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Recent experiments by Pailha et al. [Phys. Fluids 24, 021702 (2012)] uncovered a
rich array of propagation modes when air displaces oil from axially uniform tubes
that have local variations in flow resistance within their cross-sections. The behaviour
is particularly surprising because only a single, symmetric mode has been observed
in tubes of regular cross-section, e.g., circular, elliptical, rectangular, and polygonal.
In this paper, we present experimental results describing a new mode, an asymmetric
localised air finger, that persists in the limit of zero propagation speed. We show that
the experimental observations are consistent with a model based on capillary static
calculations within the tube’s cross-section, and the observed bistability is a conse-
quence of the existence of multiple solutions to the Young–Laplace equations. The
model also provides an upper bound for the previously reported symmetry-breaking
bifurcation [A. de Lózar, A. Heap, F. Box, A. L. Hazel, and A. Juel, Phys. Fluids 21,
101702 (2009)]. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811176]

I. INTRODUCTION

The displacement of one fluid by another is a fundamental feature of two-phase fluid mechanics
and underpins many industrial and natural processes, including mammalian breathing; the extraction
of oil from porous media; coating processes; transport of multi-phase materials; and the manufacture
of pharmaceuticals and comestibles. The canonical problem of air displacing an incompressible,
Newtonian liquid has been extensively studied in simple rigid geometries, i.e., uniform tubes of
circular,1 rectangular, and elliptical2 or polygonal cross-sections.3 In these geometries, a single
family of steadily propagating air fingers is found when the air is introduced at a constant flow rate.
In applications, however, the geometry of the fluid-filled regions can be considerably more complex.
For example, the pores in carbonate oil reservoirs are irregular and contain many regions of localised
constriction;4 and the airways of the lung experience significant local distortion via airway collapse
or the accumulation of mucus.5 Surprisingly, there are relatively few studies of simple two-phase
displacement flows in more complex geometries, which motivates the present study.

We introduce an additional geometric length-scale by partially occluding tubes of rectangular
cross-section with a centred rectangular block, thus introducing local variations in flow resistance
across each tube, see Fig. 1. In contrast to the straightforward behaviour found in the simpler
geometries, the presence of a partial occlusion can induce several distinct propagation states under
constant flux forcing, including families of asymmetric6 and oscillatory7 air fingers. The selection
of one state over another can dramatically change the volume of liquid extracted from the system,
as well as alter the driving pressure gradient, so it is important to understand the origin and stability
of the different states. In this paper, we report new experimental results demonstrating that bistable
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FIG. 1. Schematic diagram of the experimental setup. The end view shows the cross-section of the tube, which is rectangular
with a centred step-change in depth. The dimensions of the cross-section of the flow tube are: H = 3.07 ± 0.01 mm,
3 ≤ W ≤ 45 mm, w = 4.49 ± 0.01 mm, h = 1.09 ± 0.01 mm or h = 1.50 ± 0.02 mm. The side view illustrates how liquid
is withdrawn at constant flow rate Q from one end of the initially liquid-filled tube, while the other end of the tube is open to
the atmosphere.

behaviour can be observed at very low interface propagation speeds and propose a theoretical
interpretation for the origin of the multiple observed propagation states.

The theoretical development exploits the experimental observations that for steadily-propagating
fingers: (i) the liquid comes to rest soon after the passage of the finger tip; and (ii) the interface
becomes axially uniform behind the tip. It follows that the finger cross-section behind the tip must
approach a two-dimensional static equilibrium, whose shape depends on the propagation speed
and is selected by an overall force balance on the air finger. For a static finger, the integrated
component of surface tension acting normal to the tube axis must be balanced by the pressure jump
integrated across the (projected) finger tip. The assumption of a hydrostatic pressure gradient in the
liquid allows the cross-section to be determined without the need to compute the three-dimensional
interface, see Refs. 8–10. For a moving finger, the flow of displaced liquid generates additional
viscous stresses on the finger tip, which alter the force balance. The exact calculation of the viscous
stresses for a given flow rate requires detailed resolution of the near-tip fluid flow, which can be
achieved asymptotically for very small propagation speeds10, 11 or numerically by three-dimensional
simulations.2, 6 Instead, however, we make use of the fact that the interface cross-section can be used
as a proxy for the propagation speed. This theoretical route is motivated by the lack of available
analytical solutions over the full range of propagation speeds and the challenges posed by numerical
modelling in these partially occluded geometries, which stem from the need to resolve thinning
liquid films as the propagation speed is reduced. We proceed to classify the different propagation
states by their interface cross-sections and calculate the possible cross-sections for a number of tube
geometries.

Using this approach, we demonstrate that for sufficiently high occlusions the system can be
bistable even when the fluid is static: the finger is either symmetric or localised in one of the two
side-channels. We investigate the existence of the localised fingers experimentally and examine their
subsequent development with increasing flow rate. It is our contention that the multiple families
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of propagating fingers observed in this system are all related to the occurrence of the symmetry
breaking in the capillary statics and we find that the experimental results in the absence of flow are
in quantitative agreement with theoretical predictions.

In Sec. II, we briefly describe the experimental apparatus, and the experimental results are
presented in Sec. III. In Sec. IV, we quantify the theoretical approach and present results from the
required capillary static simulations. In particular, we argue that the simulations can provide an
upper bound for the location of the previously reported symmetry-breaking bifurcation6 and hence
provide insight into the physical origin of the changes in nature and location of the bifurcation with
variations in geometry. Finally, in Sec. V we conclude with a summary and discussion of potential
future applications to microfluidic devices.

II. EXPERIMENTAL SETUP

A schematic of the experimental apparatus is shown in Fig. 1. It is described in detail in
Refs. 6 and 7 and thus we give only a brief description of the points pertinent to the present study.

The flow tube consisted of two horizontal, 60 cm long float-glass sheets separated by precision-
machined stainless steel strips, so that the total height of the tube was H = 3.07 ± 0.01 mm and
its width W could be adjusted to yield aspect ratios α = W/H in the range 1 ≤ α ≤ 15. The
tubes were uniform to better than 0.3% and 0.8% of their heights and widths, respectively.12 An
axially-uniform step-change in the height of the cross-section was achieved by positioning a 50 cm
long rigid rectangular rod of width w = 4.50 ± 0.01 mm symmetrically halfway across the bottom
boundary of the tube (see Fig. 1). The occluding step was machined from Perspex to enable direct
visualization and bonded to the glass boundary with double-sided tape. Two step heights were used,
h = 1.09 ± 0.01 and 1.50 ± 0.02 mm, giving two obstacle height ratios of αh = h/H = 0.35 and 0.49
while obstacle width ratios were in the range 1/8 ≤ αw = w/W ≤ 1/2. The errors in the positional
accuracy and axial uniformity of the obstacles were better than 0.5% and 3% of the occlusion width,
respectively.

Initially, each tube was completely filled with silicone oil (Basildon Chemicals Ltd., with a
density of ρ = 961 kg m−3, a dynamic viscosity of μ = 5.4 × 10−2 Pa s, and a surface tension of
σ = 2.1 × 10−2 N m−1). A two-phase displacement flow was induced by withdrawing liquid at a
constant volumetric flow rate Q using a syringe pump (KDS210) connected to one end of the tube;
the other end remained open to the atmosphere. A short (5 cm) unoccluded rectangular inlet section
ensured that the finger was initially centred and symmetric about the mid-plane of the tube. The
system rapidly adjusted to a new state after entering the partially occluded tube, and transients
decayed over very short distances for all flow rates away from critical points. The motion of the
steadily propagating finger tip was recorded from above by a video camera whose field of view
covered the final 20 cm of the tube. The velocity of the finger tip, U, and hence capillary number, Ca
= μU/σ , a dimensionless measure of the propagation speed, were determined from image analysis
of the frames. Overview photos were also taken to characterize fingers in the entire tube with a high
resolution (3872 × 2592 px) still camera. The experimental value of the Weber number, the ratio
of inertial to surface tension forces, remains low (W e = ρU 2 H/2σ < 0.04), so inertial effects are
negligible. However, the experimental value of the Bond number, the ratio of gravitational to surface
tension forces, is Bo = ρgH2/4σ = 1.058 ± 0.007, where g is the acceleration due to gravity; and
so gravitational forces are not negligible in the experiments.

The localization of the propagating finger to the least constricted regions of the cross-section of
the tube is quantified by a parameter −0.5 < δ < 0.5, defined to be the offset from the middle of the
finger to the middle of the tube, divided by the tube width, see inset in Fig. 2. This measure, which is
only suitable for non-oscillatory fingers, was taken at a distance of 50 mm behind the finger tip once
the finger had reached a constant width. δ is zero for fingers that propagate symmetrically about the
vertical axial centre plane, and takes either positive or negative values for symmetry-broken states.
A bulk measure of the fluid displacement is given by the wet fraction m = 1 − Q/(AU), defined as
the ratio of the liquid volume that remains once the finger has exited the tube to the total volume of
the tube; here, A = W H − wh is the cross-sectional area of the tube.
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FIG. 2. Dependence of the finger tip offset from the tube centreline on Ca for αw = 1/4, αh = 0.49, and α = 6.0. The value
of the offset δ was measured 50 mm behind the finger tip, as shown schematically. Inset top-views are shown of the main
finger types: symmetric (solid black symbols), asymmetric non-localised (white, (∗) and (+) symbols), and localised state
(solid light grey symbols). Both localised and symmetric fingers are stable for very low values of Ca. The symbols distinguish
the perturbations applied to the propagating finger in order to reach the different states: (◦) experiments start from rest, (�)
experiments start at a high flow rate that is then reduced. A localised finger was formed as a static initial condition (�) by
driving a finger at high flow rate before interrupting the flow, and then restarting the experiment at the desired value of Ca.
The other perturbations were applied by blocking parts of the cross-section over a short distance at the inlet of the tube:
(�) one side-channel and region over obstacle blocked, (+) only region over obstacle blocked, or (∗) only one side-channel
blocked.

III. EXPERIMENTAL RESULTS

A. Multiple families of propagating fingers and bi-stability at Ca = 0

We explored the range of different propagating fingers that could be selected experimentally
by applying a variety of initial conditions and finite amplitude perturbations to the flow. Results
are shown in Fig. 2 for αw = 1/4, αh = 0.49, and α = 6.0, where the finger offset is shown as
a function of Ca. We find three different states of finger propagation: symmetric (black symbols),
asymmetric non-localised (white symbols, (*) and (+)), and asymmetric localised (grey symbols). A
snapshot of each type of finger is inset into Fig. 2. A finger that is symmetric about the vertical axial
midplane of the tube forms spontaneously at low Ca (•). A discontinuous transition to asymmetric
non-localised fingers occurs at a critical value of Ca, and we refer to Ref. 6 for a discussion of
the dependence of this bifurcation diagram on the geometric parameters αw and αh. We tested the
stability of asymmetric non-localised fingers at values of Ca below the transition point by driving
a finger at a large value of Ca for approximately 15 cm, before applying a step-change reduction
in Ca (results denoted by � in Fig. 2). Other perturbations were applied by blocking parts of the
cross-section over a short distance (of approximately 10 mm) at the inlet for the duration of the
experiment. We either: (i) kept both side-channels open and blocked over the obstacle (denoted +);
(ii) kept only one side-channel open and blocked over the obstacle (denoted �); or (iii) blocked only
one side-channel and kept the region over the obstacle and the other side-channel open (denoted *).
The asymmetric localised finger is confined to one of the side-channels within the constricted tube,
and it is only selected for small values of Ca. We were also able to form such a localised finger as a
static initial condition (�) by driving a finger at high flow rate before interrupting the flow, and then
restarting the experiment at the desired value of Ca. In Fig. 2, the short branch of approximately
constant (non-zero) offset values observed at low Ca corresponds to the localised fingers, which
transition continuously to asymmetric non-localised fingers as Ca is increased. Moreover, their
presence indicates that the flow is bistable over a range of small capillary numbers in our chosen
geometry.
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FIG. 3. Wet fraction m as a function of the capillary number Ca for αh = 0.49 and different values of αw . Black markers:
experiments start from rest; grey markers: experiments start at a high flow rate that is then reduced. Markers with a
white cross correspond to an oscillatory state: (�) αw = 2/5, (�) αw = 1/3, (●) αw = 2/7, (�) αw = 1/4, (★) αw = 1/5,
(�) αw = 1/8. The arrow indicates the direction of increasing αw and illustrative finger shapes are shown as insets. The data
for α = 2/7 are explicitly marked because it divides regions of different qualitative behaviour: for α < 2/7, the system does
not return to the symmetric state when Ca is reduced from an initially high flow rate. The data for αw = 2/5 and αw = 1/3
were previously presented in Ref. 7.

B. Bifurcation diagram and oscillatory fingers

The behaviour of the system for αh = 0.49 with different tube widths, 1/8 ≤ αw ≤ 2/5, is
shown in Fig. 3. Different initial conditions similar to those applied in Fig. 2 were used to reach the
three main states of finger propagation, namely symmetric, asymmetric non-localised, and localised
fingers. For all these values of αw, the bifurcation from symmetric to asymmetric non-localised
finger appears subcritical.

For αw > 2/7, Pailha et al.7 proposed a global bifurcation scenario that involves the homoclinic
connection of an asymmetric oscillatory solution (shown with white crosses in Fig. 3) to an unstable
symmetry-broken state. In that case, the steady asymmetric non-localised finger is only observed for
larger values of Ca beyond the range of the existence of the oscillatory finger, which Pailha et al.7

conjectured to bifurcate from the steady asymmetric non-localised finger through a supercritical
Hopf bifurcation as the parameter Ca decreases.

For αw = 2/7, the bifurcation from the symmetric finger is to a steady asymmetric non-localised
finger, and for αw < 2/7, the asymmetric finger smoothly evolves towards a localised finger as Ca is
reduced. In this case, oscillatory asymmetric fingers are not observed in the vicinity of the transition
point, suggesting that the symmetric finger loses stability through a local subcritical symmetry-
breaking bifurcation. In general, the value of m corresponding to the localised fingers decreases as
Ca is increased from zero, apart from when αw = 1/8 and there is an initial increase for Ca ≈ 0
to 0.005. As Ca increases further, the wet fraction reaches a minimum beyond which it increases
monotonically with Ca. For both αw = 2/7 and αw = 1/4 (shown in Fig. 2), oscillatory fingers
were not observed at all, but for the two widest tubes (αw = 1/5, 1/8), oscillatory fingers were seen
instead of steady asymmetric non-localised fingers for Ca above that corresponding to the minimum
value of the wet fraction.

A comparison between oscillations in a wide tube (αw = 1/8) and a narrow tube (αw = 1/3) is
shown in Fig. 4. These oscillations arise at widely different values of Ca, but the physical mechanism
underlying the oscillations in both cases is associated with the local change in height of the tube’s
cross-section. As discussed in Ref. 7, when the edge of a widening finger passes sideways over
the edge of the obstacle, there is a decrease in cross-sectional curvature as the interface expands
into the unoccluded region. The induced local increase in pressure drives the oil away from the
expanding interface (or bulge), which rapidly moves further sideways. The interface then reaches
a quasi-equilibrium configuration where the change in axial curvature of the interface balances the
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(a)

(b)

(c)
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FIG. 4. Oscillatory pattern “shed” behind a finger propagating under constant flow rate from right to left
for αh = 0.49: (a) αw = 1/8, Ca = 3.69 × 10−2, (b) αw = 1/8, Ca � 6.8 × 10−2, (c) αw = 1/3,
Ca = 5.74 × 10−3, (d) αw = 1/3, Ca = 7.14 × 10−3. The field of view is 400 mm long. Despite the occurrence of
oscillations at very different values of Ca, the mechanism underlying their formation is similar in narrow and wide tubes. In
particular, the spatial wavelength of the pattern decreases in both cases with increasing Ca, as discussed by Pailha et al.7 in
the case of narrow tubes. Figures 4(c) and 4(d) are reprinted with permission from Phys. Fluids 24, 021702 (2012). Copyright
2011 American Institute of Physics.

change in cross-sectional curvature set by the geometry of the tube. The conditions for oscillations
are not achieved until symmetry is lost, after which the edge of the finger crosses the obstacle beyond
the rapid change in curvature associated with the tip region. In the narrow tube the interfacial bulge
grows to reach the side wall of the tube before a quasi-equilibrium state is achieved, see Figs. 4(c)
and 4(d). In the wide tube, the balance between axial and cross-sectional curvatures is reached before
the interface reaches the side wall and the interface takes the form of a series of circular arcs when
viewed from above, see Figs. 4(a) and 4(b).

The rich nature of the system means that further classification of the different solution types and
the physical interpretation of the experimental results is facilitated by a suitable conceptual frame-
work. We believe that two-dimensional capillary statics calculations can provide such a framework,
and the arguments supporting this belief and details of the calculations are described in Sec. IV.

IV. THE ROLE OF TWO-DIMENSIONAL CAPILLARY STATICS

The experiments and previous numerical calculations2, 6 show that for non-oscillatory fingers,
the interface becomes axially uniform within a few tube widths of the tip and the liquid is then
effectively at rest.13 Thus, the finger cross-section sufficiently far behind the tip must be a two-
dimensional static equilibrium: i.e., the curvature of the cross-section in the wetted regions is equal
to the pressure difference across the interface divided by the surface tension—the Young–Laplace
equation. The external liquid pressure, and hence the interfacial curvature, is set by the dynamics
near the finger tip, but the set of possible finger cross-sections can be computed by determining the
realisable static equilibria in each tube geometry.

The possible interfacial cross-sections can be found by solving the two-dimensional Young–
Laplace equation, subject to the constraints that the interface encloses a given area and that it meets
the walls at a prescribed contact angle. We set the contact angle to zero because in our experiments
the oil fully wets the tube walls. The remaining problem is then how to determine the enclosed area
for a given capillary number. The area can be calculated directly from the experimental wet fraction
m (the cross-sectional area of the air finger is 1 − m multiplied by the cross-sectional area of the
tube), but a theoretical prediction of the area requires full three-dimensional simulations to resolve
the near-tip dynamics. In the static limit (Ca = 0), however, there are no viscous forces and the
pressure in the liquid is hydrostatic. Thus, the enclosed area, or equivalently the interfacial curvature,
can be calculated directly from an axial force balance over a control volume.8–10 A schematic is
shown in Fig. 5 and the total pressure difference, �p, over the finger tip must be balanced by the
surface tension, σ , acting along the entire projected perimeter of the finger in a cross-section taken
behind the tip. The contribution from the unwetted parts of the cross-section arises from the contact
line where the finger tip meets the wall at zero contact angle. The argument is identical to the standard
balance of forces on a hemi-spherical bubble demonstrating that �p is given by 2σ /R, where R is
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FIG. 5. Schematic of a three-dimensional air finger propagating from right to left in an axially uniform tube with a partially
occluded rectangular cross-section. Behind the finger tip, the finger becomes axially uniform and an illustrative cross-section
is shown in white. The remaining thin liquid films are essentially at rest and the majority of the viscous stress on the interface
occurs near the tip region.

the radius of the hemisphere (Ref. 14, pp. 13–14). Thus, the force balance is given by∫∫
�p dA =

∮
σds, (1)

where the surface and line integrals are over the projected area and projected perimeter of the finger,
respectively. As shown by Concus and Finn8 and in detail by de Lazzer et al.,9 Eq. (1) can also be
derived by formal integration of the three-dimensional Young–Laplace equation.

We define a cross-sectional Cartesian (x∗, y∗) coordinate system such that gravity acts in the
negative y∗ direction and the origin of the coordinate system is on the centreline of the tube, see
Fig. 6(a). We choose the (constant) air pressure as our reference pressure and set it to zero, so that
the pressure difference across the interface is

�p = σκ∗
0 + ρgy∗, (2)

where κ∗
0 is the dimensional notional curvature of the interface on the midline of the cross-section,

when y∗ = 0. Using Eq. (2) in the integral force balance (1) gives∫∫ (
σκ∗

0 + ρgy∗) dA =
∮

σds, (3)

and assuming that σ �= 0 is a constant, we obtain the equation

κ∗
0A∗ + ρg

σ

∫
y∗ dA = P∗, (4)

where A∗ is the dimensional projected area and P∗ is the dimensional perimeter of the interface
within the cross-section. Non-dimensionalising based on the tube half-height H/2 and using Green’s

�
�

x∗

y∗

(a) (b) (c)

FIG. 6. Sketches of symmetric static equilibria in tubes of rectangular cross-section in the absence of gravity: (a) unoccluded,
(b) low occlusion, and (c) high occlusion.
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theorem in the plane gives

P = κ0A − Bo
∮

y2

2
dx, (5)

where P = P∗/(H/2), κ0 = (H/2)κ∗
0 , (x, y) = (x∗/(H/2), y∗/(H/2)), and A = A∗/(H/2)2 are the

equivalent dimensionless quantities.
For Bo > 0, solutions to the Young–Laplace equation subject to the constraint (5) must be

computed numerically. In the absence of gravity, however, the pressure difference across the interface
is constant, which means that when not in contact with the wall, the interface must be of constant
curvature and the static solutions can be determined analytically. The constraint (5) becomes

P = κ0A, (6)

and each interface section is either a straight line in contact with the tube wall or the arc of a circle
with radius 1/κ0.

In unoccluded rectangular cross-sections the only possible static equilibrium that satisfies (6)
consists of four quarter circles in the corners of the tube,10 see Fig. 6(a). If the unit length is chosen to
be the half-height of the rectangular cross-section, the radius of curvature,R, of the static equilibrium
is given by

R = 2(1 + α) − 2
√

(1 + α)2 + α(π − 4)

4 − π
. (7)

When a partial occlusion is introduced into the cross-section, the solution must be modified by
the introduction of two circular arcs that meet the obstacle, see Fig. 6(b). The presence of the
obstacle increases the available perimeter, but decreases the area, which means that the interface
curvature must increase and it does so monotonically with increasing obstacle height. As the curvature
increases, the two arcs evolve towards quarter circles, after which the upper part of the obstacle side
wall becomes dry, see Fig. 6(c), but the curvature continues to increase monotonically with obstacle
height.

In addition to modifying the symmetric solution as described above, the introduction of a partial
occlusion allows alternative asymmetric static equilibria for sufficiently high obstacles, see Fig. 7.
If the obstacle height is exactly equal to the tube height, then each side branch is an independent
rectangular tube with static equilibrium given by Eq. (7), but with α replaced by the half-width of
the side branch. These localised asymmetric equilibria may easily be obtained experimentally by
introducing air on only one side of the obstacle. If the obstacle height is nearly equal to the channel
height the asymmetric state will remain unchanged, see Fig. 7(a), until the gap above the obstacle
exceeds the radius of curvature and the arc can no longer meet the side of the obstacle at zero
contact angle. Below this height, the equilibrium becomes three quarter circles and an arc of a circle
that is pinned on the corner of the obstacle, see Fig. 7(b). As the height of the obstacle is reduced
further, the pinned arc evolves smoothly from a quarter circle, meeting the side of the obstacle, to a
semi-circle that meets the top of the obstacle when αh = αc

h , see Fig. 7(c). In this configuration, the
curvature is set by the gap width above the obstacle and there is a degeneracy in the solution because
it costs nothing energetically to extend the infinitesimal film above the obstacle. This expansion of
the finger over the obstacle allows the smooth transition from localised to non-localised asymmetric
fingers. An alternative family of asymmetric solutions is possible in which the interface is pinned

(a) (b) (c)

FIG. 7. Sketches of asymmetric static equilibria in tubes of rectangular cross-section in the absence of gravity: (a) high
occlusion, (b) medium occlusion, and (c) low occlusion.
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FIG. 8. Static prediction of the existence of asymmetric localised fingers in terms of the relative obstacle size αh and αw .
The experimental tube had H = 3.07 ± 0.01 mm and Bo = 1.058 ± 0.008. The solid line shows SE computations for H
= 3.06 ± 0.01 mm and Bo = 1.050, while the almost indistinguishable dashed line is for H = 3.08 ± 0.01 mm and Bo
= 1.065. Circles indicate tube geometries where localised fingers are stable when the flow is suddenly stopped (Ca = 0),
while squares correspond to tubes where localised fingers are unstable at Ca = 0. The dotted-dashed line is the analytic
prediction in the absence of gravity (Bo = 0) corresponding to Eq. (A6).

to the opposite side of the obstacle, see the dashed line in Fig. 7(c), but again these solutions only
exist for αh > αc

h . The two solution branches coincide at αh = αc
h (other possible solutions are

precluded on physical grounds because the interface passes through the wall). Thus, we conclude
that an asymmetric solution at Ca = 0 is only possible for αh > αc

h . Note that an alternative family of
symmetric solutions is also possible in which there are two disconnected localised fingers, one in each
side-channel, provided that the obstacle is sufficiently wide that their interfaces do not intersect.
Details of the explicit calculation of αc

h are presented in the Appendix and the result is shown
in Fig. 8.

A. Comparison between static experiments and static simulations: Ca = 0

The presence of gravity does not alter the overall picture, but does alter the quantitative details.
In order to compare with experimental data, we performed two-dimensional Surface Evolver (SE)15

calculations to solve the Young–Laplace equation subject to the constraint (5), which was enforced
by using a Newton method. Figure 8 shows the computed critical curve delineating the region in
which asymmetric localised solutions are predicted to exist in the static limit (Ca = 0) as a function
of the parameters αw and αc

h . Note that in the calculations the interface was explicitly pinned to one
corner of the obstacle. The prediction for αc

h when Bo = 0 computed in the Appendix is also shown.
Experimentally, we recorded the existence of a static localised finger if it remained localised for
5 min or more after arresting its propagation by switching off the flow. Experiments were performed
for αh = 0.49 and 0.35, and successive tube widths were tested to determine the value of αw at which
static localised fingers were first observed. The quantitative agreement between experiments and
calculations in Fig. 8, namely, that the computed line does divide the experimentally observed stable
and unstable localised fingers, suggests that a two-dimensional static model of the cross-section of
the finger is sufficient to predict the state of the three-dimensional finger at Ca = 0, at least on
intermediate timescales. On long timescales, modification of the finger can occur due to end effects
and the Rayleigh–Taylor and Rayleigh–Plateau instabilities.16 As described above, tall obstacles
promote the existence of localised states and the small gap width above the obstacle means that
gravitational effects are not significant. However, as the width of the side-channels increases relative
to the obstacle width, i.e., as αw decreases, localised fingers are found for decreasing obstacle heights.
The same trend is found in the absence of gravity and arises because, for the critical configuration, an
increase in width of the side-channel leads to a more rapid increase in projected area than perimeter
of the finger. This necessitates a decrease in curvature, and therefore a decrease in obstacle height is
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TABLE I. Wet fractions at Ca = 0 computed using SE corresponding to the experimental data for αh = 0.49 presented in
Fig. 3. The experimental values correspond to straight line extrapolation of the two data points with smallest Ca to the value
Ca = 0.

Wet fraction
Symmetric solution Asymmetric localised solution

αw Experiment Calculation Experiment Calculation

2/5 0.17 0.17 . . . . . .
1/3 0.13 0.14 . . . . . .
2/7 0.11 0.11 . . . . . .
1/4 0.11 0.10 0.60 0.60
1/5 0.09 0.09 0.59 0.59
1/8 0.07 0.07 0.56 0.56

required in order to maintain the force balance. For non-negligible gravitational forces, the projected
area is smaller and increases less rapidly, which is why the critical obstacle height remains greater
than that when Bo = 0.

In addition to predictions of the existence of asymmetric solutions at Ca = 0, we can make
further quantitative comparison between the experiments and static simulations by comparing the
wet fractions for symmetric and asymmetric localised solutions. In the experiments, we employ
a linear extrapolation of the two data points with smallest Ca to the value Ca = 0, while in the
simulations the wet fraction is equal to the fractional area of the cross-section unoccupied by the air
finger, see Table I. The results are in excellent agreement with the experimental data. The general
trend of decrease in wet fraction with increasing tube width is because the additional side-channel
area is predominantly occupied by the air finger.

B. Comparison between experimental data and static simulations: Ca > 0

In the simulations, having established the possible Ca = 0 solutions, the action of viscous
forces can be included by relaxing the constraint (5) and modifying the cross-sectional area of the
finger, which is a function of Ca. The exact relationship between capillary number and area must be
determined from the experiments, but we have found that enclosed area can serve as a reasonable
proxy for Ca. For non-zero Ca the additional viscous stresses that act on the finger tip must be
included in the force balance, and can be accommodated by increasing the total pressure difference
(air pressure minus fluid pressure) across the interface, or by reducing the contribution of surface
tension by reducing the perimeter of the finger’s cross-section.

For the symmetric solutions, both mechanisms lead to an increase in the finger tip curvature,
which ultimately reduces the projected area and hence the wet fraction increases with increasing
Ca, as confirmed by experimental data, see Fig. 3. The evolution of the symmetric solution with
increasing Ca is therefore approximated by starting from the appropriate Ca = 0 solution, reducing
the enclosed area, and computing the corresponding solutions of the Young–Laplace equation.

For initially localised asymmetric solutions, in addition to increasing the finger tip curvature,
the finger could expand over the obstacle to increase the projected area and therefore the total
pressure drop, although this will also increase the cross-sectional perimeter and may also increase
the total viscous force. Expansion of the interface over the obstacle allows the continuous transition
from localised to non-localised asymmetric fingers described above and explains the decrease in
wet fraction observed experimentally, see Fig. 3. For the widest tube αw = 1/8, it appears to be
favourable to reduce the finger tip curvature before expansion of the interface leading to an initial
increase in wet fraction. In other words, the behaviour of the localised solutions will be the same as
the symmetric solutions (curvature increasing with Ca) until the transverse interfacial curvature is
large enough that the interface can expand over the obstacle without further increase in curvature.

We conducted further Surface Evolver calculations to establish the validity of the proposed
two-dimensional approach. The capillary number is not a governing parameter in the simulations, so
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FIG. 9. Comparison between two-dimensional SE calculations of cross-sectional finger shapes and experiments for
αh = 0.35 and αw = 1/3. Experimental results were obtained with silicone oils of different dynamic viscosities: circles
μ = 4.81 × 10−3 kg m−1s−1 and squares μ = 9.7 × 10−2 kg m−1s−1. The two-dimensional static solutions, shown as the
solid line (green), are in excellent agreement with the experiments, suggesting that the loss of stability of the symmetric finger
can be predicted from existence of the non-localised asymmetric state that forms behind the finger tip in the SE calculations.
The value of δ was measured at a distance of 45 mm behind the finger tip.

we parameterise the two-dimensional solutions and experimental data by the wet fraction, m, and the
finger offset, δ, defined in Sec. II and Fig. 2. Results for two different obstacle heights are presented in
Figs. 9 and 10. In both cases, the experimental data are in good agreement with the two-dimensional
calculations, confirming that the experimental results can be captured by the two-dimensional static
model. We reiterate, however, that we can neither determine the capillary numbers nor whether the
solutions are experimentally realised without experimental data. Nonetheless, having established
the mapping between the experimental data and static solutions, the static calculations reveal the
approximate cross-sections of each finger.
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FIG. 10. Comparison between two-dimensional SE calculations of cross-sectional finger shapes and experiments for
αh = 0.49 and αw = 1/4. Experimental results (circles) were obtained with silicone oil of dynamic viscosity μ = 4.81
× 10−3 kg m−1s−1. The localised solution occurs at the point m ≈ 0.6, δ ≈ 0.3 and is predicted accurately by the static
calculations (solid line and dots, green). The broadening of the finger is qualitatively captured by the static calculations, with
good agreement once the finger is detached from both side walls, but the exact details of the evolution are different in the
simulations and experiments. The value of δ was measured at a distance of 45 mm behind the finger tip.
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C. Criteria for bifurcation

The model presented can predict the existence of solutions at Ca = 0 and is consistent with the
experimental data at Ca > 0. Thus, we hope to be able to extract information about the bifurcation
by using additional insight from the static simulations. In Fig. 9 (low obstacle αh = 0.35), the
bifurcation appears to be supercritical and the loss of symmetry in the experimental data is in
excellent agreement with the loss of symmetry in the equivalent static calculations. In Fig. 10 (high
obstacle αh = 0.49), however, the bifurcation is subcritical and the experimental symmetric solution
loses stability before (at lower m than) the static symmetric solution. The static solution becomes
degenerate when it loses symmetry and leaves the side walls because it may move to different
locations within the cross-section without changing its curvature, area, or perimeter. The loss of
stability of the physical system at this point of static degeneracy is not surprising; we would expect
an alternative non-degenerate solution to be selected, if such a solution is available. We believe that
the loss of static stability provides an upper bound for the bifurcation point, but that a dynamic
mechanism leads to bifurcation at lower values of the wet fraction (capillary number) in the majority
of cases. For example, in Fig. 10 the maximum experimental wet fraction for symmetric fingers, m
≈ 0.12, is considerably lower than the point at which the simulation first becomes asymmetric, m
≈ 0.2. As the width of the tube increases, αw decreases and the length of the region along which
the finger meets the side wall at Ca = 0 decreases, which means that a smaller increase in wet
fraction (and we infer Ca) is required before the static stability is lost. The physical bifurcation must
therefore also occur at lower Ca, as observed in the experiments.

D. Regions of finger oscillations

The oscillatory dynamics cannot be captured in our model because axial variations are neglected.
However, if the mechanism proposed by Pailha et al.7 is correct then the asymmetric state of widest
extent (minimum wet fraction) that will not induce dynamic oscillations of the interface is that
where the interface extends over, but not beyond, the entire obstacle. We use Surface Evolver to
calculate such asymmetric configurations in the experimental geometries used in Fig. 3. The initial
configuration is chosen to be analogous to the asymmetric non-localised Ca = 0 state of minimum
curvature where one side wall has a dry region and the interface is pinned at the far edge of the
obstacle, see Fig. 7(c). The enclosed volume is adjusted until the angle between the interface and
the upper surface of the obstacle is less than 1◦ and the solution is iterated until its length changes
by less than a given tolerance, typically 10−4, although validation was performed by using smaller
tolerances. The corresponding wet fractions are presented in Table II and are accurate to two decimal
places.

The simulation results demonstrate that the wet fractions of the proposed limiting steady asym-
metric solutions increase with decreasing αw, albeit very slowly. (The difference between the values
for αw = 2/5 and αw = 1/3 is in the third decimal place.) The computed wet fractions are within
10% of the experimental data, suggesting that the form of the static solution is correct for αw ≥ 2/7,
when there is no asymmetric solution at Ca = 0. That said, there is no clear trend in the experimental

TABLE II. Wet fractions computed using SE for the proposed limiting
steady asymmetric fingers for different tube widths corresponding to the
experimental data presented in Fig. 3. The experimental values correspond
to the steady (non-oscillatory) asymmetric solution with minimum wet frac-
tion. Note that when αw = 2/7 the data point with m = 0.33 is not chosen
because it is believed to correspond to an oscillatory solution.

Minimum steady asymmetric wet fraction
αw Computed Experimental

2/5 0.42 0.44
1/3 0.42 0.46
2/7 0.43 0.42
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data, which may be due to localised pinning of the interface away from the very edge of the obstacle.
We also investigated the cases when there is an asymmetric solution at Ca = 0 (αw < 2/7). Here,
the computed wet fractions are systematically lower than those found experimentally and we infer
that the form of the static solutions is no longer appropriate. Indeed, re-inspection of Fig. 4 reveals
that the oscillatory fingers at αw = 1/3 meet both side walls, but at αw = 1/8 the finger does not
meet either side wall, a qualitative difference between the states.

V. CONCLUSIONS

We have presented results from an experimental study of two-phase displacement flows in
axially uniform tubes of partially occluded rectangular cross-section. The results demonstrate that for
sufficiently high occlusions two alternative stable solutions are possible for low capillary numbers: a
steadily propagating symmetric air finger that spans the majority of the tube or a steadily propagating
asymmetric air finger localised within one of the side-channels. However, the detailed understanding
of the effects of initial conditions on the finger configuration would require a separate study.

For a given occlusion height, if the tube is sufficiently wide, the bistable behaviour persists to the
limit of zero capillary number, when the fluid is at rest. We compute solutions to the two-dimensional
Young–Laplace equations augmented by an axial force balance to predict the region of existence of
the localised asymmetric solutions at zero capillary number and the results are in excellent agreement
with the experimental data. The computations reveal that asymmetric solutions arise because the
interface can either meet the side of the obstacle or localise on the edge of its upper surface. The
calculations also predict that an alternative symmetric solution consisting of two localised fingers,
one in each side-channel, is also possible. Such a solution has not been sought experimentally in the
rigid geometries, but similar double-tipped fingers have been observed in two-phase displacement
flows in elastic tubes.17

By using the enclosed area as a proxy for capillary number, the experimental results can
be mapped to the two-dimensional solutions of the Young–Laplace equation, which reveals the
approximate transverse cross-section of the interface far behind the finger tip. We deduce that an
upper limit for bifurcation from the symmetric state is given by the wet fraction at which the finger
no longer meets the side walls of the tube and becomes statically degenerate. If the bifurcation occurs
at this point it will be supercritical, otherwise it will be subcritical and is induced by an unknown
dynamic mechanism. Nonetheless, the movement of the experimentally observed bifurcation to
smaller values of Ca with increasing tube width is explained by the decrease in wet fraction at which
the symmetric static state leaves the wall in the solutions of the Young–Laplace equation.

The two-dimensional computations are only appropriate for cases in which there are no axial
oscillations of the interface, but the results are consistent with the mechanism for the onset oscillation
proposed in Ref. 7. The mechanism is driven by the change in transverse curvature induced when the
interface passes laterally over one edge of the occlusion. Computation of steady asymmetric states
that extend over the entire occlusion, but not beyond it, give wet fractions that are within 10% of the
minimum steady asymmetric wet fractions found in the experiments when there are no asymmetric
localised solutions at Ca = 0.

We believe that the surprisingly rich dynamics of the system is entirely a consequence of the
existence of non-degenerate asymmetric static solutions. The occlusion provides a distinguished
location within the cross-section that can remove translational degeneracy from the continuum of
quasi-two-dimensional asymmetric solutions. Symmetry breaking has also previously been observed
in two-phase displacement flows in cylindrical tubes18 and Hele-Shaw cells,19 when the interface is
perturbed by the introduction of wires within the tube. In those cases, rather than introducing a new
family of asymmetric static solutions, local modification of the finger tip where it is penetrated by
the wire selects a particular asymmetric solution from the existing continuum.

The introduction of additional static solutions by modification of the tube geometry may be of use
in geometry-based control of microfluidic systems. The capillary static calculations presented above
demonstrate that the mechanism is independent of gravity, so would still apply in microchannels. In
fact, we have observed transitions to asymmetric and oscillatory fingers and bubbles in preliminary
microchannel experiments. Thus, local changes in flow rate induced by global changes in channel
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dimension coupled to localised geometric features could be used to direct bubbles and droplets based
on their volume, physical properties, and local propagation speeds. Naturally, we would expect the
system to exhibit different responses to trains rather than individual bubbles and droplets, but the
existence of additional modes of propagation, and therefore the ability to switch between them,
would remain.

The system is somewhat unusual from a fluid mechanical point of view, because multiple stable
solutions exist at zero flow. That multiple solutions can exist is, of course, a consequence of the
presence of the air-liquid interface which introduces nonlinearity into the system. The specific details
of the solution structure and evolution of the bifurcation diagram with changes in parameters is not
fully understood. However, we believe that the most important difference from the unoccluded tube
is an increase in transverse curvature in the occluded region and would expect that the majority of the
features of the system will be present in a Hele-Shaw model with a spatially variable permeability;
such a model is the subject of a current investigation.
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APPENDIX: CALCULATION OF αc
h IN THE ABSENCE OF GRAVITY

For the configuration shown in Fig. 11, we note immediately that the configuration is not possible
unless the height of the channel is large enough to accommodate the semi-circular meniscus in the
narrow section and the quarter-circular meniscus in the left-hand lobe. Thus,

2 ≥ 3(1 − αc
h) ⇒ 2 ≥ 3 − 3αc

h ⇒ 3αc
h ≥ 1 ⇒ αc

h ≥ 1

3
,

and we obtain a lower bound for αc
h . An upper bound follows from the trivial observation that the

step-height must be less than the entire height of the channel, αc
h < 1, so the proposed solutions are

only possible if

1

3
≤ αc

h < 1. (A1)

In this configuration the curvature is set by the height of the obstacle and is given by
κ0 = 1/(1 − αc

h). Hence, the total projected perimeter of the finger is

P = 5

2
π (1 − αc

h) + 4L + 2α(1 − αw) − 4(1 − αc
h) + 4αc

h, (A2)

2

α(1 − αw)

2αc
h

2 − 2αc
h

1 − αc
h

2ααw

2L

2α
α(1 − αw) − (1 − αc

h)

α(1 − αw) − 2(1 − αc
h)

2αc
h

FIG. 11. The geometry of an asymmetric static bubble with maximum curvature in a tube with partially occluded cross-
section. The half-height of the channel is chosen to be the reference length-scale and is set to 1.
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and the projected area is

A = 5

4
π (1 − αc

h)2 + 4L(1 − αc
h) + 2αc

hα(1 − αw) + [2α(1 − αw) − 3(1 − αc
h)](1 − αc

h). (A3)

Using Eqs. (A2) and (A3) and the relationship between κ0 and αc
h in the constraint (6) gives

5

2
π (1 − αc

h) + 4L + 2α(1 − αw) − 4(1 − αc
h) + 4αc

h =
5

4
π (1 − αc

h) + 4L + 2αc
hα(1 − αw)

1 − αc
h

+ 2α(1 − αw) − 3(1 − αc
h). (A4)

The immediate cancellation of the factor of 4L from both sides indicates that, if it exists, the solution
is degenerate because the semi-circular arc can be placed anywhere within the narrow section without
changing the surface energy. Equation (A4) is a quadratic equation for αc

h , which has the solution

αc
h = 6 − (5/2)π − 2α(1 − αw) ±

√
[2α(1 − αw) + (5/2)π − 6]2 − (20 − 5π )(1 − (5/4)π )

(10 − (5/2)π )
.

(A5)
Hence, αc

h varies as a function of the dimensionless side-channel width α(1 − αw) = (W − w)/H .
In our experiments, the width of the obstacle is kept constant and is three times the height of the
tube, so (W − w)/H = (3/2)(1/αw − 1) and Eq. (A5) becomes

αc
h = 6 − (5/2)π − 3(1/αw − 1) ±

√
[3(1/αw − 1) + (5/2)π − 6]2 − (20 − 5π )(1 − (5/4)π )

(10 − (5/2)π )
.

(A6)
The (positive) solution branch is plotted as the dotted-dashed line in Fig. 7. The solution decreases
monotonically with increasing side-channel width, as also found in the Surface Evolver calculations
with gravity. Solutions of this form are only possible for 0 < α(1 − αw) ≤ 3.28. For wider side-
channels, the configuration fully wets the side wall of the obstacle, but a slightly modified calculation
demonstrates that αc

h continues to decrease with increasing side-channel width.
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