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Recently published experimental observations of slender bacteria swimming in channel
flow demonstrate that the bacteria become trapped in regions of high shear, leading
to reduced concentrations near the channel’s centreline. However, the commonly used
advection–diffusion equation, formulated in macroscopic space variables and originally
derived for unbounded homogeneous shear flow, predicts that the concentration
of bacteria is uniform across the channel in the absence of chemotactic bias. In
this paper, we instead use a Smoluchowski equation to describe the probability
distribution of the bacteria, in macroscopic (physical) and microscopic (orientation)
space variables. We demonstrate that the Smoluchowski equation is able to predict the
trapping phenomena and compare the full numerical solution of the Smoluchowski
equation with experimental results when there is no chemotactic bias and also in the
presence of a uniform cross-channel chemotactic gradient. Moreover, a simple analytic
approximation for the equilibrium distribution provides an excellent approximate
solution for slender bacteria, suggesting that the dominant effect on equilibrium
behaviour is flow-induced modification of the bacteria’s swimming direction. A
continuum framework is thus provided to explain how the equilibrium distribution of
slender chemotactic bacteria is altered in the presence of spatially varying shear flow.
In particular, we demonstrate that while advection is an appropriate description of
transport due to the mean swimming velocity, the random reorientation mechanism
of the bacteria cannot be simply modelled as diffusion in physical space.

Key words: biological fluid dynamics, micro-organism dynamics

1. Introduction

Many bacteria are motile and inhabit a variety of dynamic fluid environments:
from turbulent oceans to medical devices. Bacteria can bias their swimming in the
presence of chemical cues, a process known as chemotaxis, which allows them

† Email address for correspondence: rbearon@liv.ac.uk

c© Cambridge University Press 2015 771 R3-1

mailto:rbearon@liv.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.198&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.198&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.198&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.198&domain=pdf


R. N. Bearon and A. L. Hazel

to move towards preferable environments and away from harmful chemicals. Recent
microfluidic experiments have uncovered new mechanisms by which fluid shear affects
the spatial distribution of bacteria. Here, we develop and analyse a mathematical
model to explain observations of Rusconi, Guasto & Stocker (2014) demonstrating
the trapping of slender bacteria in regions of high shear in channel flow.

There has been much progress in modelling the collective dynamics of suspensions
of swimming micro-organisms, including understanding phenomena such as gyrotaxis
and bioconvection (Pedley & Kessler 1992). A commonly used continuum description
for micro-organism (cell) concentration is an advection–diffusion model in physical
space, where directional swimming, for example chemotaxis, is captured by an
advection term, and diffusion describes the random movements. As a first approxi-
mation, advection by the fluid can be simply added to this equation, an approach
taken by Taylor & Stocker (2012) to model bacterial chemotaxis in turbulence. A
more accurate approach, developed in the context of gyrotactic micro-organisms, is to
allow the directional swimming and diffusion coefficients to be modified by the flow
(Pedley & Kessler 1990). Much recent interest has focused on instabilities driven by
the active swimming forces exerted on the fluid, again often using advection–diffusion
models for cell concentration (Pedley 2010). In this paper we shall demonstrate that
while advection is an appropriate description of transport due to the combination of
fluid advection and mean swimming velocity, modelling the random movements by
diffusion in physical space fails to capture the phenomenon of trapping in high shear.

An alternative continuum approach is to consider a Smoluchowski equation
describing the evolution of the distribution of cells in physical and orientation
space, as reviewed by Saintillan & Shelley (2013). For unbounded homogeneous
shear flow, using the theory of generalised Taylor dispersion, the Smoluchowski
equation has previously been shown, after sufficient time, to be approximated by an
advection–diffusion equation in physical space only (Frankel & Brenner 1993; Manela
& Frankel 2003). However, this approach can fail for inhomogeneous shear flow, and
we have previously shown that the full Smoluchowski equation can be useful in
identifying the true distribution (Bearon, Hazel & Thorn 2011). In this paper we
demonstrate that by deriving the equilibrium solution of the Smoluchowski equation
we can replicate the experimental observations of trapping in high shear.

The overall aim of this paper is to develop a mathematical formalism to describe
populations of slender chemotactic bacteria in shear flows. We begin in § 2 by
introducing the governing Smoluchowski equation appropriate for a flow field
that advects and rotates elongated axisymmetric cells, and assume that the cells
undertake run-and-tumble chemotaxis. In addition, the cells experience translational
and rotational diffusion. After explaining why an advection–diffusion equation in
physical space cannot capture experimental observations, we restrict attention to a
simplified two-dimensional geometry in which the flow field is parabolic and the
chemoattractant gradient is constant and perpendicular to the flow direction. In § 3,
results are presented for the equilibrium distribution of cells across the channel
for a range of values of Pe, the flow Péclet number, for both non-chemotactic and
chemotactic cells. The distributions are computed using the numerical solution of the
Smoluchowski equation by finite elements, and also from an analytic approximation
obtained via an asymptotic expansion for small ε, the swimming Péclet number.
The results are compared with experimental data, and the mechanism for trapping is
explained. We draw our conclusions in § 4.
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2. Model

2.1. Conservation equation for ψ(x, p, t)
Our starting point is a conservation equation for the probability distribution function
ψ(x, p, t), representing the distribution of swimmer position x and orientation p at
time t, as reviewed by Saintillan & Shelley (2013),

∂ψ

∂t
+∇x · (ẋψ)+∇p · (ṗψ)

+ λ(x, p, t)ψ −
∫
Ω

λ(x, p′, t)K(p, p′)ψ(x, p′, t) dp′ = 0, (2.1)

where ∇p denotes the gradient operator on the unit sphere of orientations Ω . The first
line accounts for changes due to the translational flux velocity, ẋ, and orientational flux
velocity, ṗ, which are given by, again see Saintillan & Shelley (2013),

ẋ= u+ Vs p−D∇x lnψ, (2.2)
ṗ= βp · E · (I − pp)+ 1

2ω ∧ p− dr∇p lnψ. (2.3)

The translational flux velocity of the cell is a combination of fluid velocity, u, cell
swimming velocity, Vs p, and translational Brownian diffusion, D. The orientational
flux velocity represents an axisymmetric cell (with shape factor β) rotated by viscous
forces in a flow characterised by the rate-of-strain tensor E and vorticity vector ω.
We also include rotational diffusion of magnitude dr, which may model intrinsic cell
behaviour in addition to Brownian rotational diffusion. The shape factor, 0 6 β 6 1,
characterises the slenderness of the cell, and β = 0 for a sphere.

The first term on the second line of (2.1) models bacteria that tumble away
from orientation p with frequency λ(x, p, t) and the second term represents
bacteria that tumble from orientation p′ with frequency λ(x, p′, t) and choose
a new orientation p with probability K(p, p′). We note that

∫
Ω

K(p, p′) dp = 1.
For run-and-tumble chemotaxis, the frequency of tumbles depends on the change
in chemical concentration experienced by the cell. For a linear (weak) chemotactic
response, assuming that the chemical gradient is steady, homogeneous and perpendi-
cular to the fluid velocity, we obtain a simple expression for the tumble rate, used
previously, for example, by Bearon & Pedley (2000):

λ(p)= λ0(1− ζVs p · ∇s), (2.4)

where λ0 is the tumble rate in the absence of chemical gradient, ζ is the chemotactic
response strength and s is the chemoattractant concentration.

2.2. Boundary condition
Integration of (2.1) over all orientations yields a conservation equation for the cell
concentration, n(x, t)= ∫

Ω
ψ(x, p, t) dp,

∂n
∂t
+∇x · J= 0, (2.5)

where the cell flux, J, is given by

J=
∫
Ω

((u+ Vs p)ψ −D∇xψ) dp. (2.6)
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In confined geometries, e.g. within a channel, to impose zero cell flux through
the walls, specified by the normal vector n̂, we require that J · n̂ = 0. Assuming
standard no-slip boundary conditions for the fluid and impermeable walls, the normal
component of the fluid velocity is zero at the walls. Thus, the no-flux condition is
given by (∫

Ω

Vs pψ dp−D∇xn
)
· n̂= 0. (2.7)

2.3. Population-level model
In previous work on generalised Taylor dispersion (Bearon 2003; Manela &
Frankel 2003), it has been shown that on time scales long compared with the
random reorientation time scales, 1/dr or 1/λ0, the cell concentration in unbounded
homogeneous shear flow with uniform chemical gradient satisfies an advection–
diffusion equation in physical space:

∂n
∂t
+∇x · [(u+ Vsq)n− D · ∇xn] = 0, (2.8)

where q is the mean swimming direction and D is the diffusion tensor which
represents the random components of swimming in addition to translational Brownian
diffusion. While the diffusion tensor takes quite a complex form, the mean swimming
direction is given by q = ∫

Ω
pf (p) dp, where f (p) is the equilibrium orientation

distribution, which satisfies

∇p · (ṗf )+ λ(p)f −
∫
Ω

λ(p′)K(p, p′)f dp= 0. (2.9)

We note that for unbounded homogeneous shear flow and uniform chemical gradient,
the equilibrium orientation distribution is independent of spatial position; that is, the
function f (p) is independent of x.

2.4. Two-dimensional channel flow
Motivated by recent microfluidic experiments (Rusconi et al. 2014), we consider
parabolic planar flow through a channel of width W:

u=U

(
1− 4

(
Y
W

)2
)

i, (2.10)

where U is the flow velocity at the centreline of the channel. We choose plane
Cartesian coordinates (X, Y), with respective base vectors (i, j), such that the walls
of the channel are located at Y =±W/2. Although we are now considering variable
shear flow in a confined region, it is common to assume that the population of cells
can still be approximated by an advection–diffusion equation of the form given by
(2.8), provided that the flow-induced reorientation of the cells is sufficiently fast.
If we impose zero cell flux at the wall, the equilibrium distribution for the cell
concentration is then given by

n(Y)= n(0) exp
(∫ Y

0

VsqY

DYY
dY
)
. (2.11)

For unbiased swimmers, we expect the mean vertical swimming speed, VsqY , to be
zero, and we thus predict a uniform distribution for cells at equilibrium. However, this
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contradicts the observed depletion of bacteria in the central regions of a channel in
the absence of chemical gradients (Rusconi et al. 2014).

In order to simplify subsequent numerical and analytic investigation, we now restrict
attention to the mathematically simpler case of cells constrained to a two-dimensional
plane, and so define the swimming direction vector in terms of the angle θ :

p= cos θ i+ sin θ j. (2.12)

We non-dimensionalise such that (x, y) = (2X/W, 2Y/W) and the channel walls are
at y = ±1. We take the chemoattractant gradient to be in the positive cross-channel
(y) direction and independent of x, and take the tumble rate to decrease linearly with
chemotactic gradient, (2.4). In addition, for mathematical simplicity we shall focus
attention on isotropic tumbles, taking

K(θ, θ ′)= 1
2π
. (2.13)

On non-dimensionalising time on dr, from the governing equations (2.1)–(2.3) we
obtain an equation for the equilibrium distribution ψ(y, θ):

ε
∂

∂y
(sin θψ)− ε2 d

∂2ψ

∂y2
+ ∂

∂θ

(
yPe(1− β cos 2θ)ψ − ∂ψ

∂θ

)
+ (σ − εχ sin θ)ψ − 1

2π

∫ 2π

0
(σ − εχ sin θ ′)ψ(y, θ ′) dθ ′ = 0, (2.14)

where the non-dimensional parameters governing the system are given as follows: ε=
2Vs/Wdr is the swimming Péclet number, Pe= 2U/Wdr is the flow Péclet number, d=
Ddr/V2

s is the ratio of Brownian diffusion to diffusion generated by random swimming,
σ = λ0/dr is the ratio of tumble rate to rotational diffusion rate and χ = λ0ζ (ds/dy)
measures the chemotactic strength. The concentration is subject to a normalisation
condition

∫ 1
−1

∫ 2π

θ=0ψ(y, θ) dθ dy= 1, and the zero-flux boundary condition on the walls
(2.7) can be expressed as∫ 2π

0

(
sin θψ − ε d

∂ψ

∂y

)
dθ
∣∣∣∣

y=±1

= 0. (2.15)

Parameter estimates are detailed in table 1.

3. Results and discussion

3.1. Numerical results
The full equation for ψ , (2.14), is solved numerically using a Galerkin finite element
method. Equation (2.14) is converted into a weak form on multiplication by a test
function N(y, θ), integrating over the finite domain and then integrating by parts:∫ 2π

0

∫ 1

−1
ε

[
sin θψ − ε d

∂ψ

∂y

]
∂N
∂y
+
[

yPe(1− β cos 2θ)ψ − ∂ψ
∂θ

]
∂N
∂θ

dy dθ

+
∫ 2π

0

∫ 1

−1
[(εχ sin θ − σ)ψ + I]N dy dθ = 0, (3.1)
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Swimming speed Vs 50 µm s−1

Rotational diffusion dr 1 s−1

Tumble rate λ0 2 s−1

Channel width W 425 µm
Brownian translation diffusiona D 2× 10−9 cm2 s−1 Berg (1993)
Cell shape factor β 0.99
Chemotactic strength χ 0.99 Fit to data
Flow Péclet number Pe= 2U/Wdr 0–50
Swimming Péclet number ε = 2Vs/Wdr 0.2
Relative tumble rate σ = λ0/dr 2
Relative translation diffusion d=Ddr/V2

s 10−4

Cartesian coordinates (X, Y)
Dimensionless coordinates (x, y)= (2X/W, 2Y/W)

TABLE 1. Default parameter values, obtained from Rusconi et al. (2014) unless stated
otherwise.

aFor a sphere of radius a= 10−4 cm in water at room temperature.

where I(y), the integral term, is treated as a new variable approximated by Galerkin
projection in the y direction,∫ 1

−1

[
1

2π

∫ 2π

0
(σ − εχ sin θ ′)ψ(y, θ ′) dθ ′ − I

]
N(y) dy= 0. (3.2)

Here, N represents the test functions restricted to the y direction by integration
over θ . Periodic boundary conditions are applied in the θ direction, and the
omission of boundary terms arising from integration by parts enforces the natural
boundary condition of no vertical flux, sin θψ − ε d(∂ψ/∂y) = 0, pointwise on
the walls y = ±1. We note that this is a stronger condition than the integral
condition (2.15), but it is required to prevent the appearance of eigenfunctions in
the solution that lead to non-uniqueness (see the supplementary data available at
http://dx.doi.org/10.1017/jfm.2015.198). The normalisation condition is enforced by
fixing ψ at a single node and then renormalising once the solution has been obtained.
The equations are discretised using standard quadratic finite elements on a grid of
100(θ) × 500(y). The elements are uniformly spaced in the θ direction, but high
resolution and non-uniform spacing in the y direction are required to accurately
resolve thin diffusion boundary layers near the walls. A piecewise linear scaling is
applied such that half of the elements are contained within the regions |y| > 0.98.
The discrete system of equations was assembled and solved using the C++ library
oomph-lib (Heil & Hazel 2006).

Figure 1 shows the equilibrium cell concentration, n(y) = ∫ 2π

0 ψ(y, θ) dθ , in the
absence of chemical gradient. We find that a significant number of cells are contained
within the boundary layers that arise from the boundary conditions imposed in the
numerical simulations, which explains the discrepancy between the simulations and
asymptotic approximations even at Pe = 0. As the flow strength, as measured by
Pe, increases, cells are depleted in the central low-shear regions of the channel and
accumulate in the high-shear regions near the boundaries. The numerical solution
underestimates the accumulation of cells at the boundaries. This could be due to
the neglect of various mechanisms, including hydrodynamic interactions with the
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FIGURE 1. Equilibrium cell concentration across the channel in the absence of a
chemotactic gradient, χ = 0. Black line: numerical solution of the ψ equation with
non-tumbling cells, σ = 0. Blue line: numerical solution of the ψ equation with tumbling
cells, σ = 2. Red line: leading order in ε asymptotic approximation with non-tumbling
cells, σ = 0. Black stars: experiments on smooth-swimming cells. Blue stars: experiments
on tumbling cells. The values Pe=[0, 1.25, 2.5, 5, 10, 25] correspond to (a–f ) respectively.

walls, which have previously been shown to generate boundary accumulations, as
reviewed by Lauga & Powers (2009). We also see that tumbling reduces the amount
of depletion in both numerical simulation and experiments. However, we note that
the estimate we take for rotational diffusion, dr, is that given by Rusconi et al.
(2014), which incorporated all random reorientation mechanisms including tumbling.
Therefore, the most appropriate comparison for experimental data on tumbling cells
is actually the numerical simulation with σ = 0.

In figure 1, which is for very slender cells corresponding to β= 0.99, the numerical
solution underestimates the depletion at intermediate Pe and we find that the central
depletion increases monotonically with shear rate, unlike the experimental findings of
Rusconi et al. (2014). These latter observations are consistent with the Fokker–Planck
solutions of Rusconi et al. (2014), which bear resemblance to the small-ε asymptotic
solutions in § 3.2.

Figure 2 shows the dependence of the cell concentration on the shape parameter β.
For spherical cells, β = 0, the cell concentration is uniform throughout the channel.
For moderate Pe, from 1.25 to 10, the cell concentration shows monotonic depletion
at the centre of the channel with increasing values of β. At Pe = 25, the numerical
solution disagrees with the small-ε asymptotic solution and exhibits non-monotonic
changes in centreline concentration, as well as symmetric peaks in cell concentration
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FIGURE 2. The influence of cell shape, β, on equilibrium cell concentration with χ =
σ = 0; (a,b) correspond to Pe = 5 and (c,d) to Pe = 25. (a,c) Leading order in ε
asymptotic approximation, other plots correspond to numerical solution of the ψ equation.
In (e,f ) ns(0) is the cell concentration at y = 0 normalised by the β = 0 solution at
the corresponding Pe. In (a–d,f ) greyscale indicates β = [0, 0.2, 0.4, 0.6, 0.8], with
black corresponding to 0; in (e) greyscale indicates Pe = [0, 1.25, 5, 10, 25], with black
corresponding to 0.

away from the walls which increase in amplitude at small β and then decay at larger
β. We note that Rusconi et al. (2014) observed similar double peaks away from the
centreline in simulations where random reorientation mechanisms were neglected. At
sufficiently high Pe, the balance between vertical and rotational advection occurs at
a larger length scale, y ∼ ε1/2Pe−1/2, than the balance between rotational diffusion
and advection, y ∼ Pe−1. Thus, the dominant balance in the small-ε asymptotics is
incorrect and the random reorientation only operates in an inner region near y = 0.
Furthermore, the experimental findings of Rusconi et al. (2014) showing that the
central depletion increases non-monotonically with shear rate are consistent with
our model if the experimental estimate of β = 0.99 is an overestimate. For slightly
smaller values of β, the central depletion changes non-monotonically with Pe, see
figure 2(f ). O’Malley & Bees (2012) have shown that the effective cell eccentricity
of a swimming cell is much smaller than that for the inanimate body alone, giving
credence to the claim that β = 0.99 may be an overestimate.

Figure 3 shows the corresponding equilibrium cell concentration for chemotactic
cells. In the absence of shear, cells move up the chemical gradient, and at equilibrium,
the balance between chemotactic drift up the chemical gradient and diffusion down
the cell concentration gradient yields an exponential distribution in cell concentration.
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FIGURE 3. Equilibrium concentration with cross-channel chemotactic gradient. Black
line: numerical solution of the ψ equation. Red line: leading order in ε asymptotic
approximation. Black stars: experiments. The values Pe = [0, 1.25, 2.5, 5, 10, 25]
correspond to (a–f ) respectively. Parameters: χ = 0.99 (fitted using Pe = 0 experimental
data); σ = 2.

We see that the fitted distribution corresponds to χ ≈ 1, which is to be expected
as the chemical gradient in the experiment was such that the effect of chemotaxis
was visible throughout the channel in still fluid. By introducing non-uniform shear
through the channel, this equilibrium distribution is modified. As for the non-tumbling
cells, there is a depletion of cells in the central low-shear regions of the channel. In
the numerical simulations, the tumble rate, σ , is non-zero in order to model run-and-
tumble chemotaxis. As the estimate for rotational diffusion, dr, given by Rusconi et al.
(2014) incorporates reorientation due to tumbles, in the numerical simulations with
non-zero σ the rotational diffusion is overestimated.

3.2. Equilibrium cell concentration via small-ε asymptotics
To understand the mechanism for cell depletion in low shear, we consider a
perturbation solution for ε � 1, and neglect Brownian translation diffusion, d = 0.
Specifically, we consider a perturbation expansion for ψ :

ψ = n(y)f (0)(θ; y)+ εψ (1)(y, θ), (3.3)

where
∫ 2π

0 f (0)(θ; y) dθ = 1 and f (0) is periodic in θ . On inserting this expression into
(2.14), we obtain at leading order in ε

∂

∂θ

(
yPe(1− β cos 2θ)f (0) − ∂f (0)

∂θ

)
+ σ

(
f (0) − 1

2π

)
= 0, (3.4)
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FIGURE 4. Non-tumbling cells, σ = χ = 0. (a) Equilibrium orientation distribution,
f (0)(θ; y), for values of yPe= [1.25, 2.5, 5, 10, 25]. As the shear increases, the orientation
distribution is increasingly peaked around the horizontal, θ = 0,π. (b) The mean squared
vertical swimming speed, VMS, as a function of the local shear strength, yPe.

the solution of which is found numerically (see the supplementary data). We can
interpret f (0)(θ; y) as the leading-order equilibrium orientation distribution at a given
cross-channel position y.

On integrating (2.14) from θ = 0 to 2π and noting that ψ is periodic in θ we obtain
at leading order in ε

d
dy

(∫ 2π

0
sin θψ (1) dθ

)
= 0. (3.5)

On imposing the zero-flux boundary condition on the walls, y = ±1, we obtain the
zero-flux condition: ∫ 2π

0
sin θψ (1) dθ = 0. (3.6)

Multiplying (2.14) by sin θ , integrating over θ and applying the zero-flux condition
(3.6) yields at O(ε)

d
dy
(nVMS)− χnVMS − yPe

∫ 2π

0
cos θ(1− β cos 2θ)ψ (1) dθ = 0, (3.7)

where

VMS(y)=
∫ 2π

0
sin2 θ f (0)(θ; y) dθ (3.8)

is the mean squared vertical swimming speed at a given position, y.
If we choose to neglect the O(ε) perturbation to ψ , that is we set ψ (1) = 0, we

obtain an expression for the equilibrium cell concentration:

n(y)= n(0)VMS(0)
eχy

VMS(y)
. (3.9)

In figure 1, the leading-order approximation in the absence of chemical gradient
is shown to agree well with the full numerical solution for a wide range of Pe.
To explain the phenomenon of trapping in high shear, we see from figure 4 that
the straining motion causes the orientation distribution of slender cells to deviate
from uniform, and become increasingly peaked towards the horizontal. We note that
individual cells do not maintain an orientation aligned with the horizontal, rather
they undergo noisy Jeffery orbits with a deterministic orientation-dependent angular
velocity resulting in a non-uniform orientation distribution (Guazzelli & Morris 2012).
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This peak in orientation distribution towards the horizontal reduces the mean squared
vertical speed, VMS, and generates accumulation of cells in regions of high shear.
This mechanism for accumulation via a reduction in effective vertical speed was
predicted by Rusconi et al. (2014). However, the details of their calculation were
different from our current work and did not include chemotaxis. Specifically, they
predicted that the concentration profile of cells should be inversely proportional to
the average vertical component of upwards swimming cells,

∫ π

0 sin θ f (0)(θ; y) dθ .
They used a Fokker–Plank description for the orientation distribution at a given
vertical position, equivalent to (3.4) with σ = 0. However, to derive the resultant
cell concentration, they adapted a one-dimensional random-walk model instead of
analysing the space-orientation distribution.

The agreement between the asymptotic approximation and the full numerical
solution is not good at small β and large values of Pe, see figure 2, because the
dominant balance between rotational advection and diffusion is no longer appropriate
and the vertical advection term must be included at leading order. As β increases,
the effective Pe decreases because most cells are concentrated near θ = 0 and π, and
the dominant balance required in the asymptotics is regained.

For slender chemotactic cells, there is good agreement between the analytic
approximation and the full numerical solution, as shown for a range of Pe in
figure 3. We should note that the profile is dominated by the exponential in the
chemotactic strength parameter, χ , which was obtained via a nonlinear fit of (3.9)
to the experimental data in the absence of shear to obtain χ = 0.99. Thus, the good
agreement between experiments and numerical solution at Pe= 0 is a consequence of
this fitting. We note that non-monotonic centreline depletion with increasing Pe still
occurs at smaller values of β for chemotactic cells (see the supplementary data).

For Pe� 1, we can obtain f (0) correct to O(Pe2) (as computed by Rusconi et al.
2014 for σ = 0, also see the supplementary data), and thus obtain from (3.9) an
approximate expression for the equilibrium distribution:

n(y)= n(0)
(

1+ βy2Pe2

8(1+ σ/4)2
)

eχy. (3.10)

We see that, in this limit, the accumulation is proportional to the shape factor, β, and
scales as Pe2. Furthermore, we note that tumbling, as measured by σ , increases the
amount of reorientation experienced by cells. Thus, in regions of high shear, the non-
uniformity of f (0) is reduced, causing an increase in VMS. This results in a reduction
in the amount of cell aggregation in high-shear regions, as seen on comparing the
tumbling and non-tumbling data and numerical solution in figure 1.

4. Conclusions

We have developed a continuum framework to describe the spatial distribution
of slender chemotactic bacteria in channel flow which captures recently published
experimental observations. In addition to solving the cell conservation equation
numerically, we have obtained a simple analytic expression for the equilibrium
distribution which helps us to understand the mechanism by which the distribution of
cells is modified by fluid shear. The analytic expression is in good agreement with
the numerical solutions for all cell shapes (β) at moderate shear rates (Pe), but is
only appropriate at higher Pe for very slender cells for which the rotational diffusion
is of a similar magnitude to flow-induced reorientation. This work contributes to
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the understanding of hydrodynamic phenomena in suspensions of active swimmers.
In particular, it highlights potential problems in modelling the random reorientation
mechanism of bacteria in inhomogeneous shear as diffusion in physical space, and
demonstrates the utility of an alternative framework, that of the Smoluchowski
equation, which is still compatible with classical models of Stokesian swimmers.

For slender cells, when compared with the experimental data, the gradients in
concentration are underestimated by the Smoluchowski equation, leading to under-
prediction of the depletion zone. On increasing Pe the model predictions of centreline
depletion move closer to the experimental data, unlike the individual-based simulations
of Rusconi et al. (2014) which overpredict depletion for high Pe. In contrast to the
experimental results, the depletion increases monotonically with Pe for slender cells
(β = 0.99), but our model predicts non-monotonic behaviour for slightly less slender
cells, which may suggest that the effective cell shape factor is smaller than previously
estimated. Furthermore, when we solved the Smoluchowski equation numerically, we
identified that an important area for future study is the boundary condition at the
wall, which can have a dramatic effect on the global concentration field.

Many refinements are possible to this model framework in order to improve the
agreement with experimental data. We have considered cells constrained to move in a
two-dimensional plane, and we note that care must be applied in extending the results
to cells free to move in three dimensions. Throughout this work we have neglected
the feedback that swimming has on the flow field, yet even at low volume fractions,
hydrodynamic interactions between cells and with boundaries can be important, for
example leading to bioconvection and boundary accumulations respectively. At high
volume fractions, the swimming stresses exerted on the fluid can drive fluid motions
on spatial and temporal scales much larger than the individual cells (Lushi, Goldstein
& Shelley 2012). We have considered a very simple description of chemotaxis, which
could be modified to take account of the observation that shear flow significantly
impacts how cells temporally integrate the chemical signal (Locsei & Pedley 2009).
Furthermore, bacteria display a range of behaviours, and optimal swimming strategy
can depend on the fluid dynamics (Stocker 2011).

The results presented here may be relevant not only to bacteria in pipe flow,
but to unbounded flow such as in the turbulent ocean. While previous work has
demonstrated bacterial accumulation at surfaces due to hydrodynamic interactions,
reviewed by Lauga & Powers (2009), the phenomenon of trapping in high shear
discussed here is not restricted to boundary accumulation but may also be relevant to
high-shear interior regions.
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