the L2 and energy errors in the XFEM solution for the improved modified enriched basis functions
are shown in figure 4and table 1. We see that application of the correction polynomials to the modified XFEM local enriched
basis functions has allowed us to recover the optimal O(ℎp+1) rates of convergence for the discontinuous Poisson problem (14).
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FIGURE4Rates of convergence in theL2 (left) and energy (right) norms for the Poisson problemwith a horizontal discontinuity
using our improved modified XFEM basis functions for approximations up to order p = 4.
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TABLE 1 Rates of convergence for the Poisson problem (6) in two dimensions with a straight discontinuity.

p 1 2 3 4
L2 2.00 2.99 3.97 4.97

H1 (Energy) 1.00 2.00 2.98 3.98

Note that this elimination of the unwanted additional terms in the enriched approximation space is similar to the assumed/en-
hanced strain projection methods from7,22,14, except that the correction is applied to the elements that are cut by the discontinuity
rather than to the blending elements, and also that the correction polynomials may be computed a priori rather than requiring
additional unknowns to be incorporated into the problem. This is a considerable advantage because it minimises the cost of
constructing the enriched basis functions at runtime. Unlike the assumed strain projection methods the resulting corrections are
independent of the equations to be solved, so the same enriched basis functions can be used to solve different problems. The
assumed/enhanced strain methods achieve optimal convergence for linear PU functions7, but have not yet been applied to higher
order approximations.

5 A CURVEDWEAK DISCONTINUITY

Let us now extend our method to allow for curved discontinuities. These present several new challenges in addition to those
faced for straight discontinuities in two dimensions. In the previous section we could exactly represent both the level set function
and its zero level set using their FE representations. In general, this is no longer the case with curved discontinuities. However,
in this section we consider a problem with a curved discontinuity in which the level set function and its zero level set can still
be represented exactly. A more general curved interface where this is not the case is considered later in section 6. Here we focus
on how the correction polynomials and split integration schemes are affected by interface curvature without introducing errors
related to interface location into the approximation.
Consider a Poisson problem similar to (14) but with the diffusivity acting in both directions. We set � = (�, �)T , and so the

equation we must solve is
∇ ⋅ (�∇u) = f. (24)

We choose a diffusivity such that
�(x, y) =

{
�1, y ≤ yc + vx� ,
�2, y > yc + vx� ,with a curved discontinuity along the line y = yc + vx� . In order to provide the exact solution,

u(x, y) = 1
�2�

sin(�(y − (yc + vx�))) sin(�x), (25)
we require a forcing

f (x, y) = − (2 + (�vx�−1)2) sin(�(y − (yc + vx�))) sin(�x) − 2�vx�−1 cos(�(y − (yc + vx�))) cos(�x)

− �(� − 1)vx�−2

�
cos(�(y − (yc + vx�))) sin(�x).

Figure 5shows the exact solution (25) to this problem.
Let us start by considering a quadratically curved discontinuity, with � = 2, so that we can construct a level set function �

whose zero level set is exactly quadratic in x for approximations of order p ≥ 2. This ensures that the explicit representation of
the discontinuity is exact for p ≥ 2. We have chosen �(x, y) = y−yc−vx� . This function has gradient ‖∇�‖ =

√
1 + (�vx�−1)2,

and so for powers � ≠ 0 with v ≠ 0 it is not a signed distance. Using a signed distance is not a requirement of the method, and
we will see that using a level set function without the signed distance property still allows optimal rates of convergence to be
achieved. We chose this function because it removes errors in the position of the implicit interface from the approximation.

5.1 Split Integration in Two Dimensions for Curved Discontinuities
We now generalise the integration scheme used in section 4 to allow for curved discontinuities.
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FIGURE 5 Exact solution (25) to the two-dimensional Poisson problem (24) with a discontinuity in the gradient along the line
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4
x2).

If optimal rates of convergence are to be achieved then the curvature of the interfacemust be taken into account for the purposes
of the integration, as discussed in section 2.2. Care must also be taken over the construction of the scheme’s split subelements.
Just as in section 3.2, we use an isoparametric mapping from the discontinuity and the split sub-elements to the bulk element.

For the integration scheme to be accurate we must place the vertices of these split sub-elements such that the discontinuity does
not cross their interiors. Again, this scheme can be implemented in a straightforward fashion simply by summing over the knot
points and weights. However, it is no longer always the case that the Jacobian of the coordinate transformations is constant in
each element.
We reduce complexity by considering only elements that contain a single discontinuity. We also assume that when a discon-

tinuity cuts an element it cuts precisely two of the element’s edges. If either of these conditions are not met then typically the
mesh may be locally refined until it is fine enough such that they are. We classify elements into three types:

1. those that are not cut by a discontinuity,
2. those that are cut by a discontinuity such that it crosses opposite element edges, and
3. those that are cut by a discontinuity such that it crosses adjacent element edges.

We assume that the discontinuity does not coincide with an element edge or vertex. This situation is unlikely to occur in most
applications so it is a reasonable assumption to make. If it does, then perturbing by a small amount the value of the level set
function at the vertices where the level set function is exactly zero will avoid such situations. Elements of type 1 need not be
split. We split elements of type 2 into two rectangular subelements as shown in figure 6(a). We split elements of type 3 into two
rectangular subelements and one triangular subelement, as in figure 6(b). If B > A then we switch the coordinate directions to
improve accuracy and maintain symmetry.
Integration over the triangular subelements was performed using tabulated knot points and weights of the appropriate order

from57, although others are readily available.
We use an explicit representation of Γ for the discontinuity for the purposes of integration. Inside a (p + 1) × (p + 1)-node

rectangular element with basis functions of degree p we construct a (p + 1)-node line element of order p that best describes
the location of the discontinuity. Here the discontinuity lies along the line y = yc + vx� , and with � = 2 the position of the
discontinuity is quadratic in the s-component of the bulk local coordinate. We can therefore exactly represent the location of the
discontinuity for approximations of order p ≥ 2. The choice of map that best approximates the location of discontinuities that
are not exactly representable is more subtle and will be discussed later in section 6.1.
Note that the basis functions on Ω are polynomial in each of the local coordinate directions s, t. However, the Jacobian of the

isoparametric mapping from the subelement to bulk element coordinate is not polynomial in s, t. It is well known that the exact
integration property for Gauss-type quadrature of polynomials is lost for rectangular isoparametric elements53,54. This means
that the subelement quadrature is no longer exact, although it can still provide a good approximation if the mapping is carefully
chosen53,54,58. In particular, allowing the determinant of the Jacobian of the mapping to vary only in one coordinate direction
is a sufficient requirement. For quadrilateral subelements this is equivalent to at least one pair of edges being parallel53. The
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FIGURE 6 Elements Ωe cut by a discontinuity Γ (right) and the mapping of the local coordinates on the explicit representation
of the discontinuity and the split sub-elements Ωei onto the bulk element (left). The dashed lines represent si = 0, ti = 0.

decomposition shown in figure 6satisfies this requirement by ensuring that each subelement has at most one curved side, and
that all other sides align with a bulk local coordinate direction.

5.2 Smoothness of the Approximation Space
The differences di in (20) are smooth. The correction polynomials are therefore continuous across element boundaries, and
this ensures continuity of the improved modified enriched basis functions in the reproducing region (for conforming meshes).
However, since the corrections are only applied in the reproducing region, caremust be taken to ensure continuity at the boundary
with the blending region.
Because the horizontal discontinuity in section 4 aligns with the element boundaries, the correction polynomials vanish at

this boundary. The improved modified XFEM basis functions are therefore still continuous. But in general, the corrections do
not vanish there. Instead we neglect contributions to the correction polynomials from the edge modes that correspond to these
edges (i.e. those that are not cut by the discontinuity). These neglected contributions are ignored, and not subtracted from the
modified XFEM basis functions. This regains continuity of the improved modified enriched basis functions at the boundary
between the reproducing and blending regions.
Note that the set of modal basis functions used in the computation of the correction polynomials after spurious edge modes

have been removed spans the space of polynomials of degree 2p that vanish along edges not cut by the discontinuity.We therefore
expect that neglecting these spurious edge modes in the calculation of the correction polynomials will not adversely affect the
rates of convergence that can be achieved using the improved modified basis functions, and this is demonstrated below.

5.3 Error Analysis
The rates of convergence for the two-dimensional Poisson problem with a curved discontinuity, computed using our improved
modified enriched basis functions and neglecting spurious edge modes, are shown in figure 7and table 2. We have used values
yc =

√
2
2
+0.005, v =

√
2
8

and � = 2. Notice that we have recovered optimal rates of convergence for approximations up to order
p = 4, although the errors at the finest discretisations for p = 4 are greater than expected.

TABLE 2 Rates of convergence for the Poisson problem (6) in two dimensions with a curved discontinuity.2

p 1 2 3 4
L2 2.00 2.99 3.99 4.91**

H1 (Energy) 1.00 2.00 2.97 3.90**
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FIGURE 7 Rates of convergence in the L2 (left) and energy (right) norms for the Poisson problem with a curved discontinuity
using our improved modified XFEM basis functions for approximations up to order p = 4.

The reason for these elevated errors is that the XFEM is very sensitive to ill-conditioning under refinement, as noted in25.
Furthermore, the enriched basis functions can become almost linearly dependent when the discontinuity passes close to element
edges or vertices. As a mesh is refined the elements become smaller and more numerous and the discontinuity is more likely to
cross an element in an awkward fashion, passing very close to one of the nodes. This can dramatically affect the conditioning
of the resulting system.
The same problem was solved with yc =

√
2
2
and using quartic basis functions. In that case the Galerkin systemmatrix became

suddenly very ill-conditioned, e.g. with condition number larger than 1018, and so the solution was inaccurate. This resulted in
a suboptimal rate of convergence. However, the effect of this inaccuracy was very localised. The majority of the global error
in the solution was contributed by the patch of elements surrounding the troublesome node. Perturbing yc by 0.005 avoids this
situation, allowing the optimal rate of convergence to be seen over a larger range of mesh spacings ℎ. In figure 7we still see the
effects of ill-conditioning in the solution at the finest mesh spacing at order p = 4, where the convergence rate becomes much
lower than expected.

6 A CIRCULARWEAK DISCONTINUITY

Let us now consider a different physical problem. Let a circular elastic sheet be composed of two materials, as shown in figure 8.
We solve the Navier-Lamé equations,

(� + �)∇(∇ ⋅ u) + �∇2u + F = 0, (26)
where � and � are the Lamé constants. We prescribe a uniform radial displacement u = x on the outer boundary Γ2 of the
sheet, and calculate the displacement u(x) on the interior. We choose the physical constants in each material Ω1, Ω2 as follows:
Young’s modulusE1 = 1,E2 = 10 and Poisson’s ratio �1 = 0.25, �2 = 0.3. From these physical parameters we can calculate the
Lamé coefficients �1 = �1 = 0.4, and �2 = 75

13
≈ 3.8462, �2 = 50

13
≈ 5.7692. We also set the body force F = 0. This problem is

described in59,22,25.
In order to calculate the exact solution, for prescribing the boundary conditions of the FE problem and for comparison with

the FE solution, we move to a circular polar coordinate system. The Navier-Lamé equations then reduce to
∇(∇ ⋅ u) = 0,

2Rates of convergence are calculated from the last three points for each p as ℎ decreases. Rates marked with ** are calculated after discarding the last two points.
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FIGURE 8 Bi-material boundary value problem. (Based on figure 7 from59.)

or equivalently,
d
dr

[1
r
d
dr
(rur)

]
= 0, u� = 0,

with prescribed displacement ur = r on the boundary Γ2. By considering displacement and traction continuity between the two
materials the exact solution

ur(r) =
⎧⎪⎨⎪⎩

[(
1 − b2

a2

)
 + b2

a2

]
r, 0 ≤ r ≤ a,

[(
1 − b2

r2

)
 + b2

r2

]
r, a ≤ r ≤ b,

(27a)

u� = 0, (27b)
where

 =
(�1 + �1 + �2)b2

(�2 + �2)a2 + (�1 + �1)(b2 − a2) + �2b2
,

can be found, as described in59. The horizontal and vertical components of this exact solution, after conversion back into the
Cartesian coordinate system, are shown in figure 9.
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FIGURE 9 Horizontal (left) and vertical (right) components of the Cartesian form of the exact displacement solution (27a,b)
to the linear elasticity problem (26) with a circular discontinuity.
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6.1 Explicit Representation of Curved Discontinuities
Recall that in section 5.1 we discussed how the split integration scheme used to evaluate functions with curved discontinuities
requires the construction of an explicit representation that best describes the position of the discontinuity. Now that the discon-
tinuity is not polynomially curved the interface representation can never be exact. Previously we used a mapping from the local
coordinate sint along the explicit representation to the bulk local coordinate s = (s, t) that was linear in the s-direction. Doing the
same for this circular interface leads to a poor approximation to the zero level set (figure 10(a)). Instead, we now use a mapping
sint → s that is linear in the arc-length coordinate along the discontinuity. The internal vertices of the explicit representation are
placed at their ‘natural’ Gauss-Lobatto-Legendre51 (GLL) spacings along the discontinuity. This is shown in figure 10(b). For a
circular discontinuity, the arc-length vertex spacing provides a much better approximation to its position. We expect that this
alternative node positioning will provide the best approximation to arbitrarily curved discontinuities such as those that arise in
two-phase flows or other physical problems.

s

t

Ωe

Γ

(a)

sint

Ωe

Γ

(b)
FIGURE 10 An explicit representation Γ of the position of a discontinuity located at the zero level of the level set function
(shown as a curved dashed line). Circles mark the positions of the vertices of the explicit representation, placed at their ‘natural’
GLL-spacings {−1, 0, 1} in the s-coordinate direction (left) and in the arc-length coordinate along the discontinuity (right).

This approach is very similar to that of Fries et al.40 but rather than using linear or Hermite elements for the explicit repre-
sentation of the interface, we use a line element of order p and GLL-spaced nodes. We also apply it in quadrilateral elements
rather than triangular.

6.2 Error Analysis
For the finite element approximation we solve the Cartesian Navier-Lamé equations (26) on a domainΩcomp contained inside the
outer disk (shown in figure 8) and prescribe the known exact displacements as boundary conditions. The energy norm we use for
this linear elasticity problem is derived from the weak form of the Cartesian Navier-Lamé equations. We use the inner product

⟨u, v⟩ = ∫
Ω

�∇u ⋅ ∇v dΩ,

over our trial spaceH1(Ω), and then define the energy norm3 ‖ ⋅ ‖E as

‖f‖E = ⟨f, f⟩ 12 =
⎡⎢⎢⎣∫Ω

�∇f ⋅ ∇f dΩ
⎤⎥⎥⎦

1
2

, f ∈ H1(Ω),

where � is one of the Lamé constants.
The rates of convergence in the L2 and energy norms for the improved modified XFEM approximation applied to the two-

dimensional linear elasticity problem are shown in figure 11and table 3. We see that almost optimal rates of convergence are
recovered. We attribute this slight suboptimality to the quality of the description of the discontinuity, and its effect on the
integration, rather than to the construction of our improved modified XFEM enriched basis functions.

3This norm is again equivalent to theH1 norm and to the other energy norm defined for the Poisson problem in section 3.1.
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FIGURE 11 Rates of convergence in the L2 (left) and energy (right) norms for the linear elasticity problem with a circular
discontinuity using our improved modified XFEM basis functions for approximations up to order p = 4.

TABLE 3 Rates of convergence for the linear elasticity problem (26) with a circular discontinuity.

p 1 2 3 4
L2 1.99 2.92 3.79 4.45

H1 (Energy) 0.99 1.94 2.81 3.50

7 CONCLUSIONS

We set out to apply high-order finite element methods to discontinuous problems. The aim was to achieve the same optimal rates
of convergence for problems involving arbitrarily aligned discontinuities as can be achieved for smooth problems. Immersed
boundary methods were investigated as an alternative to boundary-fitted methods. Their use was motivated by the avoidance
of remeshing for time-dependent problems. We then outlined how the XFEM with interface capturing via level sets enabled
weak discontinuities to be included in approximations independently of the mesh. Several strategies for the resolution of the
well-known problems in the blending region were discussed, and the modified XFEM was employed to resolve them. We then
presented a method for improving the modified XFEM so that it was able to exactly represent piecewise polynomial functions
of the same degree as the standard basis functions used in its construction. This was done by projecting out higher order contri-
butions from the enrichment space so that spurious higher order contributions to the finite element approximation are avoided in
the reproducing region. The coefficients of the resulting correction polynomials are independent of the equations that are being
solved, and are expressed only in terms of the value of the level set function at element nodes. A numerical integration scheme
that accurately integrates functions with curved discontinuities was also presented.
Together, the improved modified XFEM and the chosen discontinuous integration scheme allowed optimal rates of conver-

gence to be recovered for Poisson problems with arbitrarily aligned straight and curved weak discontinuities for approximations
of order p ≤ 4. We then solved a linear elasticity problem with a circular weak discontinuity, achieving almost optimal rates of
convergence for p ≤ 4. These are the first truly optimally convergent results to be presented for a curved weak discontinuity,
and also the first optimally convergent results of any kind that use the modified XFEM for approximations of order p > 1.
The improvements to the modified XFEM presented here are also applicable in three dimensions and we foresee the main

challenge being the split integration of discontinuous functions over hexahedral elements. The number of ways that an interface
can cut such elements in three dimensions is much larger, although recent work has tackled the problem of subcell quadrature
in three dimensions43,39,44.
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We have demonstrated the potential for high-order XFEM approximations, and in particular the modified XFEM, to recover
optimal rates of convergence for problems with straight and curved weak discontinuities. These high-order immersed methods
are therefore a viable alternative to low-order approximations and boundary-fitted methods.
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